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Representations of Sp(6, R) and SU(3) carried
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In this paper, we study representations of Sp~6,R! and SU~3! carried by homoge-
neous polynomials of phase-space variables in six dimensions. These representa-
tions are very important for the study of symplectic integration techniques for
Hamiltonian systems. We obtain irreducible representations for Sp~6,R! and SU~3!
and explicit expressions for states within SU~3! representations in terms of phase-
space variables. ©1997 American Institute of Physics.@S0022-2488~97!05005-6#

I. INTRODUCTION

In the study of nonlinear Hamiltonian dynamics, the real symplectic group Sp(2n,R) and its
compact subgroups play an important role.1,2 Quite often, one studies the single particle dynam
of nonlinear Hamiltonian systems. Since this has three degrees of freedom, the relevant g
Sp~6,R!. Moreover, the equations of motion are formulated in terms of phase-space var
~generalized coordinates and momenta!. In particular, in Lie perturbation theory1 of Hamiltonian
dynamics, homogeneous polynomials of phase-space variables play a central role. Therefo
important to study the representations of Sp~6,R! carried by these polynomials. Further, in deri
ing symplectic integration algorithms3–6 for Hamiltonian systems, representations of comp
subgroups of Sp~6,R! ~especially SU~3!! carried by homogeneous polynomials are required. T
may also be useful in deriving metric invariants for symplectic maps.2 For these reasons, we stud
the representations of Sp~6,R! and SU~3! carried by homogeneous polynomials of phase-sp
variables.

In Section II, we introduce the mathematical preliminaries. In Section III, we study
irreducible representations of Sp~6,R! ~and its associated Lie algebra sp~6,R!! carried by homo-
geneous polynomials of phase-space variables. In Section IV, we study the irreducible rep
tations of SU~3! carried by these polynomials. We give explicit expressions for states within
representations in terms of phase-space variables in Appendix A. Such expressions are cr
developing symplectic integration algorithms.4 Concluding remarks can be found in Section V

II. PRELIMINARIES

We start by defining Lie operators. Let us denote the collection of six phase-space va
qi ,pi ( i 5 1,2,3) by the symbolz:

z5~q1 ,p1 ,q2 ,p2 ,q3 ,p3!. ~2.1!

The Lie operator corresponding to a phase-space functionf (z) is denoted by:f (z):. It is defined1

by its action on a phase-space functiong(z) as shown below:

: f ~z!:g~z!5@ f ~z!,g~z!#, ~2.2!

a!Electronic mail: rangaraj@math.iisc.ernet.in
0022-2488/97/38(5)/2710/10/$10.00
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where@ f (z),g(z)# denotes the usual Poisson bracket of the functionsf (z) andg(z). In particular,
if the Lie operator corresponding to a homogeneous polynomialf 2 of degree 2 acts on a homo
geneous polynomialgm of degreem, it gives back another homogeneous polynomialhm of degree
m:

: f 2 :gm5hm . ~2.3!

We next define the exponential of a Lie operator. It is called a Lie transformation and is giv
follows:1

e: f ~z!:5 (
n50

`
: f ~z!:n

n!
. ~2.4!

LetM be a 63 6 real symplectic matrix. That is, it satisfies the following symplectic condit

M̃JM5J, ~2.5!

whereM̃ is the transpose ofM andJ is the fundamental symplectic matrix.1 The set of all such
matrices forms the finite dimensional real symplectic group Sp~6,R!. We also have the following
relation between symplectic matrices and Lie transformations:1

e: f2
~c! :e: f2

~a! :zi5(
j51

6

Mi j zj[~Mz! i , ~2.6!

i.e., given any symplectic matrixM , one can find two unique second degree homogeneous p
nomials f 2

(c) and f 2
(a) such that the above relation is satisfied.

Finally, the set of all :f 2 :’s gives a realization the Lie algebra sp(6,R)1 if we define the Lie
product of two Lie operators :f 2 : and :g2 : to be their commutator$: f 2 :,:g2 :%. This commutator
can be shown to satisfy the relation

$: f 2 :,:g2 :%[: f 2<g2 :2:g2< f 2 :5:@ f 2 ,g2#:. ~2.7!

III. REPRESENTATIONS OF sp(6,R) AND Sp(6,R)

First, we study the representations of the symplectic algebra sp~6,R!. These representation
are obtained by the action of Lie operators on carrier spaces spanned by homogeneous po
als. They are shown to be irreducible and correspond to the representation (m,0,0) wherem is the
degree of the homogeneous polynomial. Next, we study the representations of the sym
group Sp~6,R! obtained by the action of linear Lie transformations on homogeneous polynom
We end by proving a couple of relations linking the representations of sp~6,R! with representations
of Sp~6,R!.

A. Representation of sp(6, R)

We have seen that the :f 2 :’s constitute the symplectic Lie algebra sp~6,R!. An N dimensional
representation of sp~6,R! is obtained by mapping each element :f 2 : onto aN 3 N matrix d( f 2)
such that the following conditions are satisfied for all :f 2 :, :g2 : belonging to sp~6,R!:7

d~a f21bg2!5ad~ f 2!1bd~g2!, a,bPR, ~3.1!

d~@ f 2 ,g2# !5$d~g2!,d~ f 2!%. ~3.2!
J. Math. Phys., Vol. 38, No. 5, May 1997
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Irreducible representations of sp~6,R! carried by homogeneous polynomials inz can be ob-
tained as follows. LetP (m)(z) denote the set of all homogeneous polynomials inz of degree
m. From Eq.~2.3!, we get the following relation:

: f 2 :gm5@ f 2 ,gm#PP ~m! ;gmPP ~m!. ~3.3!

That is, the set of all elements belonging to sp~6,R! leavesP (m) invariant.
Let $Pa

(m)% be a basis for the setP (m). Typically, we choose these basis elements to be
monomials of degreem in the six phase-space variables. The number of basis monomialsN(m) of
degreem in the six phase-space variables is given by the relation8

N~m!5Sm15
m D . ~3.4!

From Eq.~3.3! and the completeness of the set$Pa
(m)%, we get the following relation

: f 2 :Pa
~m!~z!5d~m!~ f 2!a

bPb
~m!~z! a51,2, . . . ,N~m!, ~3.5!

whered(m)( f 2)a
b are coefficients multiplying the basis elements. Here we have used Eins

summation convention. This convention will be used throughout the rest of the paper unless
otherwise.

As we varya from 1 toN(m) in Eq. ~3.5!, the set of coefficientsd(m)( f 2)a
b gives rise to an

N(m) 3 N(m) matrix,d(m)( f 2), for each :f 2 : belonging to sp~6,R!. We claim that the set of such
matrices~obtained by letting :f 2 : range over the entire Lie algebra! gives anN(m)-dimensional
representation ofsp(6,R). To prove this, we have to verify that these matrices satisfy Eqs.~3.1!
and ~3.2!. From Eq.~2.7!, we obtain the relations

:a f21bg2 :Pa
~m!~z!5a: f 2 :Pa

~m!~z!1b:g2 :Pa
~m!~z!, a,bPR, ~3.6!

:@ f 2 ,g2#:Pa
~m!~z!5: f 2<g2 :Pa

~m!~z!2:g2< f 2 :Pa
~m!~z!. ~3.7!

Substituting Eq.~3.5! into these equations, we get the desired results.
We next prove that the above representationsd(m)( f 2) ~for eachm! are irreducible.

Theorem 1: The representationd(m)( f 2) of the Lie algebra sp~6,R! is irreducible.
Proof:We note thatP (m)(z) acts as a carrier space for the Lie operators :f 2:(Psp(6,R)). The

representationd(m)( f 2) is shown to be irreducible by proving that any invariant subspaceS(m) of
P (m)(z) has to be a trivial subspace. If the given subspaceS(m) contains only the identity elemen
~given by 0!, it is already a trivial subspace and we are done. Therefore, assume that the
invariant subspaceS(m) has at least one elementg other than the identity.

Lemma 1: q1
m is an element of the invariant subspaceS(m).

Proof: The elementg can be decomposed in terms of the linearly independent basis elem
Pi
(m) of P (m)(z) as follows:

g5AiPi
~m! , ~3.8!

where

Pi
~m!5q1

aip1
biq2

cip2
diq3

eip3
f i, i51,2, . . . ,N~m! ~3.9!

and

ai1bi1ci1di1ei1 f i5m. ~3.10!
J. Math. Phys., Vol. 38, No. 5, May 1997
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HereN(m) is the dimension of the carrier spaceP (m)(z) and is given by Eq.~3.4!. The quantities
Ai are constants.

First, we pick a unique monomialP
*
(m) from among the basis monomialsPi

(m) in the expan-
sion forg as follows. Consider the following sequence of nested sets:

G0$G1$G2$G3$G4$G5 , ~3.11!

where@cf. Eq. ~3.9!#

G05$ i :AiÞ0%,

G15$ i :bi>bj ,; jPG0%,

G25$ i :ci>cj ,; jPG1%,

G35$ i :di>dj ,; jPG2%, ~3.12!

G45$ i :ei>ej ,; jPG3%,

G55$ i : f i> f j ,; jPG4%.

Note that elements of the above setsG j ( j50,1...,5) are nothing but the indices that unique
label the basis monomials.

It is easy to see thatG5 contains only a single element. If this were not true,G5 would contain
at least two distinct elementsi and j . This would imply that there are basis elementsPi

(m) and
Pj
(m) such that the following condition is satisfied:

bi5bj , ci5cj , di5dj , ei5ej , f i5 f j . ~3.13!

This in turn implies thatai andaj are also equal@cf. Eq. ~3.10!#. Therefore,Pi
(m) andPj

(m) would
be equal even though their indicesi and j are different. This contradicts our assumption that th
are linearly independent. The above argument proves that one of the subsetsG5 has a single
element. Of course, it is possible that one of theG l ’s ~for l , 5! already contains only a singl
element. In that case, all subsequentG j ’s ~for j . l ! will also have the same single element.
particular,G5 will have a single element which is what we require.

Let us denote the unique basis element corresponding to the only element ofGn by P*
(m), i.e.,

P
*
~m!5Pi

~m!~ iPGn!5q1
a
* p1

b
*q2

c
* p2

d
*q3

e
* p3

f
* . ~3.14!

Further, let us denote the coefficient associated withP
*
(m) in the decomposition ofg @cf. Eq. ~3.8!#

by A* . It is then easy to see that the following equation is satisfied:

F ~21!c*1e
*

2b*A*

:q1q3 :
f
*

f * !
:q1p3 :

e
*

e* !
:q1q2 :

d
*

d* !
:q1p2 :

c
*

c* !

:q1
2:b*
b* !

Gg5q1
m . ~3.15!

Since S(m) is assumed to be an invariant subspace under the action of sp~6,R!, the quantity
obtained by successive actions of :f 2 :’s on g is also an element ofS(m). Therefore, Eq.~3.15!
shows thatq1

m is an element ofS(m). This proves the lemma.
It can now be shown that any arbitrary elementh of P (m) is also an element ofS(m).

Decompose this element as follows:

h5BjPj
~m! . ~3.16!
J. Math. Phys., Vol. 38, No. 5, May 1997

04¬May¬2006¬to¬159.178.77.96.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



g to

n

s

ther to

2714 Govindan Rangarajan: Representations of Sp(6,R) and SU(3) carried

Downloaded¬
where the basis monomialsPj
(m) are specified by Eqs.~3.9! and ~3.10!. Then there exists an

operator that takes the elementq1
m into h as shown below:

(
j51

N FBj

aj !cj !ej !

m!

~21!bj1cj1 f j

2bj1dj1 f j
:p3

2: f j
:q3p2 :

~ej1 f j !

~ej1 f j !!
,:p2

2:dj
:q2p1 :

~m2aj2bj !

~m2aj2bj !!
:p1

2:bj Gq1m5h.

~3.17!

Thus we have shown that it is possible to map the elementg belonging toS(m) into an
arbitrary element ofP (m)(z) by the action of an appropriate combination of elements belongin
sp~6,R!. SinceS(m) was assumed to be an invariant subspace under the action of sp~6,R!, this
proves that every element ofP (m)(z) is also an element ofS(m). Therefore, ifS(m) is an invariant
subspace, it has to be a trivial subspace ofP (m). Henced(m)( f 2) is an irreducible representatio
of sp~6,R!.

B. Representation of Sp(6, R)

Irreducible representations of Sp~6,R! carried by homogeneous polynomials inz can be ob-
tained by once again utilizing the setP (m)(z). Consider the action of Sp~6,R! on this set. Using
Eq. ~3.3!, the following relation is seen to be true:

e: f2
~c! :e: f2

~a! :gmPP ~m! ;gmPP ~m!. ~3.18!

That is, the set of all symplectic matrices leavesP (m) invariant @cf. Eq. ~2.6!#. We again choose
$Pa

(m)% to be the set of basis elements forP (m)(z). From Eq.~2.6! we get the following result:

e: f2
~c! :e: f2

~a! :Pa
~m!~z!5Pa

~m!~Mz!5D ~m!~M !a
bPb

~m!~z! a51,2,••• ,N~m!, ~3.19!

whereD (m)(M )a
b is the coefficient corresponding toPb

(m)(z).
As a is varied from 1 toN(m), the set of coefficientsD (m)(M )a

b gives rise to anN(m)
3 N(m) matrix D (m)(M ) for eachM belonging to Sp~6,R!. We claim that this set of matrice
gives anN(m)-dimensional representation of Sp~6,R!. Consider the following quantity:

~e:g2
~c! :e:g2

~a! :!~e: f2
~c! :e: f2

~a! :!Pa
~m!~z!. ~3.20!

Denote the symplectic matrices corresponding to the two factors in the above equation byM and
M 8 @cf. Eq. ~2.6!#. From Eq.~3.19!, we get the following relation:

~e:g2
~c! :e:g2

~a! :!~e: f2
~c! :e: f2

~a! :!Pa
~m!~z!5D ~m!~MM 8!a

gPg
~m!~z!. ~3.21!

We can also evaluate the actions of the two factors on the basis element one after the o
obtain

~e:g2
~c! :e:g2

~a! :!~e: f2
~c! :e: f2

~a! :!Pa
~m!~z!5D ~m!~M !a

b
D ~m!~M 8!b

gPg
~m!~z!. ~3.22!

Comparing Eqs.~3.21! and ~3.22!, we obtain the desired relation

D ~m!~MM 8!5D ~m!~M !D ~m!~M 8!. ~3.23!

Next, we show that these representations are irreducible. For sp~6,R!, we proved that there are
no non-trivial subspaces ofP (m) that are invariant under the action of the :f 2 :’s. From Eqs.~2.6!
and~2.4!, it follows that there are no non-trivial invariant subspaces ofP (m) even under the action
of symplectic matricesM belonging to Sp~6,R!. Therefore, the representationsD (m)(M ) are
irreducible. In fact, they correspond to the irreducible representation (m,0,0) of Sp(6,R)2.
J. Math. Phys., Vol. 38, No. 5, May 1997
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We end this subsection by giving examples of the irreducible representations of Sp~6,R!. It is
obvious that theM ’s themselves form a six dimensional irreducible representation. This is c
the fundamental~or defining! representation. Formally, it can be obtained from Eq.~3.19! by
settingm equal to 1. Another important irreducible representation is the adjoint represen
D (2)(M ) obtained by settingm equal to 2 in Eq.~3.19!. From Eq.~3.4!, it is seen that this forms
a 21 dimensional irreducible representation of Sp~6,R!.

In the above discussions, we have been careful to distinguish between upper and lower
labeling the matrix elements of the representation. This is because anN(m)-dimensional repre-
sentation is~in general! not equivalent to its own transpose, i.e.,D̃ (m)(M ) is not a member of the
representationD (m). For the fundamental representation (m 5 1), it turns out that this distinction
is unnecessary sinceM̃ also belongs to the group of symplectic matrices.

C. Relations between representations of sp(6, R) and Sp(6,R)

One relation between the representationD (m)(M ) of the group and the representatio
d(m)( f 2) of the algebra is given as follows~providedM sufficiently close to the identity, in which
case, the two Lie transformations appearing in Eq.~2.6! can be combined into one!:

D ~m!~M !5D ~m!~e: f2 :!5ed
~m!~ f2!. ~3.24!

Another interesting relation between the representations of Sp~6,R! and sp~6,R! is given by
the following theorem.

Theorem 2: Denote the set of basis elements forP (2) by $wa%. Then

D ~2!~M !a
bd~m!~wb!5D ~m!~M !21d~m!~wa!D ~m!~M !. ~3.25!

Proof: It is clear that the set$wa% is identical to the set$Pa
(2)(z)%. In fact, the new notation

was adopted merely for notational convenience. From Eq.~3.19!, we get the following result:

:e: f2
~c! :e: f2

~a! :wa :5D ~2!~M !a
b :wb :. ~3.26!

We also obtain the relation

:e: f2
~c! :e: f2

~a! :wa :5e: f2
~c! :e: f2

~a! ::wa :e
2: f2

~a! :e2: f2
~c! :. ~3.27!

Comparing the last two equations, we find the result

D ~2!~M !a
b :wb :5e: f2

~c! :e: f2
~a! ::wa :e

2: f2
~a! :e2: f2

~c! :. ~3.28!

When the left and right hand sides of the above equation act on the basis elementPg
(m)(z), we

get the following relations@cf. Eqs.~3.5! and ~3.19!#:

D ~2!~M !a
b :wb :Pg

~m!~z!5D ~2!~M !a
bd~m!~wb!g

nPn
~m!~z!, ~3.29!

e: f2
~c! :e: f2

~a! ::wa :e
2: f2

~a! :e2: f2
~c! :Pg

~m!~z!5@D ~m!~M21!d~m!~wa!D ~m!~M !#g
nPn

~m!~z!.
~3.30!

We also have the following standard result:

D ~m!~M21!5@D ~m!~M !#21. ~3.31!

Inserting Eqs.~3.29!, ~3.30!, and~3.31! into Eq. ~3.28!, we get the desired result.
J. Math. Phys., Vol. 38, No. 5, May 1997
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IV. REPRESENTATIONS OF SU(3)

This section is devoted to study of representations of SU~3! carried by homogeneous polyno
mials in the phase-space variables. First, we briefly review relevant aspects of the represe
theory of SU~3!. Next, we list irreducible representations of SU~3! carried bymth degree homo-
geneous polynomials. Finally, we list the weight vectors within each irreducible represen
carried by homogeneous polynomials of degree less than five.

Irreducible representations of SU~3! are labeled by two indicesj 1 and j 2 .
7 The dimension of

the irreducible representation labeled by (j 1 , j 2) is given as follows:

N~ j 1 , j 2!5 1
2 ~ j 111!~ j 211!~ j 11 j 212!. ~4.1!

States within an irreducible representation are labeled byI ~total isotopic spin!, I 3 ~the third
component of isotopic spin! andY with hypercharge. We will denote the states within this rep
sentation as follows:

u j 1 , j 2 ;I ,I 3 ,Y&. ~4.2!

Here, we have abused notation to denote the eigenvalues corresponding to a operator
symbol used to denote the operator itself.

We now turn to the problem of determining the representations of SU~3! carried by homoge-
neous polynomials in the phase space variables. In the previous section, we have already s
homogeneous polynomials of degreem carry the irreducible representation (m,0,0) of Sp~6,R!.
Under the action of SU~3!, this representation will, in general, be reducible. But, it can be wri
as a direct sum of irreducible representations of SU~3!. This list of irreducible representations o
SU~3! constitutes the ‘‘branching rule’’ of (m,0,0). The required branching rule is given
follows:9

Theorem 3: The complete list of irreducible representations ofSU~3! carried by homoge-
neous polynomials of degree m in phase space variables is given as follows:

~m,0!,~m21,1!,...,~1,m21!,~0,m!,

~m22,0!,~m23,1!,...,~1,m23!,~0,m23!,

...

...

~0,0! if m is even

or ~1,0!,~0,1! if m is odd. ~4.3!

We next turn our attention to the weight vectors within each such representation~also called
states of a representation or basis vectors of SU~3!!. It can be shown10–12 that these states ar
associated with harmonic functions on the 5-sphereS5. The 5-sphere is defined by the relation

z1* z11z2* z21z3* z35r 251, ~4.4!

wherezj andzj* are given by the relations

zj5
1

&

~qj1 ip j !, ~4.5!
J. Math. Phys., Vol. 38, No. 5, May 1997
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zj*5
1

&

~qj2 ip j !. ~4.6!

Since we are interested in functions defined on the 5-sphereS5, it is convenient to parametrize
S5 in terms of polar coordinatesf1 , f2 , f3 , u and j. These coordinates are related to t
complex phase-space variableszj by the following relations

z15reif1 cosu, ~4.7!

z25reif2 sin u cosj, ~4.8!

z35reif3 sin u sin j, ~4.9!

where

0<f1 ,f2 ,f3<2p; 0<u,j<p/2. ~4.10!

It can be shown10 that states within the irreducible representation (j 1 , j 2) of SU~3! can be
associated with harmonic functions defined onS5 as shown below:

u j 1 , j 2 ;I ,I 3 ,Y&5
1

sin u
d1/6~ j 12 j 223Y16I13!,1/6~ j 12 j 223Y26I23!

1/2~ j 11 j 211!
~2u!d1/3~ j 12 j 2!11/2Y,I3

~ I !

3~2j!e1/3i ~ j 12 j 2!~f11f21f3!eiI 3~f22f3!e1/2iY~22f11f21f3!. ~4.11!

Here dm8,m
( j ) (b) are the usuald-functions that characterize the irreducible representation (j ) of

SU~2!. The sign convention for thed-function is taken to be that given in Edmonds,13 i.e.,

dm8,m
~ j !

~b!5^ jm8uexp~1 ibJy /h!u jm&, ~4.12!

whereu jm& denotes states within the representation (j ) of SU~2!.
We are now in a position to give explicit formulas for the states within the representatio

SU~3! carried byf n . Such expressions are necessary to construct some of the symplectic in
tion algorithms.4–6 These formulas are listed in Appendix A~due to lack of space, only expres
sions for small values ofn are given!. These are obtained using the basis functions introdu
earlier@cf. Eq. ~4.11!#. However, we multiply these basis functions~which are dimensionless! by
r n in order to get the dimensions properly.14 Thus we use the basis functions:

un; j 1 , j 2 ;I ,I 3 ,Y&[r nu j 1 , j 2 ;I ,I 3 ,Y&. ~4.13!

This multiplication does not change the eigenvaluesI , I 3 or Y. Moreover, the states within th
representation are given in terms ofz1 ,z2 ,z3 @cf. Eqs.~4.7!, ~4.8!, and ~4.9!# and their complex
conjugates instead of the original angular variables. This makes identification with the hom
neous polynomials easier. Each entry in Appendix A take the following general form:

I ,I 3 ,Y,un; j 1 , j 2 ;I ,I 3 ,Y&~z1 ,z1* ,z2 ,z2* ,z3 ,z3* !. ~4.14!

We only list the states within the representations for whichj 1 is greater than or equal toj 2 . Given
a stateun; j 1 , j 2 ;I ,I 3 ,Y& belonging to (j 1 , j 2), the corresponding state belonging to (j 2 , j 1) is
given byun; j 2 , j 1 ;I ,I 3 , 2 Y&. Moreover, it satisfies the following relation:

un; j 2 , j 1 ;I ,I 3 ,2Y&~z1 ,z1* ,z2 ,z2* ,z3 ,z3* !5~21! I1I3un; j 1 , j 2 ;I ,I 3 ,Y&~z1* ,z1 ,z3* ,z3 ,z2* ,z2!.
~4.15!
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Therefore, given the states within the representation (j 1 , j 2), the states within (j 2 , j 1) are easily
obtained.

V. SUMMARY

In this paper, we looked at representations of Sp~6,R! and SU~3! carried by homogeneou
polynomials in six phase-space variables. It was shown that homogeneous polynomials of
m carry aN(m) @cf. Eq. ~3.4!# dimensional irreducible representation of Sp~6,R!. These irreduc-
ible representations break into a direct sum of irreducible representations for SU~3!. Explicit
expressions for SU~3! states within these representations were given in terms of phase vari
The above results should be useful in Lie perturbation theory of symplectic maps, especially
theory of symplectic integration.
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APPENDIX A: REPRESENTATIONS OF SU(3) CARRIED BY HOMOGENEOUS
POLYNOMIALS

A. Representations of SU(3) carried by f 0

I. j 1 5 0, j 2 5 0 ~one-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

0 0 0 r 0

B. Representations of SU(3) carried by f 1

I. j 1 5 1, j 2 5 0 ~three-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

1/2 1/2 1/3 z2

1/2 21/2 1/3 z3

0 0 22/3 A2z1

C. Representations of SU(3) carried by f 2

I. j 1 5 2, j 2 5 0 ~six-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

1 1 2/3 z2
2
2

1 0 2/3 A22z3
1 21 2/3 z3

2

1/2 1/2 21/3 A3z12
1/2 21/2 21/3 A3z1z3
0 0 24/3 A3z12
J. Math. Phys., Vol. 38, No. 5, May 1997
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II. j 151, j 251 ~eight-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

1/2 1/2 1 A3zz* z2
1/2 21/2 1 A3z1* z3
1 1 0 2A2z2z3*
1 0 0 z2* z22z3* z3

1 21 0 A2z2* z3
0 0 0 2z1* z12z2* z22z3* z3

1/2 1/2 21 2A3z1z3*

1/2 21/2 21 A3z1z2*

III. j 150, j 250 ~one-dimensional irreducible representation!

I I 3 Y un; j 1 , j 2 ;I ,I 3 ,Y&

0 0 0 z1* z11z2* z21z3* z35r 2
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