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In this paper, we study representations of&p) and SU3) carried by homoge-
neous polynomials of phase-space variables in six dimensions. These representa-
tions are very important for the study of symplectic integration techniques for
Hamiltonian systems. We obtain irreducible representations f@,Spand SU3)

and explicit expressions for states within @Urepresentations in terms of phase-
space variables. €997 American Institute of Physid$0022-24887)05005-4

I. INTRODUCTION

In the study of nonlinear Hamiltonian dynamics, the real symplectic groupr§gj2and its
compact subgroups play an important rbfeQuite often, one studies the single particle dynamics
of nonlinear Hamiltonian systems. Since this has three degrees of freedom, the relevant group is
Sp(6,R). Moreover, the equations of motion are formulated in terms of phase-space variables
(generalized coordinates and momenta particular, in Lie perturbation theorpf Hamiltonian
dynamics, homogeneous polynomials of phase-space variables play a central role. Therefore, it is
important to study the representations of @) carried by these polynomials. Further, in deriv-
ing symplectic integration algorithii® for Hamiltonian systems, representations of compact
subgroups of S(6,R) (especially SW3)) carried by homogeneous polynomials are required. They
may also be useful in deriving metric invariants for symplectic nfapst these reasons, we study
the representations of 8gR) and SU3) carried by homogeneous polynomials of phase-space
variables.

In Section Il, we introduce the mathematical preliminaries. In Section Ill, we study the
irreducible representations of &R) (and its associated Lie algebra(6fk)) carried by homo-
geneous polynomials of phase-space variables. In Section IV, we study the irreducible represen-
tations of SW3) carried by these polynomials. We give explicit expressions for states within the
representations in terms of phase-space variables in Appendix A. Such expressions are crucial in
developing symplectic integration algorithth€oncluding remarks can be found in Section V.

II. PRELIMINARIES

We start by defining Lie operators. Let us denote the collection of six phase-space variables
gi,pi (i = 1,2,3) by the symbat:

z=(01,P1,92,P2,03,P3)- 2.1

The Lie operator corresponding to a phase-space funéfionis denoted byf(z):. It is defined
by its action on a phase-space functigpfz) as shown below:

(2):9(2)=[1(2),9(2)], (2.2
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where[ f(z),9(z)] denotes the usual Poisson bracket of the functf¢my andg(z). In particular,
if the Lie operator corresponding to a homogeneous polynofpialf degree 2 acts on a homo-
geneous polynomida,,, of degream, it gives back another homogeneous polynorhjabf degree

m:
fo:Om=hn. (2.3
We next define the exponential of a Lie operator. It is called a Lie transformation and is given as
follows:!
Z (2"
giw=y I = (2.4
n=o0 n!

LetM be a 6X 6 real symplectic matrix. That is, it satisfies the following symplectic condition
MIM=J, (2.5

whereM is the transpose dfl andJ is the fundamental symplectic matfixthe set of all such
matrices forms the finite dimensional real symplectic grouf6®). We also have the following
relation between symplectic matrices and Lie transformattons:

,f(C)

6
ez :e:f(Za):ZiZZ MijZJ‘E(MZ)i, (26)
j=1

i.e., given any symplectic matrill, one can find two unique second degree homogeneous poly-
nomialsf{? andf{ such that the above relation is satisfied.

Finally, the set of all f,:’s gives a realization the Lie algebra spf§* if we define the Lie
product of two Lie operatorsf;: and g,: to be their commutatof:f,:,:g,:}. This commutator
can be shown to satisfy the relation

{ifarigaib=1fa g0 =10 for = [2,02]:. 2.7
Ill. REPRESENTATIONS OF sp(6, R) AND Sp(6,R)

First, we study the representations of the symplectic algeki@&p These representations
are obtained by the action of Lie operators on carrier spaces spanned by homogeneous polynomi-
als. They are shown to be irreducible and correspond to the representat®0)( wherem is the
degree of the homogeneous polynomial. Next, we study the representations of the symplectic
group Sp6,R) obtained by the action of linear Lie transformations on homogeneous polynomials.
We end by proving a couple of relations linking the representations(6flspwith representations
of Sp(6,R).

A. Representation of sp(6, R)

We have seen that thé,::'s constitute the symplectic Lie algebra(§fR). An N dimensional
representation of $6,R) is obtained by mapping each elemefy::onto aN X N matrix d(f,)
such that the following conditions are satisfied for 4, :g,: belonging to sf,R):’

d(af,+bg,)=ad(f,)+bd(g,), abeR, (3.1

d([f2,92])={d(g2),d(f2)}. (3.2
J. Math. Phys., Vol. 38, No. 5, May 1997
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Irreducible representations of (§R) carried by homogeneous polynomialsarcan be ob-
tained as follows. Let”(™(z) denote the set of all homogeneous polynomialg iof degree
m. From Eq.(2.3), we get the following relation:

f:0m=[f,,9m]e 2™ Vg,e7™. (3.3

That is, the set of all elements belonging td6p) leaves”(™ invariant.

Let {Pg“)} be a basis for the ser(™. Typically, we choose these basis elements to be the
monomials of degrem in the six phase-space variables. The number of basis monadx{iads of
degreem in the six phase-space variables is given by the relétion

_[m+5
N(m)= m | (3.9
From Eq.(3.3) and the completeness of the $@t(am)}, we get the following relation
P (2)=d™(f)PPM(2) a=12,... N(m), (3.5

whered™(f,)? are coefficients multiplying the basis elements. Here we have used Einstein’s
summation convention. This convention will be used throughout the rest of the paper unless stated
otherwise.

As we varya from 1 toN(m) in Eq. (3.5), the set of coefficientd(™(f,)” gives rise to an
N(m) X N(m) matrix,d™(f,), for each f,: belonging to sf8,R). We claim that the set of such
matrices(obtained by letting f,: range over the entire Lie algebrgives anN(m)-dimensional
representation o§p(6,R). To prove this, we have to verify that these matrices satisfy E1%)
and (3.2). From Eq.(2.7), we obtain the relations

raf,+bgy:P™(z)=a:f,: P (2)+b:g,:P™(z), abeR, (3.6)

(2,021 PY(2) =100, PYY(2) =gy T2 PY™(2). (3.7)

Substituting Eq(3.5) into these equations, we get the desired results.
We next prove that the above representatioff(f,) (for eachm) are irreducible.

Theorem 1: The representatiod(™(f,) of the Lie algebra s,R) is irreducible.

Proof: We note that”(™(z) acts as a carrier space for the Lie operatfss(:c sp(6R)). The
representation(™(f,) is shown to be irreducible by proving that any invariant subs@&e of
7M(z) has to be a trivial subspace. If the given subs{E® contains only the identity element
(given by 0, it is already a trivial subspace and we are done. Therefore, assume that the given
invariant subspac&™ has at least one elemegtother than the identity.

Lemma 1: §' is an element of the invariant subspaa@).
Proof: The elemeny can be decomposed in terms of the linearly independent basis elements
P(™ of »2(M(z) as follows:

g=AP"™, (3.8
where
me)=qiip?iq;ipgiq§ipg, i=1,2,...,N(m) (3.9
and
ajt+b;+ci+di+e+fi=m. (3.10
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HereN(m) is the dimension of the carrier spagé™(z) and is given by Eq(3.4). The quantities
A, are constants.

First, we pick a unique monomi&@{™ from among the basis monomia®™ in the expan-
sion forg as follows. Consider the following sequence of nested sets:

|s] iie] iPie) K] e ) IS (3.1
where[cf. Eq. (3.9)]
Fo={i:A;#0},
Iy ={i:bj=b; ,Vjely},
Io={i:c;i=c;,Vjely},
I's={i:di=d;,Vjel},}, (3.12
I,={iie=¢;,Vjels},
Pg={i:fi=f; Vjel,}.

Note that elements of the above séts(j=0,1...,5) are nothing but the indices that uniquely
label the basis monomials.

It is easy to see thdt; contains only a single element. If this were not trlig, would contain
at least two distinct elementsandj. This would imply that there are basis elemeﬁfg‘) and
P{™ such that the following condition is satisfied:

bi:bj, Ci:Cj, di:dj, ei:ej', f|:fJ (313)

This in turn implies thag; anda; are also equdkf. Eq.(3.10]. Therefore P{™ and P{™ would
be equal even though their indiceand| are different. This contradicts our assumption that they
are linearly independent. The above argument proves that one of the sligsk&s a single
element. Of course, it is possible that one of thé (for | < 5) already contains only a single
element. In that case, all subsequén'ts (for j > ) will also have the same single element. In
particular,I'5 will have a single element which is what we require.

Let us denote the unique basis element corresponding to the only eIerTIérnbpﬂDim), ie.,

. b. d f
PI"=P{™ (i ') =05*py* 5 py* dg Py (3.14

Further, let us denote the coefficient associated Wﬁﬂ’? in the decomposition af [cf. Eq.(3.8)]
by A, . Itis then easy to see that the following equation is satisfied:

(—1)% "8 3Q1Q33f* 101 p3: % 10102:% (g Pyt 301%:[)*
25:A, f,! e,! d,! c,! b,!

g=ay. (3.15

Since S™ is assumed to be an invariant subspace under the action(6fRpthe quantity
obtained by successive actions @f:’'s on g is also an element ™. Therefore, Eq(3.15
shows thag]' is an element o8™. This proves the lemma.

It can now be shown that any arbitrary eleméntof (™ is also an element o8™.
Decompose this element as follows:

h=B;P{"™. (3.16
J. Math. Phys., Vol. 38, No. 5, May 1997
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where the basis monomiaBJ(m’ are specified by Egg.3.9) and (3.10. Then there exists an
operator that takes the elematit into h as shown below:
b +¢;j +f

N Lt —ai—b
2 aJ|CJ'eJI (=17 2. 1qgpp: ) 2.d; 1Py ™ 2.b) | g —
Z obrd vt -Ps: (e +1))! P2 (m—a;—by)! P

(3.17

Thus we have shown that it is possible to map the elengebelonging toS™ into an
arbitrary element of”(™(z) by the action of an appropriate combination of elements belonging to
sp(6,R). SinceS™ was assumed to be an invariant subspace under the actior(6R spthis
proves that every element 6f(™(z) is also an element &™. Therefore, ifS™ is an invariant
subspace, it has to be a trivial subspace/8f. Henced(™(f,) is an irreducible representation
of sp(6,R).

B. Representation of Sp(6, R)

Irreducible representations of &R) carried by homogeneous polynomialszrcan be ob-
tained by once again utilizing the set(™(z). Consider the action of $p,R) on this set. Using
Eqg. (3.3), the following relation is seen to be true:

e:f(ZC) :e:f(za) ‘e M Vg,e™. (3.18
That is, the set of all symplectic matrices leave€™ invariant[cf. Eq. (2.6)]. We again choose
{Pgm)} to be the set of basis elements fg{™(z). From Eq.(2.6) we get the following result:

'z e’ PM(2) = PM(M2)= 7 MMEPI(2) a=12,-- N(m),  (3.19
where f/(m)(M)B is the coefficient corresponding t@‘m)(z)

As «a is varied from 1 toN(m), the set of coefﬁmenté_/(m)(M)B gives rise to arN(m)
X N(m) matrix (™ (M) for eachM belonging to Sf6,R). We claim that this set of matrices
gives anN(m)-dimensional representation of &gR). Consider the following quantity:

(€9 e ) (e1s e )P 7). (3.20
Denote the symplectic matrices corresponding to the two factors in the above equalibmauy
M’ [cf. Eqg.(2.6)]. From Eq.(3.19, we get the following relation:

(€9 e ) (&1 € )P (2) = MMM ) 7P (2). (3.21

We can also evaluate the actions of the two factors on the basis element one after the other to
obtain

(€95 e0s ) (efs els

PN ()= ™M) ™M) P (2). (3.22
Comparing Eqs(3.21) and(3.22), we obtain the desired relation
MMM )= MM)Z™M(M"). (3.23

Next, we show that these representations are irreducible. F@Rgpwe proved that there are
no non-trivial subspaces 6P(™ that are invariant under the action of tifg:’s. From Eqs(2.6)
and(2.4), it follows that there are no non-trivial invariant subspaces’8f) even under the action
of symplectic matricesM belonging to Sf6,R). Therefore, the representatios(™(M) are
irreducible. In fact, they correspond to the irreducible representatio,0) of Sp(6R)?.

J. Math. Phys., Vol. 38, No. 5, May 1997
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We end this subsection by giving examples of the irreducible representation$6aR Sk is
obvious that theM’s themselves form a six dimensional irreducible representation. This is called
the fundamentalor defining representation. Formally, it can be obtained from E19 by
settingm equal to 1. Another important irreducible representation is the adjoint representation
7(2(M) obtained by settingn equal to 2 in Eq(3.19. From Eq.(3.4), it is seen that this forms
a 21 dimensional irreducible representation ofeslp).

In the above discussions, we have been careful to distinguish between upper and lower indices
labeling the matrix elements of the representation. This is becaudi raj-dimensional repre-
sentation igin general not equivalent to its own transpose, i.B{™(M) is not a member of the
representatior/ (™, For the fundamental representation & 1), it turns out that this distinction
is unnecessary sindd also belongs to the group of symplectic matrices.

C. Relations between representations of sp(6, R) and Sp(6, R)

One relation between the representatiof™(M) of the group and the representation
d(M(f,) of the algebra is given as followgrovidedM sufficiently close to the identity, in which
case, the two Lie transformations appearing in €96) can be combined into ojhe

ZM(M)=7(M(ef2) =gt ™12, (3.24

Another interesting relation between the representations (6,8pand sig6,R) is given by
the following theorem.

Theorem 2: Denote the set of basis elements f6f2) by {w,}. Then
ZAM)Ed™(wg) =2 ™M) "1™ (w,) 2 M (M). (3.2

Proof: It is clear that the sefw,} is identical to the sefP{?)(z)}. In fact, the new notation
was adopted merely for notational convenience. From(Bd9, we get the following result:

O, @), .
el e w, =AM, (3.26

We also obtain the relation

(0. e(@). £(0). g(a). _.f@. _ ().
o2 efs w, =l el tw, e e (3.27)
Comparing the last two equations, we find the result
N £(0) . c(a). _.f(@. _.¢(0).
TAM)E wg:=eT2 'efe tw, e e 2 (3.28

When the left and right hand sides of the above equation act on the basis eI@ﬂ%n}, we
get the following relationgcf. Eqgs.(3.5 and(3.19]:

ZAM)E:wg PV (2)= 2@ (M)Ed™(wp) ' P (2), (3.29
e:f(ZC) ;eif(za) ::Wa :e—:f(za) ;e—:f(ZC) ;P(ym)(z) _ [g(m)(M _l)d(m)(Wa)fZ<m)(M )];P(Vm)(Z)
(3.30

We also have the following standard result:
MM =[Z™(M)] . (3.3)

Inserting Eqs(3.29, (3.30, and(3.3)) into Eqg.(3.28, we get the desired result.

J. Math. Phys., Vol. 38, No. 5, May 1997
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IV. REPRESENTATIONS OF SU(3)

This section is devoted to study of representations of3ptarried by homogeneous polyno-
mials in the phase-space variables. First, we briefly review relevant aspects of the representation
theory of SU3). Next, we list irreducible representations of @Ucarried bymth degree homo-
geneous polynomials. Finally, we list the weight vectors within each irreducible representation
carried by homogeneous polynomials of degree less than five.

Irreducible representations of $8) are labeled by two indicejs andj,.” The dimension of
the irreducible representation labeled By,(,) is given as follows:

N(j1.j2)= 3 (J1+D(j2+1)(j1+]2+2). 4.1

States within an irreducible representation are labeled lfiptal isotopic spip 15 (the third
component of isotopic spirandY with hypercharge. We will denote the states within this repre-
sentation as follows:

li1,j2:1.13,Y). (4.2

Here, we have abused notation to denote the eigenvalues corresponding to a operator by the
symbol used to denote the operator itself.

We now turn to the problem of determining the representations ¢8Starried by homoge-
neous polynomials in the phase space variables. In the previous section, we have already seen that
homogeneous polynomials of degreecarry the irreducible representatiom,0,0) of Sg6,R).
Under the action of S[3), this representation will, in general, be reducible. But, it can be written
as a direct sum of irreducible representations of 3UThis list of irreducible representations of
SU(3) cgonstitutes the “branching rule” ofr,0,0). The required branching rule is given as
follows:

Theorem 3: The complete list of irreducible representationsSi§(3) carried by homoge-
neous polynomials of degree m in phase space variables is given as follows

(m,0),(m—1,1),...,(1,m—1),(0,m),

(m-2,0,(m-3,1),...,(1,m—3),(0,m-3),

(0,0 if m is even
or (1,0,(0,1) if m is odd. (4.3
We next turn our attention to the weight vectors within each such representalsoncalled
states of a representation or basis vectors of3pUIt can be showtf~*2that these states are
associated with harmonic functions on the 5-spl&teThe 5-sphere is defined by the relation

D+ z2,+ 25 z5=r2=1, (4.9

wherez; and zJ* are given by the relations

1
ijg(qj—i_ipj)u 4.5

J. Math. Phys., Vol. 38, No. 5, May 1997
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Z,*=5(q,-—ipj)- (4.6)

Since we are interested in functions defined on the 5-spreri¢is convenient to parametrize
S° in terms of polar coordinates,, ¢,, ¢3, 6 and & These coordinates are related to the
complex phase-space variablgsby the following relations

z,=re'%1 cosf, (4.7)
z,=re' %2 sin 6 cosé, 4.9
zz=re'%3 sin @ sin &, 4.9
where
0<¢1,¢p,$3<2m; 0<6,¢{<m/2. (4.10

It can be showt that states within the irreducible representatipn, ) of SU(3) can be
associated with harmonic functions defined®nas shown below:

L _ V2j+jo+1) (1)
|Jl'12’|’|3’Y>_ sin 6 1/6(jl—j2—3v+6|+3),1/6(j1—j2—3v—e|—3>(26)d1/3<1'1—1'2)+1/2le3

X(zg)ella(jl_jz)(‘f’l‘*' bt ¢3) il 3(d2— b3) QUAY (=21 + pot b3) (4.12)

Here dﬁjﬂym(ﬁ) are the usuall-functions that characterize the irreducible representatjpno{
SU(2). The sign convention for thd-function is taken to be that given in Edmonids,e.,

0 (B = (i exe(+ 83, 1) jm), 412

where|jm) denotes states within the representatipndf SU(2).

We are now in a position to give explicit formulas for the states within the representations of
SU(3) carried byf,. Such expressions are necessary to construct some of the symplectic integra-
tion algorithms®~® These formulas are listed in Appendix (@ue to lack of space, only expres-
sions for small values of are given. These are obtained using the basis functions introduced
earlier[cf. Eq. (4.11)]. However, we multiply these basis functio(vghich are dimensionlegdy
r" in order to get the dimensions propetfyThus we use the basis functions:

IN;igadzslils,Y)y=r"j1,ia:l13,Y). (4.13

This multiplication does not change the eigenvaluges; or Y. Moreover, the states within the
representation are given in terms of,z,,z; [cf. Egs.(4.7), (4.8), and(4.9)] and their complex
conjugates instead of the original angular variables. This makes identification with the homoge-
neous polynomials easier. Each entry in Appendix A take the following general form:

L3, Y 01,0000 03, Y(20,25 125,25 ,23,23). (4.19
We only list the states within the representations for whicts greater than or equal §g. Given
a state|n;j,,j,;:1,13,Y) belonging to {;,j,), the corresponding state belonging 1 ,j,) is
given by|n;j,,j1;1,13, — Y). Moreover, it satisfies the following relation:
|n;j21j1;| 1|31_Y>(lez;_c ,2212‘126 vz3az§):(_l)l+|3|n;j11j2;|1|31Y>(Z’I vzle§ 123123 122)' a
(4.1

J. Math. Phys., Vol. 38, No. 5, May 1997
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Therefore, given the states within the representatignj§), the states withinj(,j,) are easily
obtained.

V. SUMMARY

In this paper, we looked at representations of63p) and SU3) carried by homogeneous
polynomials in six phase-space variables. It was shown that homogeneous polynomials of degree
m carry aN(m) [cf. Eq. (3.4)] dimensional irreducible representation of(f). These irreduc-
ible representations break into a direct sum of irreducible representations f8). Explicit
expressions for S(3) states within these representations were given in terms of phase variables.
The above results should be useful in Lie perturbation theory of symplectic maps, especially in the
theory of symplectic integration.
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APPENDIX A: REPRESENTATIONS OF SU(3) CARRIED BY HOMOGENEOUS
POLYNOMIALS
A. Representations of SU(3) carried by  f,

I.j; = 0,j, = 0 (one-dimensional irreducible representajion

I PR SN LiH F PH A W 9)
0 0O ro
B. Representations of SU(3) carried by  f;

I.j; = 1,j, = 0 (three-dimensional irreducible representation

[ 5 Y o InjniailhlsY)

12 1/2  1/3 2
12 —1/2 1/3 Z3
0 0 -23 2z,

C. Representations of SU(3) carried by f,

l.j1 = 2,j, = 0 (six-dimensional irreducible representation

| I3 Y LHENPHRFR )

1 1 23 2,2
1 0 23 V2,24
1 -1 23 z
12 12 -1/3 V3zy,
1/2 —1/2 -1/3 V32,25
0 0 -—43 V32,2
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Il. j4=1, j,=1 (eight-dimensional irreducible representajion

| I3 Y LHENPHR PR

12 12 1 J3z: 7,
12 -12 1 V3z¥ z4
1 1 0 —\22,7}
1 0 0 252,— 7523
1 -1 0 V225 7,
0 0 0 27z,-752,~7323
12 12 -1 —\32,7}
12 -1/2 -1 V32,7

lll. j;=0, j,=0 (one-dimensional irreducible representation

I |3 Y |n;j1!j2;|||3vY>
0 0 0 Zz+Z5z,+z5z5=r2
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