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In this paper, we outline a method for symplectic integration of three degree-of-
freedom Hamiltonian systems. We start by representing the Hamiltonian system as
a symplectic map. This map~in general! has an infinite Taylor series. In practice,
we can compute only a finite number of terms in this series. This gives rise to a
truncated map approximation of the original map. This truncated map is however
not symplectic and can lead to wrong stability results when iterated. In this paper,
following a generalization of the approach pioneered by Irwin~SSC Report No.
228, 1989!, we factorize the map as a product of special maps called ‘‘jolt maps’’
in such a manner that symplecticity is maintained. ©1996 American Institute of
Physics.@S0022-2488~96!03509-8#

I. INTRODUCTION

Consider a complicated periodic Hamiltonian system that is non-integrable. Suppose we are
interested in the long-term stability of particles being transported through this system. Since the
system is assumed to be nonintegrable, it is very difficult to give stability criteria in an analytic
form. A possible solution is to numerically follow the trajectories of particles through the system
for a large number of periods~a process that goes by the name of tracking!. One could then
attempt to infer the stability of motion in the system by analyzing these tracking results.

The most straightforward method that can be used to perform this long term tracking is
numerical integration. However, this method is too slow for analyzing the stability of very com-
plicated systems. Therefore, we need a method that is both fast and accurate.

Several symplectic integration methods have been discussed in the literature. Ruth,1 Feng,2

Channel and Scovel,3 Yoshida,4 Berget al.5 and others have derived symplectic integrators using
generating functions. These are typically implicit methods and using these methods requires one to
use Newton’s method with its attendent questions of convergence, etc. Another approach is
through solvable maps.6,7 But this method has not been explored in great detail. In this paper,
following Irwin,8 we explore a more direct method of symplectic integration.

The method that we will use is the iteration of symplectic maps9 representing the Hamiltonian
system. We start by defining certain mathematical objects. Let us denote the collection of six
phase space variablesqi , pi ( i51,2,3) by the symbolz:

z5~q1 ,p1 ,q2 ,p2 ,q3 ,p3!. ~1.1!

The Lie operator corresponding to a phase space functionf (z) is denoted by :f (z):. It is defined
by its action on a phase-space functiong(z) as shown below

: f ~z!:g~z!5@ f ~z!,g~z!#. ~1.2!

Here [f (z),g(z)] denotes the usual Poisson bracket of the functionsf (z) and g(z). Next, we
define the exponential of a Lie operator. It is called a Lie transformation and is given as follows:
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e: f ~z!:5 (
n50

`
: f ~z!:n

n!
. ~1.3!

Powers of :f (z): that appear in the above equation are defined recursively by the relation

: f ~z!:ng~z!5: f ~z!:n21@ f ~z!,g~z!#, ~1.4!

with

: f ~z!:0g~z!5g~z!. ~1.5!

For further details regarding Lie operators and Lie transformations, see Ref. 9.
The time evolution of the Hamiltonian system over one period can be represented by a

symplectic mapM.9 Symplectic maps are maps whose Jacobian matricesM (z) satisfy the fol-
lowing symplectic condition:

M ~z!̃JM~z!5J, ~1.6!

whereM̃ is the transpose ofM andJ is an antisymmetric matrix defined as follows:

J5S 0 1 0 0 0 0

21 0 0 0 0 0

0 0 0 1 0 0

0 0 21 0 0 0

0 0 0 0 0 1

0 0 0 0 21 0

D . ~1.7!

MatricesM satisfying Eq.~1.6! are called symplectic matrices and the corresponding mapsM

symplectic maps. It can be shown9 that the set of allM ’s forms an infinite dimensional Lie group
of symplectic maps. On the other hand, the set of all real 636 symplectic matrices forms the finite
dimensional real symplectic group Sp~6,R!.

Using the Dragt–Finn factorization theorem,9,10 the symplectic mapM can be factorized as
shown below:

M5M̂e: f3 :e: f4 :...e: f n :. .. . ~1.8!

HereM̂ gives the linear part of the map and hence has an equivalent representation in terms of the
Jacobian matrixM (0) of the mapM at the origin:9

M̂zi5Mi j zj5~Mz! i . ~1.9!

Thus, M̂ is said to be the Lie transformation corresponding to the 636 matrixM belonging to
Sp~6,R!. The infinite product of Lie transformations exp(:f n :) (n53,4,...) in Eq.~1.8! represents
the nonlinear part ofM. Here f n(z) denotes a homogeneous polynomial~in z! of degreen
uniquely determined by the factorization theorem.

The above mapM is called the one-period map for the system. It gives the final statez(1) of
a particle after one period as a function of its initial statez(0):

z~1!5Mz~0!. ~1.10!

To obtain the state of a particle afterN periods, one has to merely iterate the above mappingN
times, i.e.,
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z~N!5MNz~0!. ~1.11!

It is obvious that one cannot useM in the form given in Eq.~1.8! for any practical compu-
tations. It involves an infinite number of Lie transformations. Therefore, we have to truncateM

by stopping after a finite number of Lie transformations:

M'M̂e: f3 :e: f4 :...e: f P :. ~1.12!

However, we are still not out of the woods. Each exponentiale: f n : inM contains an infinite
number of terms in its Taylor series expansion. One possible solution is to truncate the Taylor
series generated by the Lie transformations to orderP. We denote this truncated map byMP . As
a power series in the six phase space variables, it is given as follows:

MPz5M ~11: f 3 :1••• !~11: f 4 :1••• !

•••~11: f p :1••• !z, ~1.13!

where we have to truncate the power series in such a way that the highest order term generated is
zP21. If we did not impose this restriction, we would generate terms of orderzP and higher. Then,
to be consistent, we would be forced to include in our map, :f n : ’s for n greater thanP ~since these
also generate terms of orderzP and higher!.

Equation~1.13! can be rewritten as follows:

MPz5h1~z!1h2~z!1•••1hP21~z!, ~1.14!

wherehn(z) denotes a polynomial of degreen in z. Since we have decided to consistently drop
terms of orderzP and higher, we can define the following equivalence relation between maps of
orderP:

MP;MP8 if MPz2MP8z5hP~z!1higher order terms. ~1.15!

This can be rephrased in terms of partial derivatives as follows. MapsMP andMP8 are equivalent
if all the partial derivatives ofMPz andMP8z up to orderP21 are equal. An equivalence class
with respect to this equivalence relation is called a jet of orderP. Since the mapMP is obtained
from a symplectic mapM, we callMP ~or more accurately, the equivalence class to which it
belongs! a symplectic jet of orderP. We stress that, despite its name,MP is not symplectic.

We note that symplectic jets of orderP have the following properties. A symplectic jet maps
R6 into R6. It maps the origin ofR6 into itself. It is invertible. And the composition of two
symplectic jetsMP andMP8 is defined as follows:

MP•MP8 5~M•M8!P . ~1.16!

This is again a symplectic jet of orderP. And finally, there exists an identity given by the
following equivalence class:

MP
0z5z1hP~z!1higher order terms. ~1.17!

Therefore, the set of all symplectic jets of orderP forms a group. It can be shown that it is actually
a Lie group. This Lie group formed by the set of all symplectic jets of orderP is called the
symplectic jet group Spj~6;P!.

However, the above solution of truncating the Taylor series has a severe shortcoming. As
mentioned above, the mappingMP generated by the truncated Taylor series is no longer sym-
plectic. Therefore, repeated iterations of this mapping can lead to spurious growth~or damping! in
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the amplitude of motion of the particle being tracked. Obviously, this can lead to wrong conclu-
sions regarding the stability of the system. Therefore it is important to preserve the symplectic
nature ofMP when using it for long term tracking. For this purpose, we need to ensure that each
factor inMP takes the forme:g:. On the other hand, for the numerical tracking scheme to be
practical, we need to ensure that we evaluate only a finite number of terms. In this paper, we
discuss how to reconcile these two apparently contradictory objectives.

The basic goal of this paper is to refactorizeMP @cf. Eq. ~1.13!# as a product of symplectic
maps that can be evaluated exactly. Since we do not truncate the Taylor series, we preserve the
symplectic nature of the map even when we evaluate it. Another attractive feature of these special
maps is that their inverses can also be evaluated exactly. The process of refactorizing a map into
a product of symplectic maps characterized by these nice features is called ‘‘symplectic comple-
tion’’. Since the map that is being refactorized isMP , a symplectic jet, this refactorization
procedure is called ‘‘symplectic completion of symplectic jets’’. And this will be the subject of
this paper.

We start by defining jolt maps in Section II. In Section III, we formulate the problem of
symplectic completion ofMP in terms of these jolt maps. Here, we follow the procedure first
outlined by Irwin.8 To get a better understanding of the problem, we first solve a model problem
in Section IV. In Section V, we formulate a solution to the problem of symplectic completion of
symplectic jets. In Section VI, we optimize the number of jolt maps required so that an efficient
numerical algorithm is obtained.

II. JOLT MAPS

Consider the symplectic map given bye:g(z): whereg(z) is a function of the phase space
variablesz. It is called a jolt map if :g(z): is a nilpotent operator of rank 2, i.e., if the following
condition is satisfied:

:g~z!:2z50. ~2.1!

The functiong(z) is then called a jolt function. We note that jolt maps have only two nonzero
terms in their Taylor series expansions@cf. Eq. ~1.3!#. The term jolt map was first introduced in
Ref. 11.

Examples of jolt maps are given by the following theorem.
Theorem 1: The following maps are jolt maps

~ i! R̂e:q1
n :R̂215e:R̂q1

n :, ~2.2!

~ ii ! R̂e: f ~q1 ,q2 ,q3!:R̂215e:R̂f ~q1 ,q2 ,q3!:. ~2.3!

Here f(q1 ,q2 ,q3) is an nth degree polynomial in variables q1 , q2 , and q3. Finally, R̂ is the Lie
transformation corresponding to a636matrix R belonging to any subgroup ofSp~6,R! [including
Sp~6,R! itself]. It is given by the following relation [cf. Eq. (1.9)]:

R̂zi5Ri j zj5~Rz! i . ~2.4!

See Appendix A for a proof of this theorem. In this theorem, note that the second statement
contains the first statement as a special case. However, a separate~and simpler! proof is given
even for the first statement since we will be using this later in the paper.
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III. FORMULATION OF THE PROBLEM OF JOLT FACTORIZATION

Our goal is to refactorizeMP @cf. Eq. ~1.13!# in terms of a finite number of jolt maps. The
first step towards achieving this goal is to formulate the problem in an appropriate form. The best
way to mathematically formulate the problem appears to be as follows8:

Problem 1: Given the mapMP, find another mapJ specified by the following product of K
jolt maps:

J5M̂e:g3
~1!

1g4
~1!

1•••1gP
~1! :e:g3

~2!
1g4

~2!
1•••1gP

~2! :. ..e:g3
~K !

1g4
~K !

1•••1gP
~K ! : ~3.1!

such that this map agrees withMP to order P, i.e.,

J>MP to order P. ~3.2!

Here gn
(i)’s are (homogeneous) jolt polynomials of degree n given by the following relation:

gn
~ i !5bn

~ i !R̂iq1
n , i51,2,...,K, ~3.3!

whereb n
( i ) is a real coefficient. The matrices Ri belong to a subgroup ofSp~6,R! [including

Sp~6,R! itself] and R̂i denotes the Lie transformation corresponding to these matrices [cf. Eq.
(2.4)].

Before proceeding further, we note that Eq.~3.1! can be rewritten in the following form:

J5M̂e:g
~1!:e:g

~2!:. ..e:g
~K !:, ~3.4!

where

g~ i !5g3
~ i !1g4

~ i !1•••gP
~ i ! i51,2,...,K. ~3.5!

From Eq.~3.3! and Theorem 1@cf. Eq. ~2.2!# it is seen thatg( i )’s are jolt polynomials~a sum of
jolt polynomials is easily shown to be another jolt polynomial!. Consequently, exp(:g( i ):) ’s are
jolt maps.

In order to solve the above problem, we need to determine the various unknown quantities
appearing in the above equations—the number of jolt mapsK, the matricesRi , and the coeffi-
cientsbn

( i ). It turns out thatK andRi can be determined independent of the details of the map
MP . They depend only on the orderP of the map. This will be explicitly demonstrated shortly.
For the moment, we will assume thatK andRi have already been fixed. This reduces our task to
merely finding the coefficientsbn

( i )’s such that Eq.~3.2! is satisfied. We now proceed to solve for
these coefficients order by order.

Since the linear part of a symplectic map can be evaluated exactly, there is no need to
refactorize it in terms of jolt maps. Hence, we have already chosen the linear parts of the maps
MP andJ to be the same. Therefore, we need to refactorize only the nonlinear part ofMP . We
start by comparing terms of order 3 inMP andJ respectively. The third-order term inMP is
given by f 3 . To obtain the third-order term inJ , we need to cast it in the standard Dragt–Finn
form. This is accomplished by using the Baker–Campbell–Hausdorff~BCH! formula10 given
below:

exp~ t: f : !exp~s:g: !5exp~ t: f :1s:g:1ts:@ f ,g#:/21••• !. ~3.6!

We get the following result to third order:

J>M̂e:h3 :, ~3.7!

where
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h35(
i51

K

g3
~ i ! . ~3.8!

Therefore,J andMP will be equal to order 3 if the following equality is satisfied@cf. Eq. ~3.3!#:

(
i51

K

b3
~ i !R̂iq1

35 f 3 . ~3.9!

In other words, we have to determineb3
( i )’s such that the above equation is satisfied.

Next, we compare terms of order 4 inMP andJ . The fourth-order term inMP is given by
f 4 . Using the BCH formula, the Dragt–Finn factorization ofJ correct to fourth order is given by
the following result:

J>M̂e:h3 :e:h4 :, ~3.10!

where

h45(
i51

K

g4
~ i !1

1

2 (
j,k

@g3
~ j ! ,g3

~k!#. ~3.11!

The second term on the right hand side of the above equation is a fourth-order term produced by
the concatenation of third-order terms in Eq.~3.1!. Equating the fourth-order terms ofMP andJ
we get the relation@cf. Eq. ~3.3!#

(
i51

K

b4
~ i !R̂iq1

45 f 42
1

2 (
j,k

b3
~ j !b3

~k!@R̂jq1
3,R̂kq1

3#[ f 48 . ~3.12!

Here f 48 includes the fourth-order terms produced by concatenation of lower order terms. By
choosingb4

( i )’s such that the above equation is satisfied, we ensure thatJ andMP agree to fourth
order.

This process can be continued in a similar fashion to deal with the higher order terms. At the
nth order, we have to choosebn

( i )’s such that the following equality is satisfied:

(
i51

K

bn
~ i !R̂iq1

n5 f n8 . ~3.13!

Here f n8 includes the unwantednth-order terms produced bygl
( i ) ( l,n).

We are now in a position to determine the number of jolt mapsK and the matricesRi . We
will show that they are independent of the mapMP . We note thatf n8 involvesN(n) independent
coefficients whereN(n) is given by the relation8

N~n!5S n15
n D . ~3.14!

Thus, we need at leastN(n) bn
( i )’s to solve the above equation. SinceN(n) is a monotonically

increasing function ofn, the maximum number ofbn
( i )’s are required whenn is equal toP ~the

maximum order!. Thus we needN(P) bn
( i )’s to solve Eq.~3.13! for all n. This fixesK to be equal

to N(P). Moreover,R̂iq1
n ( i51,...,K) should be linearly independent quantities. This imposes

restrictions on the matricesRi that we can choose. Both these conditions are independent off n8 ,
i.e., they are independent of the mapMP . They depend only on the maximum orderP. Therefore
bothK andRi ’s can be fixed in advance independent of the map to be represented.
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OnceK and theRi ’s are fixed, we start by first solving Eq.~3.9! for b3
( i )’s. We then proceed

order by order until we reach thePth-order equation. At thenth order, we have to solve Eq.
~3.13!. The right hand side involvesN(n) independent coefficients. SinceN(n) is less thanK
(5N(P)) for n less thanP, we have morebn

( i )’s than necessary to solve this equation, i.e., the
bn
( i )’s are underdetermined. The naive solution would be to set these extrabn

( i )’s to zero

bn
~ i !50 for i.N~n!. ~3.15!

But there is a better solution. We fix these extrabn
( i )’s by requiring that( i51

K (bn
( i ))2 be a mini-

mum. The reason for this is simple. We have seen that thenth-order jolt polynomials produce
higher order terms@for example, see Eq.~3.11!# upon concatenation. These higher order terms
depend on the coefficientsbn

( i ) @for example, see Eq.~3.12!#. Therefore, by minimizing the sum of
the squares of these coefficients, we reduce the magnitude of the unwanted higher order terms
produced by concatenation of lower order terms.

Putting everything together, the problem of obtaining a jolt map factorization can be reduced
to the following general problem:

Problem 2: Given a nth degree homogeneous polynomial fn and K matrices Ri , find the
coefficientsb n

( i )’s such that the following conditions are satisfied:

~ i! (
i51

K

bn
~ i !R̂iq1

n5 f n ~3.16!

and

~ ii ! (
i51

K

@bn
~ i !#2 is a minimum. ~3.17!

IV. A MODEL PROBLEM AND ITS SOLUTION

Before attempting to solve the general problem outlined above, we will first solve a model
problem in this section. This model problem is deliberately designed to be quite similar to the
problem of jolt factorization@cf. Eqs. ~3.16! and ~3.17!#. Therefore, solving this problem will
enable us to get a feel for the issues involved in the solution of the jolt factorization problem.

Consider an arbitrary vectorv in the two dimensionalx2y plane. It can be expressed as
follows:

v5vxex1vyey , ~4.1!

whereex andey are the usual unit vectors along thex andy axes, respectively, andvx andvy are
the corresponding vector components. Next, we construct a new set ofN basis vectorsei ~where
N is an integer greater than 2! in the x2y plane using the following procedure:

ei5R~u i !ex , i51,2,...,N, ~4.2!

where

R~u i !ex5cos~u i !ex1sin~u i !ey ~4.3!

and

u i5~k21!
2p

N
. ~4.4!
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We are now in a position to state the problem—expressv in the new basis given by theN ei ’s.
Of course, only two basis vectors are actually needed to express the vectorv. Since we have extra
basis vectors, we need to impose a constraint. Taking this into account, the problem can be
formulated as follows.

Problem 3: Given the vector v [cf. Eq. (4.1)], find coefficientsbi such that the following
conditions are satisfied:

~ i! v5(
i51

N

b iei5(
i51

N

b iR~u i !ex ~4.5!

and

~ ii ! (
i51

N

b i
2 is a minimum. ~4.6!

The reader will immediately notice the striking similarity between this problem and the problem of
jolt factorization@cf. Eqs.~3.16! and ~3.17!#.

Instead of solving this particular problem, we will solve the more general problem obtained by
going to the continuum limit. Its solution will then contain the solution to the original~discrete!
problem as a special case. The generalized problem is given as follows.

Generalized Problem 1:Given the vector v [cf. Eq. (4.1)], find the function g~u ! such that
the following conditions are satisfied:

~ i! v5
1

2p E
0

2p

du g~u!R~u!ex ~4.7!

and

~ ii !
1

2p E
0

2p

du g2~u! is a minimum, ~4.8!

where

R~u!ex5cos~u!ex1sin~u!ey . ~4.9!

We solve this generalized problem as follows. We first find functionsgx(u) andgy(u) satis-
fying the following relations:

1

2p E
0

2p

du gx~u!R~u!ex5ex , ~4.10!

1

2p E
0

2p

du gy~u!R~u!ex5ey . ~4.11!

In other words, the functionsgx(u) andgy(u) project out the unit vectorsex andey , respectively.
Substituting Eq.~4.9! in the above expressions, we obtain the relations

1

2p E
0

2p

du gx~u!@cos~u!ex1sin~u!ey#5ex , ~4.12!
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1

2p E
0

2p

du gy~u!@cos~u!ex1sin~u!ey#5ey . ~4.13!

The cosine and sine functions satisfy the following orthonormality conditions:

1

2p E
0

2p

du cos~mu!cos~m8u!5
1

2
dmm81

1

2
dm0dm80 , ~4.14!

1

2p E
0

2p

du sin~mu!sin~m8u!5
1

2
dmm82

1

2
dm0dm80 , ~4.15!

1

2p E
0

2p

du cos~mu!sin~m8u!50, ~4.16!

wherem andm8 are arbitrary integers. Using these orthonormality relations, we get the following
solution forgx(u) andgy(u):

gx~u!52 cos~u!; gy~u!52 sin~u!. ~4.17!

Consider the following function

g~u!5vxgx~u!1vygy~u!. ~4.18!

Substituting this function into the right hand side of Eq.~4.7!, we get the following result:

1

2p E
0

2p

du@vxgx~u!1vygy~u!#R~u!ex . ~4.19!

Using Eqs.~4.10! and ~4.11!, we obtain the relation@cf. Eq. ~4.1!#

1

2p E
0

2p

du g~u!R~u!ex5vxex1vyey5v. ~4.20!

This proves that the functiong(u) given in Eq.~4.18! is a solution satisfying Eq.~4.7!.
Next, we have to show that it also satisfies Eq.~4.8!. Using the standard Fourier series

expansion, the most general function satisfying Eq.~4.7! is found to be

g~u!52vx cos~u!12vy sin~u!1b01 (
n52

`

bn cos~nu!1 (
n52

`

an sin~nu!. ~4.21!

Using the orthonormality relations@cf. Eqs.~4.14!, ~4.15!, and~4.16!#, it is easily verified that this
is indeed a solution to Eq.~4.7!. Substituting this result into Eq.~4.8!, we get the relation

1

2p E
0

2p

du g2~u!52~vx
21vy

2!1b0
21 (

n52

`

~an
21bn

2!/2. ~4.22!

This is a minimum only if the following condition is satisfied:

b050; an5bn50 n.1. ~4.23!
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Imposing these conditions on the general solution@cf. Eq. ~4.21!#, we get back the particular
solution given in Eq.~4.18!. Thus, the functiong(u) displayed below is indeed the solution to the
generalized problem stated in Eqs.~4.7! and ~4.8!:

g~u!52vx cos~u!12vy sin~u!. ~4.24!

This solution satisfies the following relation@cf. Eqs.~4.22! and ~4.23!#

1

2p E
0

2p

du g2~u!52~vx
21vy

2!. ~4.25!

The discrete version of the generalized problem is given as follows: Given the vectorv @cf.
Eq. ~4.1!#, find valuesg(u i) ( i51,2,...,N) such that the following conditions are satisfied:

~ i! v5
1

N (
i51

N

g~u i !R~u i !ex ~4.26!

and

~ ii !
1

N (
i51

N

@g~u i !#
2 is a minimum. ~4.27!

Comparing this with our original problem@cf. Eqs. ~4.5! and ~4.6!#, we make the following
identification:

b i5g~u i !/N. ~4.28!

If we choose the anglesu i to be equally spaced over the interval@0,2p# @as we did in the original
problem, cf. Eq.~4.4!#, cos(u i) and sin(u i) still form an othogonal set. Therefore, the solution
g(u) @cf. Eq. ~4.24!# to the continuum problem is the solution even for the discrete version. The
only difference is thatg(u) is now evaluated only at the discrete set of anglesu i . Therefore, the
coefficientsb i satisfying Eqs.~4.5! and ~4.6! are given as follows@cf. Eqs.~4.24! and ~4.28!#:

b i5@2vx cos~u i !12vy sin~u i !#/N. ~4.29!

The discrete version of Eq.~4.25! is found to be

1

N (
i51

N

@g~u i !#
252~vx

21vy
2!. ~4.30!

Substituting Eq.~4.28! into this expression, we get the relation

(
i51

N

b i
25

2

N
~vx

21vy
2!. ~4.31!

We notice that the sum of the squares of the coefficients decreases as the numberN of basis
vectors increases. We also note that the basis vectorsei @cf. Eq. ~4.2!# form a discrete subgroup of
the rotation group if the anglesu i are equally spaced over the interval@0,2p#.

V. SOLUTION TO THE PROBLEM OF JOLT FACTORIZATION

In this section, we return to the problem of jolt factorization@cf. Eqs.~3.16! and ~3.17!#. In
Section II, we had concluded that the problem of obtaining a jolt factorization is equivalent to the
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determination of the coefficientsbn
( i ) subject to the conditions given in Eqs.~3.16! and ~3.17!.

Hence, we will achieve our goal if we determine thesebn
( i )’s. However, in the previous section, we

had discovered that the solution to such problems is facilitated by going over to the continuum
limit. Therefore, we do the same for the problem of jolt factorization and obtain the following
generalized problem.

Generalized Problem 2:Given an nth degree homogeneous polynomial fn and a subgroup G
of Sp~6,R! on which invariant integration is well defined, find the function g~u! such that the
following conditions are satisfied:

~ i! f n5E
G
du g~u!R̂~u!q1

n ~5.1!

and

~ ii ! E
G
du g2~u! is a minimum. ~5.2!

Here u denotes a general element of the group G and Rˆ ~u! denotes the Lie transformation
corresponding to u. All integrations are invariant integrations performed over the group G.

First we need to choose the groupG. We cannot takeG to be Sp~6,R! since Sp~6,R! is a
noncompact group and therefore its invariant integrals cannot be normalized. We therefore inte-
grate over a compact subgroup of Sp~6,R!. The largest compact subgroup of Sp~6,R! is the unitary
group U~3!. However, we prefer to use SU~3! since it is more convenient for our purposes. If
needed, it is possible to generalize the invariant integrals over SU~3! to those over U~3!.

Having chosenG to be SU~3!, we are now in a position to solve the problem. First, we notice
the strong similarity between the present problem and the model problem that was solved in the
previous section. Therefore, we will closely follow the procedure used to solve the model prob-
lem.

We need to determine the functiong(u). For this, we expand all quantities in terms of certain
basis vectors. Since we are working with SU~3!, it is natural that we use SU~3! basis vectors.
Appendix B defines these basis vectors in terms of phase space variables~see Ref. 7 for additional
details!. Further, one can show7 that any homogeneous polynomialf n in the phase space variables
can be decomposed in terms of these vectors.

We will denote byu j ;m& the basis vectors uniquely labeled according to their transformation
properties under SU~3!. Here, j denotes the collection of indicesj 1 and j 2 labeling the represen-
tation andm denotes the collection of indicesI , I 3 , andY labeling vectors within the represen-
tation. ~These basis vectors are analogous to the basis vectorsex andey of the model problem.!

We expand the given homogeneous polynomialf n in this basis as follows

f n5(
j ,m

fm
j u j ;m& j<n. ~5.3!

A word on the notation used here. Sincej stands for a collection of indicesj 1 and j 2 , j<n
actually means thatj 11 j 2<n. Here, thefm

j ’s are coefficients multiplying the basis vectors.@This
expansion is analogous to the one given in Eq.~4.1! for v in the model problem.# Thus, the left
hand side of Eq.~5.1! has been expanded in terms ofu j ;m&. However the right hand side is in
terms of an integral over SU~3!. Therefore, we will rewriteu j ;m& in terms of an integral over
SU~3! such that a direct comparison of the two sides is possible.

We proceed as follows. Suppose we can find a functiongm
j (u) satisfying the following

relation:
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E
SU~3!

du gm
j ~u!R̂~u!q1

n5u j ;m&, j<n. ~5.4!

In other words, the functiongm
j (u) projects out the basis vectoru j ;m&. ~This function is analogous

to the functionsgx andgy in the model problem.! Substituting this equation and Eq.~5.3! in Eq.
~5.1! we get

(
j ,m

fm
j E

SU~3!
du gm

j ~u!R̂~u!q1
n5E

SU~3!
du g~u!R̂~u!q1

n , j<n. ~5.5!

Comparing both sides, we see that

g~u!5(
j ,m

fm
j gm

j ~u!, j<n. ~5.6!

All that remains to be done is to determinegm
j (u) satisfying Eq.~5.4!. To do this, we rewrite

R̂(u)q1
n in terms of SU~3! basis vectors. As a first step, we expandq1

n in this basis~see Appendix
B for a proof of this result!:

q1
n5(

j<n
j j u j ;mj&. ~5.7!

We note two important features of this expansion~see Appendix B for a proof!. First, the coeffi-
cientsj j are all nonzero:

j jÞ0, j<n. ~5.8!

Second, each representation occursonly once. This is indicated by the fact that there is no
summation over the indicesm that label vectors within a representation. In summary, each rep-
resentation~labeled byj<n! occurs once and only once in the expansion ofq1

n. This result will
play a crucial role in the discussion that follows.

To get R̂(u)q1
n we act on both sides of Eq.~5.7! with R̂(u), obtaining the following result:

R̂~u!q1
n5(

j<n
j j R̂~u!u j ;mj&. ~5.9!

Since the basis vectorsu j ;m& form a complete set for eachj , they satisfy the relation

(
m

u j ;m&^ j ;mu51 ; j . ~5.10!

Inserting this result into the right hand side of Eq.~5.9!, we get the following relation:

R̂~u!q1
n5(

j ,m
j j u j ;m&^ j ;muR̂~u!u j ;mj&, j<n. ~5.11!

However, we have the following standard result from representation theory of SU~3!:

^ j ,muR̂~u!u j ;mj&5D mmj
j ~u!. ~5.12!

Substituting this into Eq.~5.11!, we obtain the result
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R̂~u!q1
n5(

j ,m
j jD mmj

j ~u!u j ;m&, j<n. ~5.13!

Inserting Eq.~5.13! into Eq. ~5.4!, we get the result

E
SU~3!

du gm
j ~u! (

j 8,m8
j j 8D m8mj 8

j 8 ~u!u j 8,m8&5u j ;m&, j<n. ~5.14!

The functionsD j (u) satisfy the following orthogonality relations

E
SU~3!

duD̄ ab
j ~u!D a8b8

j 8 ~u!5
1

d
d j j 8daa8dbb8 . ~5.15!

Here D̄ j is the complex conjugate of the representationD j and d5( j 111)( j 211)
3(( j 11 j 2)/211) is the dimension of the SU~3! representation labeled byj . Using these orthogo-
nality relations, it is easily verified that the expression given below forgm

j (u) satisfies Eq.~5.14!

gm
j ~u!5

d

j j
D̄ mmj

j ~u!, j<n. ~5.16!

We note that this expression is well defined sincej j is nonzero forj<n @cf. Eq. ~5.8!#.
Having determinedgm

j (u), we immediately obtain the required solutiong(u) @cf. Eq. ~5.6!#:

g~u!5(
j ,m

dfm
j

j j
D̄ mmj

j ~u!, j<n. ~5.17!

This is a solution satisfying Eq.~5.1!. We need to verify that it also satisfies Eq.~5.2!.
Again, we proceed as we did in the model problem. The most general solutiong(u) satisfying

Eq. ~5.1! is of the following form:

g~u!5(
j ,m

dfm
j

j j
D̄ mmj

j ~u!1 (
j 8,a,b

cab
j 8 D̄ ab

j 8 ~u!. ~5.18!

Here the indicesj 8, a, andb are required to satisfy the condition

E
SU~3!

duD̄ ab
j 8 ~u!R̂~u!q1

n50. ~5.19!

This condition ensures that the extra terms added to obtain the general solution do not contribute
to the integral in Eq.~5.1!. However, these extra terms do contribute to the integral in Eq.~5.2!.
This is easily seen by substituting the general solution given in Eq.~5.18! into Eq.~5.2!. We obtain
the relation

E
SU~3!

du g2~u!5(
j ,m

dUfm
j

j j
U21 (

j 8,a,b
ucab

j 8 u2. ~5.20!

The above expression is minimized only if the following conditions are satisfied:

cab
j 8 50 ; j 8,a,b. ~5.21!
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Imposing these conditions on the general solution@cf. Eq. ~5.18!#, we get back the particular
solution given in Eq.~5.17!. In summary, the functiong(u) given in Eq.~5.17! is the solution
satisfying both Eqs.~5.1! and ~5.2!.

Having solved the problem in the continuum limit, we now return to the discrete version.
Following the analogy with the model problem, we replace the integral over SU~3! by a sum over
a discrete subgroupG of SU~3!.7 Since the elements of the discrete subgroups satisfy the same
group properties as elements of the original group, the solution for the continuum problem would
still be a solution to the discrete problem. There are several discrete subgroups of SU~3! that could
be used. They are listed in detail in Appendix C. One should choose a subgroup of SU~3! whose
order is greater than or equal toK. The above procedure leads us to the following result:

f n5
1

K (
i51

K

g~ui !R̂~ui !q1
n , uiPG, ~5.22!

whereg(u) is given by Eq.~5.17!. Comparing this with Eq.~3.16!, we get the following solution
for the coefficientsbn

( i ):

bn
~ i !5g~ui !/K. ~5.23!

VI. OPTIMIZATION OF THE NUMBER OF JOLT MAPS

We achieved our primary goal of finding a jolt factorization of the mapMP in the previous
section. We now seek to optimize this solution. More specifically, we attempt to reduce the
number of jolt maps to a minimum.

We start with the following result from the previous section:

f n5E
SU~3!

du g~u!R̂~u!q1
n , ~6.1!

whereg(u) is given by Eq.~5.17!. Here, we take a single jolt monomialq1
n and act on it with the

group SU~3!. An alternative procedure is considered below. We will show that it reduces the
number of jolt maps required by a substantial amount.

First, we factor SU~3! into the orthogonal group SO~3! and SU~3!/SO~3!. The group SO~3! is
taken to be the rotation group in theq1 , q2 , q3 space. We will provide the reason for employing
this factorization later. For the sake of notational convenience, let us denote SU~3!/SO~3! by G8.
To proceed further, we writeu @belonging to the group SU~3!# as the following product of
elements belonging toG8 and SO~3!:

u5c•r , uPSU~3!, cPG8, rPSO~3!. ~6.2!

Then, it can be shown12 that the following relation holds between the measuredu for SU~3! and
the measuresdc anddr for G8 and SO~3!, respectively:

du5dc•dr. ~6.3!

Substituting these results into the expression forf n @cf. Eq. ~6.1!#, we obtain the relation

f n5E
G8
dcE

SO~3!
dr g~c•r !R̂~c•r !q1

n . ~6.4!

Letting the SO~3! part of R̂(c•r ) act first onq1
n, we get the following result:
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R̂~c•r !q1
n5R̂~c! (

k51

N8~n!

dk~r !Pk
~n!~q1 ,q2 ,q3!. ~6.5!

Here we have used the following relation:

R̂~r !q1
n5 (

k51

N8~n!

dk~r !Pk
~n!~q1 ,q2 ,q3!, rPSO~3!, ~6.6!

wherePk
(n)(q1 ,q2 ,q3) denotes anth degree basis monomial in variablesq1 , q2 , andq3 :

Pk
~n!~q1 ,q2 ,q3!5q1

n1q2
n2q3

n3, n1>n2>n3 , n11n21n35n. ~6.7!

The numberN8(n) of nth degree basis monomial in three variables is given by the following
relation:7

N8~n!5S n12
n D . ~6.8!

Substituting Eq.~6.5! into Eq. ~6.4!, we get the relation

f n5E
G8
dcR̂~c!E

SO~3!
dr g~c•r ! (

k51

N8~n!

dk~r !Pk
~n!~q1 ,q2 ,q3!. ~6.9!

Next, we define a functionhk(c) by the following relation:

hk~c![E
SO~3!

dr g~c•r ! (
k51

N8~n!

dk~r !. ~6.10!

We have already calculatedg(c•r ). It is nothing but the functiong(u) given in Eq.~5.17!. Thus,
hk(c) is well defined and can be calculated. Inserting Eq.~6.10! into Eq. ~6.9!, we obtain the
following result:

f n5E
G8
dcR̂~c! (

k51

N8~n!

hk~c!Pk
~n!~q1 ,q2 ,q3!. ~6.11!

Next, we need to obtain the discrete version of the above equation. This is again done by
going over to a discrete sum over SU~3!/SO~3!. Starting from a discrete subgroup of SU~3!, one
can go over to SU~3!/SO~3! following the procedure outlined in Appendix C. We obtain the
following solution:

f n5E
G8
dcR̂~c! (

k51

N8~n!

hk~c!Pk
~n!~q1 ,q2 ,q3!5

1

K~G8! (
l51

K~G8!

R̂~cl ! (
k51

N8~n!

hk~cl !Pk
~n!~q1 ,q2 ,q3!.

~6.12!

Here,K(G8) gives the number of jolt maps required.
We now turn to the task of determining the number of jolt mapsK(G8). It depends onG8 as

indicated. We have already seen in Section V thatK is determined by looking at the equation for
n equal toP ~the maximum order!. Settingn equal toP in the above expression, we obtain the
following result:
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f P5
1

K~G8! (
l51

K~G8!

R̂~cl ! (
k51

N8~P!

hk~cl !Pk
~P!~q1 ,q2 ,q3!. ~6.13!

Since thePth degree homogeneous polynomialf P on the left hand side hasN(P) independent
coefficients@cf. Eq. ~3.14!#, we needN(P) linearly independent vectors on the right hand side.
Only then, we can express anyf P in terms of these vectors.

We are now in a position to justify our decision to factor SU~3! into SO~3! and SU~3!/SO~3!.
Suppose we had not factorized SU~3! as above. Then the analogue of the above equation would be

f P5
1

K8 (
k51

K8

g~ui !R̂~ui !q1
P , ~6.14!

whereui belongs to a discrete subgroup of SU~3!. Since we needN(P) independent coefficients
to describef P , K8 has to equalN(P). On the other hand, with factorization we need onlyN9(P)
jolts in Eq. ~6.13! where

N9~P!5N~P!/N8~P!. ~6.15!

This can be seen as follows. Equation~6.13! can be rewritten to give

f P5
1

K~G8! (
l51

K~G8!

R̂~cl !Hl~q1 ,q2 ,q3!, ~6.16!

where

Hl~q1 ,q2 ,q3!5 (
k51

N8~P!

hk~cl !Pk
~P!~q1 ,q2 ,q3!. ~6.17!

Now, the linear combination ofN8(P) jolt polynomials given byHl(q1 ,q2 ,q3) is again a jolt
polynomial. Since the jolt polynomialHl(q1 ,q2 ,q3) itself hasN8(P) independent coefficients,
K(G8) needs to be equal only toN9(P) @cf. Eq. ~6.15!# in order to give a total ofN(P) indepen-
dent coefficients. On the other hand, in Eq.~6.14!, we only have a single jolt monomialq1

P and
hence a single coefficient. Therefore,K8 has to equalN(P) in this case.

The above discussion demonstrates that a fewer number of jolts are required when SU~3! is
factored intoG8 and SO~3!. We now argue that factorizing SU~3! into a different set of factors
does not give an even better result. First, we note thatq1 , q2 , q3 space~or equivalently,p1 , p2 ,
p3 space! gives the maximal subspace of commuting jolt polynomials. We cannot choose any
group larger than SO~3! since it is shown in Appendix D that SO~3! is the largest subgroup of
Sp~6,R! that leaves theq1 , q2 , q3 space invariant. If we choose a group smaller than SO~3!, we
will not get all theN8(P) jolt monomials. ThenK(G8) might have to be larger to getN(P)
independent coefficients. Therefore, factoring SU~3! intoG8 and SO~3! does appear to be the best
compromise.

For P equal to 6,N9(P) is equal to 17 from the above procedure@cf. Eqs.~6.15!, ~3.14! and
~6.8!#. From Appendix C, we find that starting from~a similarity transformation of! a discrete
subgroup of order 108 of SU~3!, one can go over to a set of 18 elements belonging to SU~3!/
SO~3!. Thus, the number of jolt mapsK(G8) required forP56 is 18. For this case, we have
verified that we do get the required number of linearly independent vectors on the right hand side
of Eq. ~6.13!. Irwin8 factorizesG as U~1!3U~1!3U~1!. Using this factorization, forP56, one
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needs 27 jolt maps. Thus, we find that the number of jolt maps required in our case is less. When
using our factorization for long-term stability analysis of Hamiltonian systems, this can lead to
substantial savings in computer time.

VII. SUMMARY

When a nonlinear symplectic map is used in numerical calculations, one is forced to truncate
the map at a given order in phase space variables. This truncated map~also known as a symplectic
jet! violates the symplectic condition and typically exhibits spurious damping or growth when
used to analyze long-term behavior of particle trajectories. We therefore approximated the map by
a finite product of symplectic jolt maps which constitutes a symplectic completion of the jet. The
action of jolt maps on phase space functions can be evaluated exactly and this should lead to better
predictions of long-term stability in complicated Hamiltonian systems. Further, our jolt factoriza-
tion was optimized so that the number of jolt maps required was significantly reduced. This can
result in substantial savings in computer time when used for long-term stability studies. Finally,
for P56, we explicitly demonstrated that a fewer number of jolt maps were required as compared
to Irwin’s procedure.8 We believe this will be true even for a generalP since we are using a bigger
group.
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APPENDIX A: EXAMPLES OF JOLT MAPS

Proof of Theorem 1: ~i! The equality in Eq.~2.2! follows from Eq.~2.4! and properties of Lie

transformations.9 To show thate:R̂q1
n : is a jolt map, we start by making the following identifica-

tion:

exp~ :R̂q1
n : !5exp~ :~R̂q1!

n: !, ~A1!

where@cf. Eq. ~2.4!#

R̂q15R11q11R12p11•••1R16p3 . ~A2!

The action of the Lie operator :(R̂q1)
n: on the phase space variables is given by the relations

:~R̂q1!
n:zi52n~R̂q1!

n21R1i11 , i51,3,5,
~A3!

:~R̂q1!
n:zi5n~R̂q1!

n21R1i21 , i52,4,6.

Now, consider the action of :(R̂q1)
n:2 on the phase space variables. Using Eq.~A3! we obtain

the following result:

:~R̂q1!
n:2zi52nR1i11@~R̂q1!

n,~R̂q1!
n21#, i51,3,5,

~A4!
:~R̂q1!

n:2zi5nR1i21@~R̂q1!
n,~R̂q1!

n21#, i52,4,6.

But9

@~R̂q1!
n,~R̂q1!

n21#5R̂@q1
n ,q1

n21#50. ~A5!
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This proves thate:R̂q1
n : is a jolt map.

~ii ! We note that the equality in Eq.~2.3! follows from Eq. ~2.4! and properties of Lie
transformations.9 We also note that the following equality is satisfied:9

R̂f ~q1 ,q2 ,q3!5 f ~R̂q1 ,R̂q2 ,R̂q3!. ~A6!

Consider

:R̂f ~q1 ,q2 ,q3!:zi5@ f ~R̂q1 ,R̂q2 ,R̂q3!,zi #. ~A7!

Since R̂qi is linear in the phase space variables, the right hand side can be a function only of
R̂qi ’s. Denote this function byh. Thus

:R̂f ~q1 ,q2 ,q3!:zi5h~R̂q1 ,R̂q2 ,R̂q3!5R̂h~q1 ,q2 ,q3!, ~A8!

where the last equality follows from standard properties of Lie transformations.9

Next, consider the action of :R̂f :2 on the phase space variables. Using Eq.~A8! we get

:R̂f ~q1 ,q2 ,q3!:
2zi5@R̂f ~q1 ,q2 ,q3!,R̂h~q1 ,q2 ,q3!#. ~A9!

Again using properties of Lie transformations,9 we obtain

:R̂f ~q1 ,q2 ,q3!:
2zi5R̂@ f ~q1 ,q2 ,q3!,h~q1 ,q2 ,q3!#. ~A10!

Sinceqi ’s commute with one another, the Poisson bracket on the right hand side is identically

zero. Therefore,e:R̂f (q1 ,q2 ,q3): is indeed a jolt map. This completes the proof of the theorem.

APPENDIX B: REPRESENTATIONS OF SU(3) CARRIED BY q1
(n )

In this appendix, we prove a theorem regarding the representations of SU~3! carried by the
monomialq1

n. The proof will be a constructive one. Therefore, as a by-product, we obtain the
explicit decomposition ofq1

n in terms of the SU~3! basis vectors. We end this appendix with an
example. Using the formulas derived during the course of proving the theorem, we decomposeq1

4

in terms of the SU~3! basis vectors.
Let us denote the SU~3! basis vectors byu j 1 , j 2 ;I ,I 3 ,Y&. Here j 1 and j 2 label the irreducible

representations of SU~3! andI , I 3 andY label weight vectors within the irreducible representation.
It can be shown13–15 that these basis vectors are associated with harmonic functions on the
5-sphereS5. The 5-sphere is defined by the relation

Z1*Z11Z2*Z21Z3*Z35r 251, ~B1!

where

Zj[
1

A2
~qj1 ip j !, ~B2!

Zj*[
1

A2
~qj2 ip j !. ~B3!

Since we are interested in functions defined on the 5-spaceS5, it is convenient to parametrize
S5 in terms of polar coordinatesf1, f2, f3, u andj. These coordinates are related to the complex
phase space variables by the following relations:
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Z15reif1 cosu, ~B4!

Z25reif2 sin u cosj, ~B5!

Z35reif3 sin u sin j, ~B6!

where

0<f1 ,f2 ,f3<2p; 0<u,j<p/2. ~B7!

It can be shown15 that states within the irreducible representation (j 1 , j 2) can be associated
with harmonic functions defined onS5 as shown below:

u j 1 , j 2 ;I ,I 3 ,Y&5
1

sin u
d

~1/6!~ j 12 j 223Y16I13!,~1/6!~ j 12 j 223Y26I23!

~1/2!~ j 11 j 211!
~2u!d~1/3!~ j 12 j 2!11/2Y,I3

~ I !

3~2j!e~1/3!i ~ j 12 j 2!~f11f21f3!eiI 3~f22f3!e~1/2!iY~22f11f21f3!. ~B8!

Here dm8,m
( j ) (b) are the usuald-functions that characterize the irreducible representation (j ) of

SU~2!. The sign convention for thed-function is taken to be that given in Edmonds,16 i.e.,

dm8,m
~ j !

~b!5^ jm8uexp~1 ibJy /h!u jm&. ~B9!

whereu jm& denotes states within the representation (j ) of SU~2!.
Thed-functions can be computed using the following formula:17

dm8,m
~ j !

~b!5@~ j1m8!! ~ j2m8!! ~ j1m!! ~ j2m!! #1/2

3(
s

~21!sS cosb

2 D 2 j1m2m822sS sin b

2 Dm82m12s

~ j1m2s!!s! ~m82m1s!! ~ j2m82s!!
, ~B10!

where the summation indexs ranges over all integral values such that the factorials in the de-
nominator are non-negative. Thed-functions can also be computed using the following recursion
relation:17

dm8,m
~ j !

~b!5S j2m8

j2m D 1/2dm811/2,m11/2
~ j21/2!

~b!cos
b

2
1S j1m8

j2m D 1/2dm821/2,m11/2
~ j21/2!

~b!sin
b

2
, if jÞm.

~B11!

If j is equal tom, the following relation can be used:

dm8, j
~ j !

~b!5~21! j2m8F ~2 j !!

~ j1m8!! ~ j2m8!! G
1/2S cosb

2 D j1m8S sin b

2 D j2m8
. ~B12!

Two additional formulas which facilitate computation of thed-functions are given below

dm8,m
~ j !

~b!5~21!m82mdm,m8
~ j !

~b!, ~B13!

dm8,m
~ j !

~b!5~21!m82md2m8,2m
~ j !

~b!, ~B14!

We are now in a position to state and prove the theorem on the SU~3! content ofq1
n.
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Theorem 2:The monomial q1
n contains only those representations( j 1, j 2) of SU~3! for which

j 11 j 2 is less than or equal to n. Moreover, each such representation occurs once and only once
in q1

n.
Proof: From Eq.~B4!, we obtain the following expression forq1

n in terms of the coordinates
that parametrize the 5-sphere:

q1
n52n/2~ReZ1!

n52n/2r n cosn f1 cos
n u. ~B15!

However, cosn f1 satisfies the relation18

cosn f15 (
j 11 j 25n
j 1> j 2

aj 1 j 2 cos@~ j 12 j 2!f1#, ~B16!

where

aj 1 j 25
1

2n21 S nj 2D , j 11 j 25n, j 1. j 2 , ~B17!

aj 1 j 25
1

2n S nj 2D , j 11 j 25n, j 15 j 2 . ~B18!

Notice that we have denoted the summation indices byj 1 and j 2 in anticipation of results to come.
Substituting Eq.~B16! into Eq. ~B15!, we obtain the result

q1
n52n/2r n (

j 11 j 25n
j 1> j 2

aj 1 j 2 cos@~ j 12 j 2!f1#cos
j 11 j 2 u. ~B19!

The above result has to be expressed in terms of the SU~3! state vectors given by
u j 1 , j 2 ;I ,I 3 ,Y& @cf. Eq. ~B8!#. However,q1

n does not depend on the coordinatesf2, f3, and j.
Therefore, only those SU~3! state vectors that satisfy the following conditions can occur in the
expansion ofq1

n:

I5I 350, Y522~ j 12 j 2!/3. ~B20!

Imposing these conditions on a generalu j 1 , j 2 ;I ,I 3 ,Y& @cf. Eq. ~B8!#, we obtain the relation

u j 1 , j 2 ;0,0,22~ j 12 j 2!/3&5
1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!ei ~ j 12 j 2!f1. ~B21!

As expected, these vectors do not depend on the coordinatesf2, f3, and j. The d-function
appearing in the above expression satisfies the following property@cf. Eqs.~B13! and ~B14!#:

d
~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!5d

~1/2!~ j 22 j 111!,~1/2!~ j 22 j 121!

~1/2!~ j 21 j 111!
~2u!. ~B22!

That is, this function is invariant under the exchange of the indicesj 1 and j 2 . Using this property
and Eq.~B21!, we obtain the following result:

1
2 @ u j 1 , j 2 ;0,0,22~ j 12 j 2!/3&1u j 2 , j 1 ;0,0,22~ j 22 j 1!/3&]

5cos@~ j 12 j 2!f1#
1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!, j 1> j 2 . ~B23!
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Here we have also used the standard relation

1
2 @ei ~ j 12 j 2!f11e2 i ~ j 12 j 2!f1#5cos@~ j 12 j 2!f1#. ~B24!

Comparing Eq.~B23! with the summand on the right hand side of Eq.~B19!, we note that we
somehow have to generate the function cosj11j2 u out of thed-functions by taking appropriate
linear combinations. In order to accomplish this, we first need explicit expressions for the
d-functions. From Eq.~B10!, we get the following result:

1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!

5@ j 1! ~ j 111!! j 2! ~ j 211!! #1/2(
s50

j 2 ~21!s~cosu! j 11 j 222s~sin u!2s

s! ~s11!! ~ j 12s!! ~ j 22s!!
, j 1> j 2 .

~B25!

Using the standard binomial theorem, we obtain the relation

~sin u!2s5~12cos2 u!s5 (
k50

s S skD ~21!s2k~cos2 u!s2k. ~B26!

Substituting this relation into Eq.~B25!, we get

1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 211!
~2u!

5@ j 1! ~ j 111!! j 2! ~ j 211!! #1/2(
s50

j 2 1

s! ~s11!! ~ j 12s!! ~ j 22s!!

3 (
k50

s S skD ~21!k~cosu! j 11 j 222k, j 1> j 2 . ~B27!

We had noticed earlier @cf. Eq. ~B23!# that the sum of the state vectors
u j 1 , j 2 ;0,0,22( j 12 j 2)/3& and u j 2 , j 1 ;0,0,22( j 22 j 1)/3& is proportional to cos[(j 12 j 2)f1] @cf.
Eq. ~B23!#. This remains true even if we make the following substitution:

j 1→ j 12 i , j 2→ j 22 i , ~B28!

wherei is some integer. More specifically, we have the following relation:

1
2 @ u j 12 i , j 22 i ;0,0,22~ j 12 j 2!/3&1u j 22 i , j 12 i ;0,0,22~ j 22 j 1!/3&]

5
1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!cos@~ j 12 j 2!f1#, j 1> j 2 , i< j 2 , ~B29!

where
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1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!

5@~ j 12 i !! ~ j 1112 i !! ~ j 22 i !! ~ j 2112 i !! #1/2

3 (
s50

j 22 i
1

s! ~s11!! ~ j 12s2 i !! ~ j 22s2 i !! (
k50

s S skD
3~21!k~cosu! j 11 j 222k22i , j 1> j 2 . ~B30!

Therefore, the most general combination of vectors that still gives a quantity proportional to
cos[(j 12 j 2)f1] is as follows:

2n/2r n(
i50

j 2 Ai
~ j 1 , j 2!

2
@ u j 12 i , j 22 i ;0,0,22~ j 12 j 2!/3&1u j 22 i , j 12 i ;0,0,22~ j 22 j 1!/3&]

52n/2r n cos@~ j 12 j 2!f1#(
i50

j 2

Ai
~ j 1 , j 2! 1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!, j 1> j 2 .

~B31!

Comparing the right hand side of the above equation with the summand in the expression for
q1
n @cf. Eq. ~B19!#, we obtain the condition

(
i50

j 2

Ai
~ j 1 , j 2! 1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!5cosj 11 j 2u. ~B32!

In other words, we need to find coefficientsAi
( j 1 , j 2) such that the above condition is satisfied.

Then, we would have succeeded in decomposingq1
n in terms of the SU~3! state vectors. We

proceed as follows. First, we interchange the summations over indicess and k in Eq. ~B30! to
obtain the relation

1

sin u
d

~1/2!~ j 12 j 211!,~1/2!~ j 12 j 221!

~1/2!~ j 11 j 21122i !
~2u!

5Bi
~ j 1 , j 2! (

k50

j 22 i

~21!k~cosu! j 11 j 222k22i

3 (
s5k

j 22 i
1

s! ~s11!! ~ j 12s2 i !! ~ j 22s2 i !! S skD , j 1> j 2 , i< j 2 , ~B33!

where

Bi
~ j 1 , j 2!

5@~ j 12 i !! ~ j 1112 i !! ~ j 22 i !! ~ j 2112 i !! #1/2. ~B34!

Inserting Eq.~B33! into Eq. ~B32!, we get the condition

(
i50

j 2

Ai
~ j 1 , j 2!Bi

~ j 1 , j 2! (
k50

j 22 i

~21!k~cosu! j 11 j 222k22i

3 (
s5k

j 22 i
1

s! ~s11!! ~ j 12s2 i !! ~ j 22s2 i !! S skD5cosj 11 j 2u, j 1> j 2 . ~B35!
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The coefficientCl
( j 1 , j 2) of cosj11j222l u on the left hand side of the above equation is given by

the expression~wherel5 i1k!

Cl
~ j 1 , j 2!

5 (
k50

l

~21!kAl2k
~ j 1 , j 2!Bl2k

~ j 1 , j 2!

3 (
s5k

j 22 l1k
1

s! ~s11!! ~ j 12s2 l1k!! ~ j 22s2 l1k!! S skD , j 1> j 2 . ~B36!

The above expression can be simplified by using the following substitution

s85s2k. ~B37!

Making this substitution in Eq.~B36!, we get the relation

Cl
~ j 1 , j 2!

5 (
k50

l
~21!k

k!
Al2k

~ j 1 , j 2!Bl2k
~ j 1 , j 2! (

s850

j 22 l
1

s8! ~s81k11!! ~ j 12s82 l !! ~ j 22s82 l !!
, j 1> j 2 .

~B38!

In order to satisfy Eq.~B35!, we need to impose the following conditions

C0
~ j 1 , j 2!

51, ~B39!

Cl
~ j 1 , j 2!

50, l51,2,...,j 2 . ~B40!

Inserting the expression forCl
( j 1 , j 2) into the above equations, we obtain the following results:

A0
~ j 1 , j 2!

5
1

B0
~ j 1 , j 2!S00

~ j 1 , j 2! ,

Al
~ j 1 , j 2!

5
1

Bl
~ j 1 , j 2!Sl0

~ j 1 , j 2! (
k51

l
~21!k11

k!
Al2k

~ j 1 , j 2!Bl2k
~ j 1 , j 2!Slk

~ j 1 , j 2! , 1< l< j 2 , ~B41!

where

Slk
~ j 1 , j 2!

5 (
s850

j 22 l
1

s8! ~s81k11!! ~ j 12s82 l !! ~ j 22s82 l !!
. ~B42!

From Eqs.~B19!, ~B31!, and~B32!, we finally get the following decomposition forq1
n:

q1
n52n/2r n (

j 11 j 25n
j 1> j 2

aj 1 j 2
2

3(
i50

j 2

Ai
~ j 1 , j 2!

@ u j 12 i , j 22 i ;0,0,22~ j 12 j 2!/3&1u j 22 i , j 12 i ;0,0,22~ j 22 j 1!/3&].

~B43!
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We note that all representations (j 1 , j 2) ~with j 11 j 2 less than or equal ton! appear in the
decomposition~since the coefficientsAi

( j 1 , j 2)aj 1 j 2 are seen to be nonzero for all validj 1 , j 2 , and
i !. Furthermore, from each representation (j 1 , j 2), only one vectoru j 1 , j 2 ;0,0,22( j 12 j 2)/3& ap-
pears in the decomposition. This proves the theorem.

As an example, we obtain the decomposition ofq1
4. Using the above formulas we get the

following results:

a4051/8, a3151/2, a2253/8; ~B44!

A0
~4,0!51/A5, A0

~3,1!51/5A2, A1
~3,1!5A3/5; ~B45!

A0
~2,2!51/10, A1

~2,2!54/15, A2
~2,2!51/6. ~B46!

Substituting these results into Eq.~B43!, we obtain the following decomposition

q1
45

r 4

4A5
@ u4,0;0,0,28/3&1u0,4;0,0,8/3&]1

r 4

5A2
@ u3,1;0,0,24/3&1u1,3;0,0,4/3&]

1
A3r 4

5
@ u2,0;0,0,24/3&1u0,2;0,0,4/3&]1

3

20
r 4u2,2;0,0,0&1

2

5
r 4u1,1;0,0,0&

1
1

4
r 4u0,0;0,0,0&. ~B47!

APPENDIX C: DISCRETE SUBGROUPS OF SU(3)

In this appendix, we study the discrete subgroups of SU~3! which are required in Sections V
and VI. We start by defining the following matrices:

A~a,b!5S eia 0 0

0 eib 0

0 0 e2 i ~a1b!
D , ~C1!

B~a,b!5S eia 0 0

0 0 eib

0 ei ~p2a2b! 0
D , ~C2!

E~a,b!5S 0 eia 0

0 0 eib

e2 i ~a1b! 0 0
D , ~C3!

V5
1

A3i S 1 1 1

1 v v2

1 v2 v
D , ~C4!

V85
1

A3i S 1 1 v2

1 v v

v 1 v
D , ~C5!
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W5
1

2 S 21 m2 m1

m2 m1 21

m1 21 m2

D , ~C6!

Z5
21

A7i S a b c

b c a

c a b
D , ~C7!

where

v5ei2p/3, ~C8!

m15
1
2 ~211A5!, m25

1
2 ~212A5!, ~C9!

a5j42j3, b5j22j5, ~C10!

c5j2j6, j751. ~C11!

The discrete subgroups of SU~3! are listed below along with their generators.19,20First, we list
the crystal-like subgroups. They are denoted byG(n) wheren denotes the order of the group:

~1! G(60):A(0,p), E(0,0), andW;
~2! G(108):A(0,2p/3), E(0,0), andV;
~3! G(168):A(2p/7,4p/7), E(0,0), andZ;
~4! G(216):A(0,2p/3), E(0,0),V, andV8;
~5! G(648):A(0,2p/3), E(0,0),V, andA(4p/9,4p/9);
~6! G(1080):A(0,p), E(0,0),W, andB(p,5p/3).

Next, we list the dihedral-like groups and the disconnected groups. They are denoted byD(n)
wheren denotes the order of the group:

~1! D(3m2):A( j2p/m,k2p/m) andE(0,0) wherej andk are integers;
~2! D(6m2):A( j2p/m,k2p/m), E(0,0), andB( j2p/m,k2p/m) where j andk are integers;
~3! D(3`2):A(a,b) andE(0,0);
~4! D(6`2):A(a,b), E(0,0), andB(a,b).

In Section VI, we will also be interested in discrete elements of SU~3!/SO~3!. We obtain
discrete elements of SU~3!/SO~3! by the following procedure. We start with a discrete subgroup
G(n) of SU~3!. Next, we identify the subgroupG8(n8) of G(n) that belongs to SO~3! @wheren8
is the order ofG8(n8)#. This is easily accomplished once it is realized that an elementG iPG(n)
belongs to SO~3! if and only if all its matrix elements are real. For example, it is seen that all of
G~60! also belongs to SO~3! since each of its elements is real. Next, we construct theG(n)/G8(n8)
as follows. For every elementG i belonging toG(n), we form the right cosetG8(n8)G i . There will
be n/n8 distinct right cosets. From each distinct coset, we select one element to be the coset
representative. Thesen/n8 coset representatives belong toG(n)/G8(n8). Thus we get a collection
of n/n8 discrete elements of SU~3!/SO~3!. Values forn8 andn/n8 for the various crystal groups
are given below:

~1! G(60):n8560, n/n851;
~2! G(108):n856, n/n8518;
~3! G(168):n856, n/n8528;
~4! G(216):n856, n/n8536;
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~5! G(648):n856, n/n85108;
~6! G(1080):n8560, n/n8518.

Finally, we should mention that we rarely make direct use of the complex 333 matricesG i

belonging toG(n). We need objects that act on the six dimensional phase space. Therefore, we
first embed these complex 333 matrices into the compact part of Sp~6,R! following the procedure
outlined in Appendix D. The real 636 matrices that are obtained as a result of this embedding
~and the Lie transformations corresponding to these matrices! can act on phase space variables. It
is these real 636 matrices that are used in Sections V and VI.

APPENDIX D: LARGEST SUBGROUP OF SU(3) THAT LEAVES COORDINATE SPACE
INVARIANT

In this appendix, we prove a theorem satisfied by the special orthogonal group SO~3!. The
result of this theorem will be used in Section VI. Throughout this appendix, we will work in the
rearranged basis of phase space variables given byz5(q1 ,q2 ,q3 ,p1 ,p2 ,p3) for convenience.
Symplectic matrices in the rearranged basis are related to those in the original basis by a simple
similarity transformation.

Theorem 3:Let V(m) be the vector space formed by homogeneous polynomials of degree m in
variables q1, q2, and q3. Then,SO~3! is the largest subgroup ofSU~3! that leaves V(m) invariant.

Proof:We first prove the following lemma.
Lemma 1:SO~3! is the largest subgroup ofSU~3! that leaves V(1) invariant.
Proof: Consider a complex 333 matrix R belonging to SU~3!. It satisfies the following

conditions:

R†5R21; detR51. ~D1!

It can be decomposed into its real and imaginary parts as follows

R52D1 iC, ~D2!

whereC andD are real 333 matrices.
Since the matrixR has to act on functions of phase space variables, we first need to embed it

in the compact part of Sp~6,R!. Following the procedure outlined in Ref. 7, the real 636 sym-
plectic matrixUs ~in the rearranged basis! corresponding to the unitary matrixR is given by the
relation

Us5VsSR 0

0 R* D ~Vs!21, ~D3!

whereVs is given by9

Vs5
1

A2
S I i I

i I I D . ~D4!

Here I is a 333 identity matrix. Upon evaluating this equation, we obtain the following result:

Us5S 2D C

2C 2D D . ~D5!

Next, consider a general 6-vectorvs belonging toV(1). It is given by the relation

vs5~v3
s,03! ~D6!
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wherev3
s and 03 are 3-vectors defined as follows:

v3
s5~a,b,c!, a,b,cPR ~D7!

035~0,0,0!. ~D8!

The action ofUs on vs is given by the following relation:

Usvs5S 2Dv3
s

2Cv3
s D . ~D9!

Therefore,Usvs belongs toV(1) if and only if the following condition is satisfied@cf. Eq. ~D6!#

Cv3
s50. ~D10!

Sincev3
s is an arbitrary 3-vector, this implies thatC is a zero matrix:

C50. ~D11!

Substituting Eq.~D11! into Eq.~D5!, the most general element belonging to the compact part
of Sp~6,R! that leavesV(1) invariant is found to have the following form:

U
*
s 5S 2D 0

0 2D D . ~D12!

We convert this into an element of SU~3! using the following procedure.8 Given a 636 matrixUs

belonging to the compact part of Sp~6,R!, one can extract the complex 333 matrixR belonging to
SU~3! from it through the following relation:

~Vs!21UsVs5SR 0

0 R* D . ~D13!

From the above equation, we obtain the SU~3! elementR
*
corresponding toU

*
s as

R*52D. ~D14!

However, since this is supposed to be an element of SU~3!, it has to satisfy the conditions given
in Eq. ~D1!. Imposing these conditions onR

*
and noting thatR

*
is real, we obtain the following

restrictions onR
*
:

R̃*5R
*
21; detR*51, ~D15!

whereR̃
*
is the transpose ofR

*
. But these are precisely the conditions satisfied by an element of

SO~3!. This proves the lemma.
We now return to the proof of the theorem. Consider an elementPk

(m) belonging toV(m):

Pk
~m!5a1q1

m1a2q1
m21q21•••1aNq3

m , ~D16!

where@cf. Eq. ~6.8!#

N5Sm12
m D . ~D17!
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The action ofÛs ~the Lie transformation corresponding to the matrixUs! on Pk
(m) is given as

follows:

ÛsPk
~m!5a1~Û

sq1!
m1a2~Û

sq1!
m21~Ûsq2!1•••1aN~Ûsq3!

m. ~D18!

Therefore, the condition that ‘‘Us leavesV(1) invariant’’ is sufficient to ensure thatÛs leavesV(m)

invariant, i.e.,

ÛsV~1!#V~1!⇒ÛsV~m!#V~m!. ~D19!

To complete the proof of the theorem, we need to show that this is also a necessary condition.
Suppose thatÛsV(1)#” V(1). Then, there exists a vectorv

*
s belonging toV(1) that is mapped

out of V(1) under the action ofÛs, i.e.,

Ûsv
*
s P” V~1!. ~D20!

This can be rewritten as follows

Ûs~Û1
s!21Û1

sv
*
s P” V~1!, ~D21!

whereÛ1
s is chosen to satisfy the condition

Û1
sv
*
s 5q1 . ~D22!

This is always possible sincev
*
s is effectively a vector in the three dimensionalq12q22q3 space

and therefore can be rotated to orient it along theq1 axis. Since the transformationÛ1
s that brings

about this rotation belongs to the subgroup SO~3!, Ûs(Û1
s)21 ~or more accurately, the unitary

matrix corresponding to this transformation! still belongs to SU~3!. In summary, ifÛsV(1)#” V(1),
there exists a transformationÛ2

s @equal toÛs(Û1
s)21# that mapsq1 out of V

(1):

Û2
sq1P” V

~1!. ~D23!

Now, consider the action ofÛ2
s on the vectorq1

m belonging toV(m):

Û2
sq1

m5~Û2
sq1!

m. ~D24!

SinceÛ2
sq1 does not belong toV

(1), it will consist of at least one nonzero term containingp1 , p2 ,
or p3 . Consequently, from the above equation, evenÛ2

sq1
m will contain at least one such term.

Therefore, the following equation is seen to be true:

Û2
sq1

mP” V~m!. ~D25!

Since we have produced one vector which leavesV(m) under the action ofÛ2
s, we have succeeded

in proving the following statement:

ÛsV~1!#” V~1!⇒ÛsV~m!#” V~m!. ~D26!

Combining Eqs.~D19! and ~D26!, we see that the condition ‘‘Ûs leavesV(1) invariant’’ is
both necessary and sufficient to ensure thatÛs leavesV(m) invariant. Since SO~3! is the largest
subgroup of SU~3! satisfying the first condition, it is also the largest subgroup of SU~3! that leaves
V(m) invariant. This completes the proof of the theorem.
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