Symplectic completion of symplectic jets

Govindan Rangarajan®
Department of Mathematics and Centre for Theoretical Studies,
Indian Institute of Science, Bangalore 560 012, India

(Received 24 January 1995; accepted for publication 17 June) 1996

In this paper, we outline a method for symplectic integration of three degree-of-
freedom Hamiltonian systems. We start by representing the Hamiltonian system as
a symplectic map. This mafin general has an infinite Taylor series. In practice,

we can compute only a finite number of terms in this series. This gives rise to a
truncated map approximation of the original map. This truncated map is however
not symplectic and can lead to wrong stability results when iterated. In this paper,
following a generalization of the approach pioneered by IN8%C Report No.

228, 1989, we factorize the map as a product of special maps called “jolt maps”
in such a manner that symplecticity is maintained. 1896 American Institute of
Physics[S0022-24886)03509-9

I. INTRODUCTION

Consider a complicated periodic Hamiltonian system that is non-integrable. Suppose we are
interested in the long-term stability of particles being transported through this system. Since the
system is assumed to be nonintegrable, it is very difficult to give stability criteria in an analytic
form. A possible solution is to numerically follow the trajectories of particles through the system
for a large number of period& process that goes by the name of trackir@ne could then
attempt to infer the stability of motion in the system by analyzing these tracking results.

The most straightforward method that can be used to perform this long term tracking is
numerical integration. However, this method is too slow for analyzing the stability of very com-
plicated systems. Therefore, we need a method that is both fast and accurate.

Several symplectic integration methods have been discussed in the literaturé. Frudy’
Channel and ScovélYoshida? Berget al® and others have derived symplectic integrators using
generating functions. These are typically implicit methods and using these methods requires one to
use Newton’s method with its attendent questions of convergence, etc. Another approach is
through solvable mags’ But this method has not been explored in great detail. In this paper,
following Irwin,® we explore a more direct method of symplectic integration.

The method that we will use is the iteration of symplectic mappresenting the Hamiltonian
system. We start by defining certain mathematical objects. Let us denote the collection of six
phase space variables, p; (i=1,2,3) by the symbot:

Z:(qlapllq21p21q31p3)' (11)

The Lie operator corresponding to a phase space funéfipnis denoted by f(z):. It is defined
by its action on a phase-space functmgfz) as shown below

1(2):9(2)=[1(2),9(2)]. 1.2

Here [f(2),9(2)] denotes the usual Poisson bracket of the functibf® and g(z). Next, we
define the exponential of a Lie operator. It is called a Lie transformation and is given as follows:
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o]

el :f(z):”'

n=0 n!

(1.3

Powers of f(z): that appear in the above equation are defined recursively by the relation
f(2):"9(2)=:1(2):""[(2),9(2)], (1.4

with
:f(2):%9(2)=9(2). (1.5

For further details regarding Lie operators and Lie transformations, see Ref. 9.

The time evolution of the Hamiltonian system over one period can be represented by a
symplectic map 7#.° Symplectic maps are maps whose Jacobian mathtes satisfy the fol-
lowing symplectic condition:

M(2)IM(2)=J, (1.6)

whereM is the transpose df1 andJ is an antisymmetric matrix defined as follows:

O 1 0 0 0
-1 0 0 0 0 O
O 0 0 1 0 O
=l o 0 -10 0 o (.7
O 0 0 0 0 1
0 0 0 0 -1 0

MatricesM satisfying Eq.(1.6) are called symplectic matrices and the corresponding méps
symplectic maps. It can be shothat the set of allZ’s forms an infinite dimensional Lie group
of symplectic maps. On the other hand, the set of all re& 8ymplectic matrices forms the finite
dimensional real symplectic group GpR).

Using the Dragt—Finn factorization theorérf the symplectic map# can be factorized as
shown below:

=Metagfa et (1.8

HereM gives the linear part of the map and hence has an equivalent representation in terms of the
Jacobian matrixM (0) of the map 7 at the origin®

'\’)lZi:Miij:(MZ)i. (19)

Thus, M is said to be the Lie transformation corresponding to the 6natrix M belonging to
Sp(6,R). The infinite product of Lie transformations exp(:) (n=3,4,...) in Eq(1.8) represents
the nonlinear part of #Z. Here f,(z) denotes a homogeneous polynomial z) of degreen
uniquely determined by the factorization theorem.

The above map/ is called the one-period map for the system. It gives the final stRtef
a particle after one period as a function of its initial stz{8:

W=7, (1.10
To obtain the state of a particle afthrperiods, one has to merely iterate the above mapping
times, i.e.,
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2N =_7Nz9, (1.1)

It is obvious that one cannot us#’ in the form given in Eq(1.8) for any practical compu-
tations. It involves an infinite number of Lie transformations. Therefore, we have to trun¢ate
by stopping after a finite number of Lie transformations:

s~Melaiels el (1.12

However, we are still not out of the woods. Each exponetfal in ./ contains an infinite
number of terms in its Taylor series expansion. One possible solution is to truncate the Taylor
series generated by the Lie transformations to oRléNe denote this truncated map by . As
a power series in the six phase space variables, it is given as follows:

Mpz=M(1+:fg:+--)(L+:fsi+--+)
(Lt ez, (113

where we have to truncate the power series in such a way that the highest order term generated is
z" 7. If we did not impose this restriction, we would generate terms of a8and higher. Then,
to be consistent, we would be forced to include in our mép,’s for n greater thar® (since these
also generate terms of ordef and highey.
Equation(1.13 can be rewritten as follows:

.//szzhl(Z)'f'hz(Z)'f'"'+hp_1(2), (114)

whereh,(z) denotes a polynomial of degreein z. Since we have decided to consistently drop
terms of orderz” and higher, we can define the following equivalence relation between maps of
orderP:

Mo~ My it Mpz— #sz=hp(Z)+higher order terms. (1.195

This can be rephrased in terms of partial derivatives as follows. Mé@psand. 7|, are equivalent
if all the partial derivatives of#pz and. 7z up to orderP—1 are equal. An equivalence class
with respect to this equivalence relation is called a jet of oRleBince the map#; is obtained
from a symplectic map#, we call.# (or more accurately, the equivalence class to which it
belong$ a symplectic jet of ordeP. We stress that, despite its nam#/, is not symplectic.

We note that symplectic jets of ordBrhave the following properties. A symplectic jet maps
R® into R®. It maps the origin ofR® into itself. It is invertible. And the composition of two
symplectic jets #p and. 7 is defined as follows:

M Moo= (M T )p. (1.16

This is again a symplectic jet of orddt. And finally, there exists an identity given by the
following equivalence class:

.,//Zgz= z+hp(z)+ higher order terms. (1.1

Therefore, the set of all symplectic jets of ordeforms a group. It can be shown that it is actually
a Lie group. This Lie group formed by the set of all symplectic jets of ofélds called the
symplectic jet group S(§;P).

However, the above solution of truncating the Taylor series has a severe shortcoming. As
mentioned above, the mapping’p, generated by the truncated Taylor series is no longer sym-
plectic. Therefore, repeated iterations of this mapping can lead to spurious goywiimping in
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the amplitude of motion of the particle being tracked. Obviously, this can lead to wrong conclu-
sions regarding the stability of the system. Therefore it is important to preserve the symplectic
nature of.Z» when using it for long term tracking. For this purpose, we need to ensure that each
factor in .7 takes the forme’¥. On the other hand, for the numerical tracking scheme to be
practical, we need to ensure that we evaluate only a finite number of terms. In this paper, we
discuss how to reconcile these two apparently contradictory objectives.

The basic goal of this paper is to refactoriz&p [cf. Eq.(1.13] as a product of symplectic
maps that can be evaluated exactly. Since we do not truncate the Taylor series, we preserve the
symplectic nature of the map even when we evaluate it. Another attractive feature of these special
maps is that their inverses can also be evaluated exactly. The process of refactorizing a map into
a product of symplectic maps characterized by these nice features is called “symplectic comple-
tion”. Since the map that is being refactorized.i#p, a symplectic jet, this refactorization
procedure is called “symplectic completion of symplectic jets”. And this will be the subject of
this paper.

We start by defining jolt maps in Section Il. In Section lll, we formulate the problem of
symplectic completion ofZ in terms of these jolt maps. Here, we follow the procedure first
outlined by Irwin® To get a better understanding of the problem, we first solve a model problem
in Section IV. In Section V, we formulate a solution to the problem of symplectic completion of
symplectic jets. In Section VI, we optimize the number of jolt maps required so that an efficient
numerical algorithm is obtained.

II. JIOLT MAPS

Consider the symplectic map given &f?° whereg(z) is a function of the phase space
variablesz. It is called a jolt map if g(z): is a nilpotent operator of rank 2, i.e., if the following
condition is satisfied:

:9(2):%z=0. (2.1

The functiong(z) is then called a jolt function. We note that jolt maps have only two nonzero
terms in their Taylor series expansigmd. Eq. (1.3)]. The term jolt map was first introduced in
Ref. 11.

Examples of jolt maps are given by the following theorem.

Theorem 1: The following maps are jolt maps

(i) Re% R 1=gRal: (2.2)
(ii) ﬁeif(qu%,%):ﬁ*l: eiﬁzf(qu%v%):. (2.3

Here (q4,92,03) is an nth degree polynomial in variableg qq,, and ¢. Finally, Ris the Lie
transformation corresponding to@x6 matrix R belonging to any subgroup $p(6,R) [including
Sp(6,R) itself]. It is given by the following relation [cf. Eqg. (1.9)]:

RZi:Riij:(RZ)i. (24)

See Appendix A for a proof of this theorem. In this theorem, note that the second statement
contains the first statement as a special case. However, a sef@rdtsimpley proof is given
even for the first statement since we will be using this later in the paper.
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lll. FORMULATION OF THE PROBLEM OF JOLT FACTORIZATION

Our goal is to refactorizeZp [cf. Eq. (1.13)] in terms of a finite number of jolt maps. The
first step towards achieving this goal is to formulate the problem in an appropriate form. The best
way to mathematically formulate the problem appears to be as féllows

Problem 1: Given the map#p, find another map7 specified by the following product of K
jolt maps

A a1 (1) (1). .4(2), 4(2) (2). L o(K) 4 (K) (K).
f/=Me'g3 0y Tt Op gy tOy e tOp L ol gy et (3.1)

such that this map agrees with?”, to order P, i.e,
J=./p to order P. (3.2
Here dP’s are (homogeneous) jolt polynomials of degree n given by the following relation
O=pORg!, i=12,...K, (3.3

Whereﬂﬂ) is a real coefficient. The matrices Relong to a subgroup o$p6,R) [including
Sp(6,R) itself] and R denotes the Lie transformation corresponding to these matrices [cf. Eq.
(2.4)].

Before proceeding further, we note that £8.1) can be rewritten in the following form:

@: :g@ (K)

(7=I\A/Ie:g ed e ? (3.9
where
gV=gd+g{+---gV i=12,..K. (3.5

From Eq.(3.3) and Theorem fcf. Eq. (2.2)] it is seen thag")’s are jolt polynomials(a sum of
jolt polynomials is easily shown to be another jolt polynomi&onsequently, expg‘’:)’s are
jolt maps.

In order to solve the above problem, we need to determine the various unknown quantities
appearing in the above equations—the number of jolt mapthe matricesR;, and the coeffi-
cients 30). It turns out thatk and R; can be determined independent of the details of the map
/p. They depend only on the ord@r of the map. This will be explicitly demonstrated shortly.

For the moment, we will assume thigtandR; have already been fixed. This reduces our task to
merely finding the coefficient8{)’s such that Eq(3.2) is satisfied. We now proceed to solve for
these coefficients order by order.

Since the linear part of a symplectic map can be evaluated exactly, there is no need to
refactorize it in terms of jolt maps. Hence, we have already chosen the linear parts of the maps
p and 7 to be the same. Therefore, we need to refactorize only the nonlinear patiofWe
start by comparing terms of order 3 i and 7 respectively. The third-order term iz is
given by f;. To obtain the third-order term iy, we need to cast it in the standard Dragt—Finn
form. This is accomplished by using the Baker—Campbell-HausdB@&H) formulal® given
below:

expt:f:)exp(s:g:)=expt:f: +s:9: +ts:[f,g]:/2+---). (3.6
We get the following result to third order:
F=Mehs, (3.7

where
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K
hy=2, g5’ (3.8
=1
Therefore,7 and. 7 will be equal to order 3 if the following equality is satisfigef. Eq. (3.3)]:
K
izl BY'Riai="3. (3.9

In other words, we have to determig®’s such that the above equation is satisfied.

Next, we compare terms of order 4.i¥p and 7. The fourth-order term inZ is given by
f,4. Using the BCH formula, the Dragt—Finn factorization gfcorrect to fourth order is given by
the following result:

J=MeMsighs, (3.10
where
< 1
hy=2 gf’+5 2 [9.95°]. (3.1
i=1 <k

The second term on the right hand side of the above equation is a fourth-order term produced by
the concatenation of third-order terms in E8.1). Equating the fourth-order terms of/, and 7
we get the relatioficf. Eq. (3.3)]

K
oA 1 ) ~ ~
2, Bi'Rai=fa— 5 2 BYBYIRALRaI=1,. (312

Here f, includes the fourth-order terms produced by concatenation of lower order terms. By
choosingBY”’s such that the above equation is satisfied, we ensureitatd. 7 agree to fourth
order.

This process can be continued in a similar fashion to deal with the higher order terms. At the
nth order, we have to choog&'ﬂ)’s such that the following equality is satisfied:

K
;1 BYRAT=1]. (3.13

Here f;, includes the unwantedth-order terms produced k" (1<n).

We are now in a position to determine the number of jolt midpand the matrice®, . We
will show that they are independent of the mafi, . We note thaf |, involvesN(n) independent
coefficients wheré(n) is given by the relatich

n+5)

N(n)= n

(3.19
Thus, we need at leadt(n) B)’s to solve the above equation. Sinkin) is a monotonically
increasing function of, the maximum number o8{)’s are required whem is equal toP (the
maximum ordex. Thus we need(P) B{"’s to solve Eq(3.13 for all n. This fixeskK to be equal

to N(P). Moreover,Riq} (i=1,...K) should be linearly independent quantities. This imposes
restrictions on the matrice®; that we can choose. Both these conditions are independdit, of
i.e., they are independent of the maf, . They depend only on the maximum orderTherefore
bothK andR;’s can be fixed in advance independent of the map to be represented.

J. Math. Phys., Vol. 37, No. 9, September 1996

Downloaded-04-May-2006-t0-159.178.77.96.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp



4520 Govindan Rangarajan: Symplectic completion of symplectic jets

OnceK and theR;’s are fixed, we start by first solving E¢.9) for ,b’g)’s. We then proceed
order by order until we reach theth-order equation. At the@th order, we have to solve Eq.
(3.13. The right hand side involveNl(n) independent coefficients. Sind¢(n) is less tharK
(=N(P)) for n less thanP, we have morg3{)’s than necessary to solve this equation, i.e., the
BW's are underdetermined. The naive solution would be to set these gtsato zero

BY=0 for i>N(n). (3.1

But there is a better solution. We fix these ex@i®’s by requiring that=X_,(8{’)? be a mini-
mum. The reason for this is simple. We have seen thantheorder jolt polynomials produce
higher order termgfor example, see Eq3.11)] upon concatenation. These higher order terms
depend on the coefficienf" [for example, see E43.12)]. Therefore, by minimizing the sum of
the squares of these coefficients, we reduce the magnitude of the unwanted higher order terms
produced by concatenation of lower order terms.

Putting everything together, the problem of obtaining a jolt map factorization can be reduced
to the following general problem:

Problem 2: Given a nth degree homogeneous polynomjaarfd K matrices R find the
coefficientsg g')’s such that the following conditions are satisfied:

K
(i X BYRai=f, (3.1
and
K
(i) 21 [81']? is a minimum. (3.17)

IV. A MODEL PROBLEM AND ITS SOLUTION

Before attempting to solve the general problem outlined above, we will first solve a model
problem in this section. This model problem is deliberately designed to be quite similar to the
problem of jolt factorizationcf. Egs.(3.16 and (3.17)]. Therefore, solving this problem will
enable us to get a feel for the issues involved in the solution of the jolt factorization problem.

Consider an arbitrary vectar in the two dimensionak—y plane. It can be expressed as
follows:

V=vye¢tuyey, 4.1
wheree, ande, are the usual unit vectors along tkendy axes, respectively, and, andv, are

the corresponding vector components. Next, we construct a new Bebasis vector®; (where
N is an integer greater than th the x—y plane using the following procedure:

e=R(6)e,, i=12,..N, (4.2)
where
R(6,)e,=cog 6;)e,+sin(6,)e, (4.3
and
0;=(k—1) ZWW (4.9
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We are now in a position to state the problem—exptessthe new basis given by thé g’s.
Of course, only two basis vectors are actually needed to express the we8ioce we have extra
basis vectors, we need to impose a constraint. Taking this into account, the problem can be
formulated as follows.

Problem 3: Given the vector v [cf. Eq. (4.1)], find coefficienss such that the following
conditions are satisfied

N N
() v=2 Be=2 BR(O)e, (4.5
and
N
(i) >, B? is a minimum. (4.6)
=1

The reader will immediately notice the striking similarity between this problem and the problem of
jolt factorization[cf. Egs.(3.16 and(3.17)].

Instead of solving this particular problem, we will solve the more general problem obtained by
going to the continuum limit. Its solution will then contain the solution to the origidalcrete
problem as a special case. The generalized problem is given as follows.

Generalized Problem 1:Given the vector v [cf. Eq. (4.1)], find the functiofdg such that
the following conditions are satisfied:

0 v=ye [ a0 0RO, (4.7
and
(ii) % f:wda g2(6) is a minimum, 4.8
where
R(6)e,—cos 0)e,+sin(6)e, . 4.9

We solve this generalized problem as follows. We first find functigy{®) andg,(¢) satis-
fying the following relations:

1 2m
Efo do g,.(OR(H)e,=e,, (4.10

1 27
Zfo do gy(0)R(0)e=e,. (4.11

In other words, the functiong,(#) andg,(6) project out the unit vectors, ande, , respectively.
Substituting Eq(4.9) in the above expressions, we obtain the relations

% fozwde gx(0)[cog )e,+sin(h)ey]=ey, 4.12

J. Math. Phys., Vol. 37, No. 9, September 1996

Downloaded-04-May-2006-t0-159.178.77.96.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp



4522 Govindan Rangarajan: Symplectic completion of symplectic jets

1 27
%L do gy(6)[coq 0)e+sin(O)e,]=e,. (4.13

The cosine and sine functions satisfy the following orthonormality conditions:

1 2@ 1 1
27 o dé cogme)cogm’ §)= > Smmy + > SmoSm’os (4.149
1 2w ] ) , 1 1
27 o dé sin(m@)sin(m’ §) = > Sy — > SmoSmro; (4.15
1 27
— d# cogme)sin(m’ #)=0, (4.16
27 0

wherem andm’ are arbitrary integers. Using these orthonormality relations, we get the following
solution forg,(6) andg,(6):

9x(6)=2cog6); g,(6)=2sin(6). (4.17

Consider the following function

g(0)=v,gx( 0)+Uygy( 0). (4.18

Substituting this function into the right hand side of E4.7), we get the following result:
1 27
o fo da[vxgx(0)+vygy( 0)]R(6)e,. (4.19
Using Egs.(4.10 and(4.11), we obtain the relatioficf. Eq. (4.1)]
1 27
pye Jo do g(O)R(O)e,=v e tv,ey=v. (4.20

This proves that the functiog(#) given in Eq.(4.18 is a solution satisfying Eq4.7).
Next, we have to show that it also satisfies KE4.8). Using the standard Fourier series
expansion, the most general function satisfying &q7) is found to be

9(60)=2v, cod 6)+2v, sin(4) +by+ 22 b, cogno)+ 22 a, sin(no). (4.20)

Using the orthonormality relatiorjsf. Eqgs.(4.14), (4.15, and(4.16)], it is easily verified that this
is indeed a solution to Ed4.7). Substituting this result into Eq4.8), we get the relation

1 27 ~
—f do g2(0)=2(vi+vd)+b3+ > (ai+b?)/2. (4.22)
27 Jo h=2

This is a minimum only if the following condition is satisfied:

bo=0; a,=b,=0 n>1. (4.23
J. Math. Phys., Vol. 37, No. 9, September 1996
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Imposing these conditions on the general solufioh Eq. (4.21)], we get back the particular
solution given in Eq(4.18. Thus, the functiorg( ) displayed below is indeed the solution to the
generalized problem stated in Eq4.7) and(4.9):

g(6)=2v, cog 6)+2v, sin( ). (4.24
This solution satisfies the following relatidnf. Eqs.(4.22 and(4.23)]

1
7= dag (0)=2(v2+v2). (4.25

The discrete version of the generalized problem is given as follows: Given the weptor
Eq. (4.1], find valuesg(#,) (i=1,2,...N) such that the following conditions are satisfied:

N
2 (6)R(6))e, (4.26

()

Z||—~

and

N
(i) %21 [9(6,)]? is a minimum. (4.27)

Comparing this with our original problericf. Egs. (4.5 and (4.6)], we make the following
identification:

Bi=9(0;)/N. (4.28

If we choose the angleg to be equally spaced over the inter{@)2«] [as we did in the original
problem, cf. Eq.(4.4)], cos(9;) and sin@;) still form an othogonal set. Therefore, the solution
g(6) [cf. Eq.(4.24)] to the continuum problem is the solution even for the discrete version. The
only difference is thag(#) is now evaluated only at the discrete set of anglesTherefore, the
coefficientsg; satisfying Eqs(4.5 and(4.6) are given as followscf. Egs.(4.24) and(4.28]:

Bi=[2vy cog 6;) +2v, sin( ;) ]/N. (4.29

The discrete version of Eq4.25 is found to be

1 N
NZ 9(6)12=2(vi+0?). (4.30

Substituting Eq(4.28 into this expression, we get the relation

2 =—(v +v). (4.31)

We notice that the sum of the squares of the coefficients decreases as the hNimbbasis
vectors increases. We also note that the basis veetfcs. Eq.(4.2)] form a discrete subgroup of
the rotation group if the angleg are equally spaced over the intery@|2mr].

V. SOLUTION TO THE PROBLEM OF JOLT FACTORIZATION

In this section, we return to the problem of jolt factorizatimf Egs.(3.16 and(3.17)]. In
Section Il, we had concluded that the problem of obtaining a jolt factorization is equivalent to the
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determination of the coefficient8{) subject to the conditions given in Eg&.16 and (3.17.
Hence, we will achieve our goal if we determine thﬁ%’s. However, in the previous section, we
had discovered that the solution to such problems is facilitated by going over to the continuum
limit. Therefore, we do the same for the problem of jolt factorization and obtain the following
generalized problem.

Generalized Problem 2:Given an nth degree homogeneous polynomjiahfl a subgroup G
of Sp(6,R) on which invariant integration is well defined, find the functiow)gsuch that the
following conditions are satisfied:

(i) fn=f du g(u)R(u)q} (5.2)
G
and
(ii) JGdu ¢?(u) is a minimum. (5.2

Here u denotes a general element of the group G aKg) Eenotes the Lie transformation
corresponding to u. All integrations are invariant integrations performed over the graup G

First we need to choose the gro@ We cannot takes to be Sig6,R) since Sp6,R) is a
noncompact group and therefore its invariant integrals cannot be normalized. We therefore inte-
grate over a compact subgroup of(6fR). The largest compact subgroup of(6fR) is the unitary
group U3). However, we prefer to use $8) since it is more convenient for our purposes. If
needed, it is possible to generalize the invariant integrals ovéB)3bl those over (B).

Having choserG to be SU3), we are now in a position to solve the problem. First, we notice
the strong similarity between the present problem and the model problem that was solved in the
previous section. Therefore, we will closely follow the procedure used to solve the model prob-
lem.

We need to determine the functigiu). For this, we expand all quantities in terms of certain
basis vectors. Since we are working with @) it is natural that we use SB) basis vectors.
Appendix B defines these basis vectors in terms of phase space vafsdgdRef. 7 for additional
detail9. Further, one can shdwthat any homogeneous polynomfglin the phase space variables
can be decomposed in terms of these vectors.

We will denote by|j;m) the basis vectors uniquely labeled according to their transformation
properties under S@3). Here,j denotes the collection of indicgs andj, labeling the represen-
tation andm denotes the collection of indicds |5, andY labeling vectors within the represen-
tation. (These basis vectors are analogous to the basis vegtansde, of the model problen.

We expand the given homogeneous polynonfijain this basis as follows

fn:jzm ¢L1|j;m) j=n. (5.3

A word on the notation used here. Singestands for a collection of indicefs andj,, j<n
actually means that + j,<n. Here, the¢!,’s are coefficients multiplying the basis vectdrEhis
expansion is analogous to the one given in Eql) for v in the model problem.Thus, the left
hand side of Eq(5.1) has been expanded in terms|pfm). However the right hand side is in
terms of an integral over S8). Therefore, we will rewritg/j;m) in terms of an integral over
SU(3) such that a direct comparison of the two sides is possible.

We proceed as follows. Suppose we can find a functigu) satisfying the following
relation:
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[ augwRwa=lim. j=n 54
SU3)

In other words, the functiogin(u) projects out the basis vectfr,m). (This function is analogous
to the functionsg, andg, in the model problem.Substituting this equation and EG.3) in Eq.
(5.1 we get

> ¢imf du%(u)ﬁe(um%f du gWR(W)A}, j=n. (5.5)
j,m SU(3) SU(3)

Comparing both sides, we see that

g(u)=2 Shgh(u), j=n. (5.6)

J,m
All that remains to be done is to determigh(u) satisfying Eq.(5.4). To do this, we rewrite

IA?(u)qQ in terms of SW3) basis vectors. As a first step, we expayjdn this basis(see Appendix
B for a proof of this resujt

alj;my). (5.7)

an

We note two important features of this expansieae Appendix B for a proafFirst, the coeffi-
cients¢& are all nonzero:

d+0, j=n. (5.9
Second, each representation occardy once. This is indicated by the fact that there is no
summation over the indica® that label vectors within a representation. In summary, each rep-
resentatior(labeled byj<n) occurs once and only once in the expansiompfThis result will

play a crucial role in the discussion that follows.
To getR(u)ql we act on both sides of E@5.7) with R(u) obtaining the following result:

R(UQT= >, &R(u)|j;my). (5.9

J\

Since the basis vectot$;m) form a complete set for eagh they satisfy the relation
2 [imijsml=1 . (5.10

Inserting this result into the right hand side of Ef.9), we get the following relation:
Rwal=2 &lim(imRwlizmy), j<n. (5.19

However, we have the following standard result from representation theory @):SU

(G mIR(Wjsmy) =2 b (). (5.12

Substituting this into Eq(5.11), we obtain the result
J. Math. Phys., Vol. 37, No. 9, September 1996
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li(u)q2=j2m 7 hnWlim), j=n. (5.13
Inserting Eq.(5.13 into Eq. (5.4), we get the result
LU( du g, (u) E 1287 mm,(u)|J my=|j;m), j=n. (5.14
The functionsZ ! (u) satisfy the following orthogonality relations
1
f duf/‘ (u)J a’ b,(u) 8” Saar Opby - (5.15
SU3)

Here &1 is the complex conjugate of the representation’ and d=(j,+1)(j,+1)
X ((j1+]2)/2+1) is the dimension of the SB) representation labeled By Using these orthogo-
nality relations, it is easily verified that the expression given belowgfgu) satisfies Eq(5.14)

d -
gh(u)= 4 g, m(U) j=n. (5.16

We note that this expression is well defined sigtés nonzero forj<n [cf. Eq. (5.8)].
Having determinedy (u), we immediately obtain the required solutigfu) [cf. Eq. (5.6)]:

dol
9w =3 —;—Anm](u), j=n. (517

This is a solution satisfying Eq5.1). We need to verify that it also satisfies E§.2).
Again, we proceed as we did in the model problem. The most general safiftiprsatisfying
Eq. (5.1) is of the following form:

dl,
g(“):,Em - - mm<u>+ >l ). (5.18

i"ab

Here the indiceg’, a, andb are required to satisfy the condition

f duz L(u)R(u)q}=0. (5.19
SU(3)

This condition ensures that the extra terms added to obtain the general solution do not contribute
to the integral in Eq(5.1). However, these extra terms do contribute to the integral in(E8).

This is easily seen by substituting the general solution given ifEf8) into Eq.(5.2). We obtain

the relation

2

+ > ekl (5.20

i".ab

¢J

f dug (u)= Ed
e

The above expression is minimized only if the following conditions are satisfied:

cl,=0 Vj'ab. (5.21)
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Imposing these conditions on the general solufioh Eq. (5.18], we get back the particular
solution given in Eq(5.17). In summary, the functiog(u) given in Eq.(5.17) is the solution
satisfying both Egs(5.1) and(5.2).

Having solved the problem in the continuum limit, we now return to the discrete version.
Following the analogy with the model problem, we replace the integral ové€8)3ly a sum over
a discrete subgroup of SU(3).” Since the elements of the discrete subgroups satisfy the same
group properties as elements of the original group, the solution for the continuum problem would
still be a solution to the discrete problem. There are several discrete subgroup&pft&it/could
be used. They are listed in detail in Appendix C. One should choose a subgroug3)fv@idse
order is greater than or equal Ko The above procedure leads us to the following result:

1< .
fa=ig 2, 9WR(UIAT, uiel, (5.22

whereg(u) is given by Eq.(5.17). Comparing this with Eq(3.16), we get the following solution
for the coefficients3;,’:

BV =g(uj)/K. (5.23

VI. OPTIMIZATION OF THE NUMBER OF JOLT MAPS

We achieved our primary goal of finding a jolt factorization of the maf in the previous
section. We now seek to optimize this solution. More specifically, we attempt to reduce the
number of jolt maps to a minimum.

We start with the following result from the previous section:

o= | dugwRwal, 6.0
Su3)

whereg(u) is given by Eq(5.17. Here, we take a single jolt monomig] and act on it with the
group SU3). An alternative procedure is considered below. We will show that it reduces the
number of jolt maps required by a substantial amount.

First, we factor SI(B) into the orthogonal group SB) and SU3)/SQO(3). The group SM) is
taken to be the rotation group in tlog, g,, g; space. We will provide the reason for employing
this factorization later. For the sake of notational convenience, let us dené¢®/SQ3) by G'.

To proceed further, we writel [belonging to the group S@3)] as the following product of
elements belonging t&' and S@3):

u=c-r, ueSU3), ceG’, reSq3). (6.2

Then, it can be showf that the following relation holds between the measdwefor SU(3) and
the measuredc anddr for G’ and S@3), respectively:

du=dc-dr. (6.3

Substituting these results into the expressionffpfcf. Eq. (6.1)], we obtain the relation

fn=f ,chqs)dr g(c-r)R(c-r)aj. (6.4)

Letting the S@3) part of ﬁe(c- r) act first onqj, we get the following result:
J. Math. Phys., Vol. 37, No. 9, September 1996
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N’ (n)
R(c-r)gi=R(c) gl d(r)PM(dy,02,93). (6.5

Here we have used the following relation:

N’ (n)
R(r)q}= gl de(r) P (a1,02,95), reSA3), (6.6)

wherePl((”)(ql,qz,qg) denotes anth degree basis monomial in variablgs, g,, andqs:

P(k“)(qLQz,q3)=qr£1qg2qg3, Ni=nN=nz, Npt+nx+nz=n. (6.7
The numbem’(n) of nth degree basis monomial in three variables is given by the following
relation?
n+2
N’(n)=( (6.9
n
Substituting Eq(6.5) into Eq. (6.4), we get the relation
N’(n)
fff ch(c)f drg(c-r) X, d(r)P"(d1,02,G0)- 6.9
G’ [e'k)) k=1
Next, we define a functioh,(c) by the following relation:
N’(n)
hk(c)Ef dr g(c-r) 2 dg(n). (6.10
SQ(3) k=1

We have already calculatef{c-r). It is nothing but the functiomg(u) given in Eq.(5.17). Thus,
h,(c) is well defined and can be calculated. Inserting 310 into Eqg. (6.9), we obtain the
following result:

N’ (n)

fn:f ,dCAR(C) > h(©)P{"(q1,02,0). (6.11
G =1

Next, we need to obtain the discrete version of the above equation. This is again done by
going over to a discrete sum over @YSQ(3). Starting from a discrete subgroup of &) one
can go over to S(B)/SQ(3) following the procedure outlined in Appendix C. We obtain the
following solution:

A N’(n) K(G’)A N’ (n)
fn=f deRc) X h(©)PM(01,02,93)= ==~ 2 R(c) > h(c)P"(d1,d2,03)-
G’ k=1 K(G) =1 k=1
(6.12

Here,K(G') gives the number of jolt maps required.

We now turn to the task of determining the number of jolt mK&'). It depends oG’ as
indicated. We have already seen in Section V Was determined by looking at the equation for
n equal toP (the maximum ordegr Settingn equal toP in the above expression, we obtain the
following result:
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K@ N'(P)
fe=kien & R@ 2 h(e)P(d1,02,05). (6.13

Since thePth degree homogeneous polynomfal on the left hand side had(P) independent
coefficients[cf. Eq. (3.14)], we needN(P) linearly independent vectors on the right hand side.
Only then, we can express afiy in terms of these vectors.

We are now in a position to justify our decision to factor(SlUnto SQ3) and SU3)/SQ(3).
Suppose we had not factorized @Jas above. Then the analogue of the above equation would be

K’

1 R
fe=— > g(u)R(u)q}, (6.14
K" =1

whereu; belongs to a discrete subgroup of @U Since we needl(P) independent coefficients
to describef,, K’ has to equaN(P). On the other hand, with factorization we need oNI(P)
jolts in Eq.(6.13 where

N”(P)=N(P)/N'(P). (6.15

This can be seen as follows. Equati@13 can be rewritten to give

K(G")
1 “
fP:K(G') Zl R(c))H(A1,02,93), (6.16
where
N’(P
H(d1,92,03) = E he(c)) Pk (01,92,93). 6.17)

Now, the linear combination o’ (P) jolt polynomials given byH,(q;,9,,93) is again a jolt
polynomial. Since the jolt polynomiaH,(q;,q,,qs) itself hasN’(P) independent coefficients,
K(G') needs to be equal only t8"(P) [cf. Eq.(6.15] in order to give a total oN(P) indepen-
dent coefficients. On the other hand, in E6.14), we only have a single jolt monomiaf, and
hence a single coefficient. Therefote, has to equaN(P) in this case.

The above discussion demonstrates that a fewer number of jolts are required w{gnsSU
factored intoG’ and S@3). We now argue that factorizing $8) into a different set of factors
does not give an even better result. First, we note dhaty,, q; space(or equivalently,p;, p,,

p; space gives the maximal subspace of commuting jolt polynomials. We cannot choose any
group larger than S@) since it is shown in Appendix D that $8) is the largest subgroup of
Sp6,R) that leaves they,, q,, q; space invariant. If we choose a group smaller thari35Qve

will not get all theN'(P) jolt monomials. TherK(G’) might have to be larger to géd(P)
independent coefficients. Therefore, factoring(®Unto G’ and S@3) does appear to be the best
compromise.

For P equal to 6 N"(P) is equal to 17 from the above procediicé Egs.(6.15), (3.14 and
(6.9)]. From Appendix C, we find that starting frofa similarity transformation 9fa discrete
subgroup of order 108 of S8), one can go over to a set of 18 elements belonging t¢3BU
SQO(3). Thus, the number of jolt map&(G’) required forP=6 is 18. For this case, we have
verified that we do get the required number of linearly independent vectors on the right hand side
of Eq. (6.13. Irwin® factorizesG as U1)xU(1)xU(1). Using this factorization, foP=6, one
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needs 27 jolt maps. Thus, we find that the number of jolt maps required in our case is less. When
using our factorization for long-term stability analysis of Hamiltonian systems, this can lead to
substantial savings in computer time.

VIl. SUMMARY

When a nonlinear symplectic map is used in humerical calculations, one is forced to truncate
the map at a given order in phase space variables. This truncatethlpatnown as a symplectic
jet) violates the symplectic condition and typically exhibits spurious damping or growth when
used to analyze long-term behavior of particle trajectories. We therefore approximated the map by
a finite product of symplectic jolt maps which constitutes a symplectic completion of the jet. The
action of jolt maps on phase space functions can be evaluated exactly and this should lead to better
predictions of long-term stability in complicated Hamiltonian systems. Further, our jolt factoriza-
tion was optimized so that the number of jolt maps required was significantly reduced. This can
result in substantial savings in computer time when used for long-term stability studies. Finally,
for P=6, we explicitly demonstrated that a fewer number of jolt maps were required as compared
to Irwin’s proceduré We believe this will be true even for a geneRakince we are using a bigger

group.
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APPENDIX A: EXAMPLES OF JOLT MAPS

Proof of Theorem 1:(i) The equality in Eq(2.2) follows from Eq.(2.4) and properties of Lie

transformation€. To show thate'R% " is a jolt map, we start by making the following identifica-
tion:

exp(:Rgl ) =exp(:(Rq)™), (A1)
where[cf. Eq. (2.4)]
R =Ryy0;+Ryops+++ + RygPs. (A2)
The action of the Lie operatorI:R(ql)”: on the phase space variables is given by the relations
:(f?%)n:Zi == n(QQ1)n71R1i+1, i=1,3,5,
. - (A3)
((Rg)™z=n(Rgy)" Ry_,, i=24,6.

Now, consider the action of tf(ql)":2 on the phase space variables. Using @) we obtain
the following result;

{(Ray)™2z,=—nRy . 1[(Rgy)",(Rq)" 1], i=1,35,
R A A (Ad)
:(qu)n:zzi:ani*l[(qu)ni(qu)n_l]! |:21416
But®
[(Rap)",(Rqy)" 11=R[q},q] 1]=0. (A5)
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This proves thae'R1 " is a jolt map.
(i) We note that the equality in Eq2.3 follows from Eq. (2.4) and properties of Lie
transformationg.We also note that the following equality is satisffed:

E”(Ql.sz%):f(émﬁ%ﬁ%)- (AB)

Consider

3hf(%v%,%):zi:[f(é%ﬁ%ﬁ%),zi]- (A7)

Since qui is linear in the phase space variables, the right hand side can be a function only of
Rg;’s. Denote this function by. Thus

:Rf(qy,02,95):z=h(Rdy,Rd,,Ras) =Rh(q;,0,,93), (A8)

where the last equality follows from standard properties of Lie transformations.
Next, consider the action oRf:? on the phase space variables. Using &®8) we get

3|§3f(Q1aQ2aQ3)322i:[éf(%ﬂz:%):éh(%:%aqg)]- (A9)

Again using properties of Lie transformatiohse obtain

:RF(0y,02,95):22 =R f(ds,02,93),h(d1,02,03)]. (A10)

Sinceq;’'s commute with one another, the Poisson bracket on the right hand side is identically
zero. Thereforeg'R(91.92.93)" js indeed a jolt map. This completes the proof of the theorem.

APPENDIX B: REPRESENTATIONS OF SU(3) CARRIED BY q(ln)

In this appendix, we prove a theorem regarding the representations(8j 8afried by the
monomialg}. The proof will be a constructive one. Therefore, as a by-product, we obtain the
explicit decomposition ofy] in terms of the S(B) basis vectors. We end this appendix with an
example. Using the formulas derived during the course of proving the theorem, we decarfipose
in terms of the S(B) basis vectors.

Let us denote the SB) basis vectors byj,,j,;l,13,Y). Herej; andj, label the irreducible
representations of S8) andl, | ; andY label weight vectors within the irreducible representation.

It can be showh'° that these basis vectors are associated with harmonic functions on the
5-sphereS°. The 5-sphere is defined by the relation

ZYZ\+Z52,+ 725 25=r%=1, (B1)
where
1 .
ZJEE(QJ‘HPJ), (B2)
* 1 H
Z; =E(qj_|pj)- (B3)

Since we are interested in functions defined on the 5-sBadéis convenient to parametrize
S° in terms of polar coordinates,, ¢,, ¢3,  andé. These coordinates are related to the complex
phase space variables by the following relations:
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Z,=re'%1 cos¥, (B4)
Z,=re'?2 sin § cos¢, (B5)
Zz=re'?s sin 0 sin &, (B6)
where
0<¢q,¢s,p3<2m; 0<6,é<m/2. (B7)

It can be showt? that states within the irreducible representatipp,j,) can be associated
with harmonic functions defined o8 as shown below:

L _ (12(j1+ip+1) 0
|Jl’]2’|’|3’Y>_ sin 0 (1/6)(j1—j2—3v+6|+3),(1/6)(j1—j2—3v—6|—3)(2‘9)d(1/3)(i1—j2)+1/2Y,I3

X (2£)eUili1-i2) (b1t do+ b)gil (b2~ b2) U2V (= 201+ o+ ). (B8)

Here dfﬂ,?ym(ﬁ) are the usuatl-functions that characterize the irreducible representatjpnof
SU(2). The sign convention for thd-function is taken to be that given in Edmonids,e.,

A (B =(im’|exp(+i By /)| jm). 59

where|jm) denotes states within the representatipndf SU(2).
The d-functions can be computed using the following formtfla:

Ay (B =L(1+m)L G —m)L(j+m)! (j—m)! ]2

2j+m—-m’—2s m’ —m+2s
(—1)5( cosé) (sin E)

2 2
X2

s (j+rm=s)isi(m'—m+s)!(j—m’'—5s)!

: (B10)

where the summation indexranges over all integral values such that the factorials in the de-
nominator are non-negative. Thiefunctions can also be computed using the following recursion
relation?’

i) _(I=m 2 G B "\ im B
Ay m(B)= Aoy +12m+ 14 B)COST + A “tomr1aB)SINZ, if j7m.

j—m j—m
(B11
If j is equal tom, the following relation can be used:
| o (2))! v By g™
d%?lj(ﬂ)z(—l)' m GrmG=m cosy sin> . (B12)

Two additional formulas which facilitate computation of tt€unctions are given below
() — "—mq(j)
A ()= (=)™ "} (), (B13)

db) (B =(=1™ ), (B), (B14

We are now in a position to state and prove the theorem on th8)Sidntent ofqy.
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Theorem 2: The monomial §jcontains only those representatiojs, j,) of SU(3) for which
j1t+]2 is less than or equal to n. Moreover, each such representation occurs once and only once
in g;.

Proof: From Eq.(B4), we obtain the following expression fgf in terms of the coordinates
that parametrize the 5-sphere:

q)=2"%(Re Z,)"=2"%r" cod' ¢, cos 6. (B15)

However, co$ ¢, satisfies the relatidf

cos 1= > &y, c0d(j1—j2) ¢l (B16)
Jatlp=n
i1=i2

where

1 n o o

8j,j,= on-1 i) Jitl2=n, J1>]2, (B17)
1 (n o o

j,j,= on i) Jitl2=n, |1=]2. (B19)

Notice that we have denoted the summation indicef;tandj, in anticipation of results to come.
Substituting Eq(B16) into Eq. (B15), we obtain the result

qi=2"%" 3 ay, cof(ji—iz)dsleoditiz 6. (B19)
1mi2=
i1=i2

The above result has to be expressed in terms of thé3)Sktate vectors given by
li1siz2:1,15,Y) [cf. Eq. (B8)]. However,q] does not depend on the coordinaigs ¢;, and &
Therefore, only those SB3) state vectors that satisfy the following conditions can occur in the
expansion ofy}:

Imposing these conditions on a geneial,j,;l,13,Y) [cf. Eq.(B8)], we obtain the relation

1 . I
P ; ; — (H2)(jp+ip+1) -
|J111210101_ 2(]1_12)/3>_ m d(l/g)(j1712+1)’(1/2)(j1,j271)(za)el(ll 1291, (B21)

As expected, these vectors do not depend on the coordirgtes;, and & The d-function
appearing in the above expression satisfies the following propefitfegs. (B13) and (B14)]:

(112)(jatjo+1) — W(2+i1+1)
d(1/2)(irjz+ l),(l/2)(jriz*l)(20) (:1(1/2)(]2*1'1+ 1)7(1/2)(1'2*]1*1)(20)' (B22)

That is, this function is invariant under the exchange of the indigesdj,. Using this property
and Eq.(B21), we obtain the following result:

% [“111210101_2(]1_]2)/3>+|J21J1:0101_2(]2_Jl)/3>]

1 S
_ . . (2)(j1+jot1) . .
_COS{(Jl_]Z)d)l] sin 6 d(1/2)(i1—i§+1>,(1/2)(J'1—J'2—1>(20)’ J1=]2- (823)
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Here we have also used the standard relation
% [ei(11*12)</>1+ e*i(11*J2)¢1] =cog(j1—]jo) b1]- (B24)

Comparing Eq(B23) with the summand on the right hand side of E819), we note that we
somehow have to generate the function€ds6 out of the d-functions by taking appropriate
linear combinations. In order to accomplish this, we first need explicit expressions for the
d-functions. From Eq(B10), we get the following result:

1 amy+in+n)

sin g d2a1-15+ .12, - j,-1(20)

12 (_1)S(cos @)i1ti2=25(sin )2

=[i.1(i il (i 1742 i1=i
sl (ot DYt ot DI — i, 11502
(B25)
Using the standard binomial theorem, we obtain the relation
° (s
(sin )%5=(1—cog )= go (k)(—l)s‘k(cosz )k, (B26)
Substituting this relation into E4B25), we get
1 jw2iiti+n (20)
sin @ (M2(1=j2+ D, (12)(j1—j2~ 1D
j2 1
=[i.l(i 1is1(i 1712
4! Gt DY ot DI =g, = s
° (s
x> (k)(—l)"(cosﬁ)““’“k, 1=z (B27)

We had noticed earlier[cf. Eq. (B23)] that the sum of the state vectors
j1,j2:0,0,—2(j1—j2)/3) and|j,,j1:0,0,—2(j,—j)/3) is proportional to cos[ji—j,)¢4] [cf.
Eq. (B23)]. This remains true even if we make the following substitution:

IE e ERl B Preg PR P (B29)
wherei is some integer. More specifically, we have the following relation:
2[li1—1,j2=1;0,0,-2(j1—j2)/3) +]i2—1,j1—1;0,0,— 2(j,— j1)/3)]

1 - .
o (12)(j1+jr+1—2i) . . . . .
- sin 6 d(l/Z)(ji*j§+1),(l/2)(jlfj271)(20)005{(11_J2)¢1]’ 112121 |SJ2: (829)

where
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1 (1/2)(j1+ijp+1-20)
sin @  (U2(j1=i2+1).(12)(j1—jp—1
=[(1= DG+ 1= (2= D+ 1-1)1]Y2
jZ_i 1

x 2

s
o st(s+D)!I(jy—=s=)!(jo—s—1)! kEO (k)

(26)

S

X (—1)¥(cos @)lrtie=2k=21 i =i (B30)

Therefore, the most general combination of vectors that still gives a quantity proportional to
cos[(j1—]2) #4] is as follows:

jz A(JlrJZ)

2V, 5 L= 1,02=1:0,0,-2(1=J2)/3) + li2=1,1=1:0,0,~ 2(j2=)/3)]

2 1
_ on/2,n A (J1+i2) (12)(j1+]p+1-20) : :
277 cog (1 12)‘751]20 AT Gin g Y- n.@aiy-p-(20), 1= 2

(B31)

Comparing the right hand side of the above equation with the summand in the expression for
q7 [cf. Eq.(B19)], we obtain the condition
i2

(i1.02) (U (jp+jp+1-2i) _ 1+io
20 A G g Y- o+ 1.2, -1,-1)(26) = codt 126, (B32)

In other words, we need to find coefficiemé'l"z) such that the above condition is satisfied.
Then, we would have succeeded in decomposifign terms of the SI(B) state vectors. We
proceed as follows. First, we interchange the summations over indieesl k in Eq. (B30) to
obtain the relation

1 (L/2)(j1tip+1-20) (26)
sin @ (W2(j1=i2+1),(UD(j1~j2~1)

— Bi(lleZ) 2 (_ 1)k(COS 0)j1+j2*2k*2i
k=0

) 1 (s) o
X & SN s D st (k) 1T 1=l (B39

where
BULI2 = [ (=) (j,+ 1= )1 (jo— ) (j o+ 1—)1]Y2 (B34)
Inserting Eq.(B33) into Eg. (B32), we get the condition
I2 J2—i
E A_(jlij)B_(jler)z (_1)k(C050)j1+j2_2k_2i
i=o ! k=0
j2_i l

x 2

S S DI(j—s— 1)1 (,-s—1)!

S Co
(k)=00§1+120, j]_?jz. (835)
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The coefficienlcl(jl’jZ) of codt™272 g on the left hand side of the above equation is given by
the expressioriwherel =i +k)

|
(J1.i2) — _ 1 \kaU1d2plisiz)
C| ' _I(ZO( 1) Aljk Blj-k

jo—1+k
> ! (S) 1= (B36)
XA (D51t (j,—s—T+ k) \k/* JiZl2

The above expression can be simplified by using the following substitution
s'=s—Kk. (B37)

Making this substitution in Eq(B36), we get the relation

(i1.J2) l (-1 (1.d2)p( ')jz_l 1
l1:J2) I1:02)pUal2 =i
CH=2 T ANTBAT 2 Siera iy g, s iz
(B398
In order to satisfy Eq(B35), we need to impose the following conditions
cyrld=1, (B39)
clild=o, 1=1,2,...|,. (B40)

Inserting the expression faﬁ:l(jl'jZ) into the above equations, we obtain the following results:

| k+1
A2 Bl(jlyjjs{(,-)l,h) 2 (_i? Al lZglLgi? <<y, (B41)
where
P ]! -
<,’(1,Jz)=s§0 s'I(s"+k+ D)!(ji=s" =Dl (jz—s" =Dt -

From Egs.(B19), (B31), and(B32), we finally get the following decomposition fay;:

n n/2,n ajljz
ql:2 r . 2 2
Jatlz=n
i1=i2

iz o
Xigo Ai(Jl'JZ)[”l_i'jz_i;oaor_ 2(j1— 213 +]j2—i,j1—1;0,0,—2(jo— j1)/3)].

(B43)
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We note that all representationg; (] 2) (with j;+]j, less than or equal tm) appear in the
decompositior(since the coefficienta. (1, 'Z)a, .i, are seen to be nonzero for all valig, j,, and
i). Furthermore, from each representath@ {»), only one vectotjq,j,;0,0,—2(j;—],)/3) ap-
pears in the decomposition. This proves the theorem.

As an example, we obtain the decompositiong§f Using the above formulas we get the
following results:

ago= 1/8, az1= 1/21 A= 3/87 (844)
AGO=115, APY=1/5/2, APY=\3/5; (B49)
AP?=1/10, AZ?=4/15, AZ?=1/6. (B49)

Substituting these results into E@43), we obtain the following decomposition
4 4

r
qi:ﬁ [14,0;0,0,-8/3)+0,4;0,0,8/3] + —=[|3,1;0,0,- 4/3)+1,3;0,0,4/3]

5\2
\/—4

3 2
[12,0;0,0-4/3)+10,2,0,0,4/3] + 55 112,2:0,00+ £ 1*]1,1,0,00

1
+7100,0,0,0. (B47)

APPENDIX C: DISCRETE SUBGROUPS OF SU(3)

In this appendix, we study the discrete subgroups of3sWhich are required in Sections V
and VI. We start by defining the following matrices:
e 0 0
A@B)=[ 0 € 0o |, (C)
0 0 ell@h

el 0 0

B(a,8)=| O 0 ef |, (C2)
0 ei(w—a—ﬂ) 0

0 gle 0
E(a,B)= 0 0 €|, (C3
i(a+B) 0 0
1 1
ve—|1 2 (C4
= — w w s
\/§I 1 0 w
1 1 ?
\V& ! 1 (C5)
= — o0 o |,
\/§I o 1
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1 -1 w2 m
W=z #2 M -1, (Ce)
m1 —1 0 pe
a b
-1
Z=—| b c aj, (Cv
7i
c a b
where
w= ei277/3' (C8)
p1=% (=1+\5), =3 (-1-15), (C9)
a=¢—8, b=£-¢, (C10
c=¢-¢85, ¢'=1 (C1)

The discrete subgroups of £8) are listed below along with their generatd?<° First, we list
the crystal-like subgroups. They are denotedllfp) wheren denotes the order of the group:

(1) I'(60):A(0,7), E(0,0), andW;

(2) I'(108):A(0,27/3), E(0,0), andV;

(3) I'(168):A(27/7,4w/7), E(0,0), andZ;

(4) T'(216):A(0,27/3), E(0,0),V, andV';

(5) I'(648):A(0,27/3), E(0,0),V, andA(47/9,47/9);
(6) I'(1080)A(0,7), E(0,0), W, andB(,57/3).

Next, we list the dihedral-like groups and the disconnected groups. They are denadtéd)by
wheren denotes the order of the group:

(1) A(3m?):A(j2m/m,k27/m) andE(0,0) wherej andk are integers;

(2) A(6m?):A(j27/m,k27/m), E(0,0), andB(j27/m,k27/m) wherej andk are integers;
(3) A(3%?):A(a,B) andE(0,0);

(4) A(6?):A(a,B), E(0,0), andB(«,B).

In Section VI, we will also be interested in discrete elements of3F8Q(3). We obtain
discrete elements of SB)/SO(3) by the following procedure. We start with a discrete subgroup
I'(n) of SU(3). Next, we identify the subgroup’(n’) of I'(n) that belongs to S@) [wheren’
is the order ofl*’(n")]. This is easily accomplished once it is realized that an elefigat(n)
belongs to S@) if and only if all its matrix elements are real. For example, it is seen that all of
I'(60) also belongs to S@) since each of its elements is real. Next, we constructim/I"'(n’)
as follows. For every elemeit, belonging tol’(n), we form the right cosdf’ (n’)I’; . There will
be n/n’ distinct right cosets. From each distinct coset, we select one element to be the coset
representative. Thesen’ coset representatives belonglt¢n)/I''(n"). Thus we get a collection
of n/n’ discrete elements of S8)/SQ(3). Values forn’ andn/n’ for the various crystal groups
are given below:

(1) I'(60):n"=60,n/n"=1;
(2) I'(108):n"=6, n/n' =18;
(3) I'(168):n' =6, n/n’ =28;
(4) I'(216):n" =6, n/n’ = 36;

J. Math. Phys., Vol. 37, No. 9, September 1996

Downloaded-04-May-2006-t0-159.178.77.96.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jmp.aip.org/jmp/copyright.jsp



Govindan Rangarajan: Symplectic completion of symplectic jets 4539

(5) I'(648):n'=6, n/n’ =108;
(6) T(1080)n’ =60, n/n’ =18.

Finally, we should mention that we rarely make direct use of the compkeX Ratricesl’;
belonging tol'(n). We need objects that act on the six dimensional phase space. Therefore, we
first embed these complex<® matrices into the compact part of 8fR) following the procedure
outlined in Appendix D. The real>6 matrices that are obtained as a result of this embedding
(and the Lie transformations corresponding to these majraz@sact on phase space variables. It
is these real 86 matrices that are used in Sections V and VI.

APPENDIX D: LARGEST SUBGROUP OF SU(3) THAT LEAVES COORDINATE SPACE
INVARIANT

In this appendix, we prove a theorem satisfied by the special orthogonal gro(®&. Sbe
result of this theorem will be used in Section VI. Throughout this appendix, we will work in the
rearranged basis of phase space variables givem=b{q,,q,,d3,P1,P2,P3) for convenience.
Symplectic matrices in the rearranged basis are related to those in the original basis by a simple
similarity transformation.

Theorem 3: Let ™ be the vector space formed by homogeneous polynomials of degree m in
variables g, g,, and . Then,SO(3) is the largest subgroup @U(3) that leaves Y™ invariant

Proof: We first prove the following lemma.

Lemma 1:SO(3) is the largest subgroup @U(3) that leaves ) invariant

Proof: Consider a complex 383 matrix R belonging to SW3). It satisfies the following
conditions:

R'=R™!; detR=1. (D1)
It can be decomposed into its real and imaginary parts as follows
R=-D+iC, (D2)

whereC andD are real X3 matrices.

Since the matriR has to act on functions of phase space variables, we first need to embed it
in the compact part of §6,R). Following the procedure outlined in Ref. 7, the real@® sym-
plectic matrixU? (in the rearranged basisorresponding to the unitary matriX is given by the

relation
S S 0 sy—1
us=Vv 0 R* (V)™ 4, (D3)
whereV® is given by
v 1 (1 il o
ENAUEERA (b4
Herel is a 33 identity matrix. Upon evaluating this equation, we obtain the following result:
us boc D5
=\_¢ _p/ (D5)

Next, consider a general 6-vectot belonging toVV). It is given by the relation

v°=(v3,03) (D6)
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wherev3 and @ are 3-vectors defined as follows:
vs3=(a,b,c), ab,ce” (D7)
05;=(0,0,0. (D8)
The action ofU® onv® is given by the following relation:

S
_DU?,

pse ) (D9)

USUS:<

Therefore,USv® belongs tov(®) if and only if the following condition is satisfieftf. Eq. (D6)]
Cv$=0. (D10)

Sincev$ is an arbitrary 3-vector, this implies th&tis a zero matrix:
C=0. (D11

Substituting Eq(D11) into Eq.(D5), the most general element belonging to the compact part
of Sp(6,R) that leaves/™) invariant is found to have the following form:

SR
ui=l . o) (D12)

We convert this into an element of $8) using the following proceduréGiven a 6<6 matrix US
belonging to the compact part of &R), one can extract the complex3 matrixR belonging to
SU(3) from it through the following relation:

R 0
(VS)~lusvs= ( 0 R* ) (D13

From the above equation, we obtain the(SlelementR, corresponding tdJ$ as
R,=-D. (D14

However, since this is supposed to be an element aB5lt has to satisfy the conditions given
in Eq. (D1). Imposing these conditions d®, and noting thaR, is real, we obtain the following
restrictions orR,, :

R,=R;% detR,=1, (D15)
whereﬁ* is the transpose @R, . But these are precisely the conditions satisfied by an element of

SQ(3). This proves the lemma.
We now return to the proof of the theorem. Consider an eler®@Rt belonging tov(™:

P\ =a,07+a,q] " 'go+ - +ayay, (D16)
where[cf. Eq. (6.9)]
_[m+2
=\m | (D17
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The action ofUS (the Lie transformation corresponding to the matR) on P{™ is given as
follows:

LAJSP(km) = a1(05(11)m"' ay( lAJSQl)m_l( LAJSC]z) + - Fay( Us%)m- (D18

Therefore, the condition thatys leavesV‘?) invariant” is sufficient to ensure that® leavesv(™
invariant, i.e.,

UsvD cvD= gsym cym, (D19)
To complete the proof of the theorem, we need to show that this is also a necessary condition.
Suppose that! V¢ VD, Then, there exists a vectof belonging tov(®) that is mapped
out of V1) under the action obJS, i.e.,
UspS ¢V, (D20)
This can be rewritten as follows
Us(U3) 20508 ¢ v, (D21)
wheref)i is chosen to satisfy the condition
USvs =0;. (D22)
This is always possible sine€ is effectively a vector in the three dimensiomgt g, —q5 space
and therefore can be rotated to orient it alongdhexis. Since the transformatid#i that brings
about this rotation belongs to the subgroup(3QUS(US$) ! (or more accurately, the unitary
matrix corresponding to this transformatjastill belongs to S®B). In summary, ifUSV® g v®),
there exists a transformatids$ [equal toUS(U$) ] that mapsq; out of V(1)
Usq, é V. (D23)
Now, consider the action df§ on the vectoq]" belonging tov(™:
Usar'=(U3q,)™. (D24)
Since0§q1 does not belong tv®), it will consist of at least one nonzero term containng p,,

or p;. Consequently, from the above equation, el will contain at least one such term.
Therefore, the following equation is seen to be true:

UsgMé vm. (D25)

Since we have produced one vector which leaw®8 under the action olfls, we have succeeded
in proving the following statement:

OsvD g v = gsym g ym (D26)
Combining Eqgs(D19) and (D26), we see that the conditionUs leavesV() invariant” is
both necessary and sufficient to ensure th&teavesV(™ invariant. Since S() is the largest

subgroup of SIB) satisfying the first condition, it is also the largest subgroup of3that leaves
V(™ invariant. This completes the proof of the theorem.
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