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Abstract. In this paper, we apply the symplectic integration method using jolt factorization
described in an earlier paper to the symplectic map describing the nonlinear pendulum
Hamiltonian. We compare results obtained with this method with those obtained using non-
symplectic methods and demonstrate that our results are much better.

1. Introduction

In a previous paper [1] (henceforth referred to as paper I), we had described a general
method for symplectic integration of nonlinear Hamiltonian systems using jolt factorization.
A symplectic integration method explicitly preserves the Hamiltonian nature of the system
during numerical integration. There has been a lot of activity recently in formulating
symplectic integration algorithms [2–18]. In this paper, we consider an application of our
symplectic integration method to the nonlinear pendulum Hamiltonian. This example was
chosen since the pendulum is a prototypical nonlinear Hamiltonian system which has the
advantage that analytical solutions are available facilitating easy comparisons. Further, non-
symplectic integration methods can give wrong results even when applied to this simple
problem. Figure 1 shows the results of numerically integrating the pendulum Hamiltonian
using an eighth-order Taylor series map with a time step equal to 1 (a description of this
map is given in section 3 in the paragraph following equation (3.16)). Comparison with
the exact result (figure 2) shows that this non-symplectic integration method gives rise to
spurious ‘chaotic’ behaviour where there is none. Such problems become accentuated when
long-term integration is performed to study stability of Hamiltonian systems. This spurious
behaviour in non-symplectic integration methods can be reduced by using a very short time
step. However, this makes these methods so slow that they are impractical to use for long-
term integration. We will show that our method gives much better results when applied to
this problem even with this large time step (equal to 1). Finally, by dealing with a one
degree-of-freedom system, the details of our symplectic integration method (described only
in general terms in I) become clearer.

We start by describing the jolt factorization method for a two-dimensional phase space.
In section 3, we apply this method to the pendulum map and compare our results both with
analytical results and those obtained using a non-symplectic eighth-order Taylor series map.
Our conclusions are summarized in the final section.
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Figure 1. Eighth-order Taylor series approximation of pendulum map(t = 1.0). Numerical
integration results using two sets of initial conditions are shown.(qin1 , p

in
1 ) = (0.9, 0.0) and

(1.75, 0.0).

2. Jolt factorization in a two-dimensional phase space

Consider a nonlinear Hamiltonian system in a two-dimensional phase space described by
the HamiltonianH(q1, p1) whereq1 is the coordinate andp1 is the momentum. We will
collectively describeq1 andp1 by a single 2-vectorz = (q1, p1). The time evolution of
this Hamiltonian system over timet can be represented by a symplectic mapM [19] as
follows

z(1) =Mz(0). (2.1)

Thus,M maps the initial phase space variablesz(0) to their final valuesz(1) after time t .
The symplectic mapM can be factorized as shown below to orderP [19]

MP = M̂e:f3:e:f4: . . .e:fP :. (2.2)

We obtain a symplectic integration algorithm as follows. As described in I, we find
another mapJ specified by the following product ofP + 1 jolt maps

J = M̂e:g(1)3 +g(1)4 +···+g(1)P :e:g(2)3 +g(2)4 +···+g(2)P : . . .e:g(P+1)
3 +g(P+1)

4 +···+g(P+1)
P : (2.3)

such that this map agrees withMP to orderP . In the above equation,g(i)n ’s are jolt
polynomials given by the following relation

g(i)n = β(i)n R̂iqn1 i = 1, 2, . . . , P + 1 (2.4)
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Figure 2. Exact pendulum map. Results using three sets of initial conditions are shown.
(qin1 , p

in
1 ) = (0.9, 0.0), (1.75, 0.0), and(2.5, 0.0).

whereβ(i)n are unknown coefficients to be determined by our algorithm. The matricesRi

belong to a subgroup of Sp(2,R) and R̂i denotes the Lie transformation corresponding to
these matrices:

R̂zi = Rij zj = (Rz)i i = 1, 2. (2.5)

From I, the problem of determining the jolt factored mapJ can be reduced to the
problem given below.

Problem 1.Given annth degree homogeneous polynomialf ′n in two phase space variables,
find coefficientsβ(i)n ’s such that the following conditions are satisfied

P+1∑
i=1

β(i)n R̂iq
n
1 = f ′n (2.6)

P+1∑
i=1

[β(i)n ]2 is a minimum. (2.7)

Here the matricesRi (belonging to a subgroup of Sp(2,R)) satisfy the restriction

Q
(P)
i = R̂iqP1 (i = 1, 2, . . . , P + 1) form a linearly independent set of vectors. (2.8)

Further,f ′n is a sum offn and othernth order terms produced by concatenation of lower
order terms through Baker–Campbell–Hausdorff (BCH) series [1].
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It is thus convenient to go to the continuum limit of the above problem, solve it first
in this limit, and then return to the discrete case. In this continuum limit, we obtain the
following generalized problem.

Generalized problem 1.Given annth degree homogeneous polynomialf ′n, find the function
g(θ) such that the following conditions are satisfied:

f ′n =
1

2π

∫ 2π

0
dθ g(θ)R̂(θ)qn1 (2.9)

1

2π

∫ 2π

0
dθ g2(θ) is a minimum. (2.10)

Since R belongs to Sp(2,R), ideally we should have integrated over this group.
However, it is non-compact and therefore invariant integrations are not defined. Therefore,
we have integrated over U(1), the largest compact subgroup of Sp(2,R). The general group
element has been labelledθ following standard convention. The action ofR̂(θ) on phase
space variables can be computed and is given as follows

R̂(θ)q1 = cosθ q1+ sinθp1 (2.11)

R̂(θ)p1 = − sinθ q1+ cosθp1. (2.12)

In order to solve the problem, we introduce the so-called real resonance basis [19]

|kl〉R ≡ Re|kl〉 = Re [(q1+ ip1)
k(q1− ip1)

l ] (2.13)

|kl〉I ≡ Im |kl〉 = Im [(q1+ ip1)
k(q1− ip1)

l ]. (2.14)

They can be rewritten in terms of polar coordinates as follows

|kl〉R = rk+l cos(k − l)φ (2.15)

|kl〉I = rk+l sin(k − l)φ (2.16)

where

q1 = r cosφ p1 = r sinφ r =
√
q2

1 + p2
1. (2.17)

It is easily seen that anynth degree homogeneous polynomial in variablesq1 andp1 can
be expressed in terms of these basis elements (withk + l equal ton andk greater than or
equal tol), i.e. these basis elements form a complete set.

Next, we consider the action of̂R(θ) on the resonance basis elements. From
equations (2.11) and (2.12), we have the relation

R̂(θ)|kl〉R = |kl〉R cos(k − l)θ + |kl〉I sin(k − l)θ (2.18)

R̂(θ)|kl〉I = −|kl〉R sin(k − l)θ + |kl〉I cos(k − l)θ. (2.19)

Therefore,R̂(θ) is seen to rotate|kl〉R and |kl〉I into one another by an angle(k − l)θ .
We now return to the task of solving the continuum limit problem outlined earlier (cf

equations (2.9) and (2.10)). We will go back to the discrete case after obtaining this solution.
First, we expandqn1 in the real resonance basis

qn1 =
∑
k+l=n
k>l

akl|kl〉R+ bkl|kl〉I . (2.20)

The coefficientsakl and bkl are determined as follows. Using equation (2.17), we obtain
the relation

qn1 = rn cosn φ. (2.21)
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Expanding cosn φ we get [20]

qn1 =
rn

2n

[ n/2−1∑
m=0

2

(
n

m

)
cos(n− 2m)φ +

(
n

n/2

)]
n even (2.22)

qn1 =
rn

2n−1

(n−1)/2∑
m=0

2

(
n

m

)
cos(n− 2m)φ n odd. (2.23)

Comparing these expressions with equation (2.20), we can read off the coefficientsakl and
bkl :

akl = 1

2n−1

(
n

l

)
k + l = n, k > l (2.24)

akl = 1

2n

(
n

n/2

)
k = l = n/2, n even (2.25)

bkl = 0 ∀k, l. (2.26)

Sincebkl is zero for allk, l, we will ignore it henceforth. Finally, using equations (2.18)
and (2.19), we obtain the following result for the action ofR̂(θ) on qn1 :

R̂(θ)qn1 =
∑
k+l=n
k>l

[|kl〉Rakl cos(k − l)θ + |kl〉Iakl sin(k − l)θ ]. (2.27)

Next, we find functionsgR
kl(θ) andgI

kl(θ) satisfying the following conditions:

1

2π

∫ 2π

0
dθ gR

kl(θ)R̂(θ)q
n
1 = |kl〉R (2.28)

1

2π

∫ 2π

0
dθgI

kl(θ)R̂(θ)q
n
1 = |kl〉I . (2.29)

Using the orthonormality relations satisfied by the cosine and sine functions and
equation (2.27), we immediately obtain the required solution

gR
kl(θ) =

δR

a2
kl

akl cos(k − l)θ k + l = n, k > l (2.30)

gI
kl(θ) =

δI

a2
kl

akl sin(k − l)θ k + l = n, k > l (2.31)

where

δR = 2− δkl (2.32)

δI = 2− 2δkl . (2.33)

Hereδkl is the usual Kronecker delta. We also note thatgR
kl(θ) andgI

kl(θ) are well defined
sinceakl is non-zero for all validk and l (cf equations (2.24) and (2.25)).

The homogeneous polynomialsf ′n can also be expanded in the real resonance basis

f ′n(q1, p1) =
∑
k+l=n
k>l

[ckl|kl〉R+ dkl|kl〉I ]. (2.34)

Since f ′n is known, this equation determines the values ofckl and dkl . Substituting
equations (2.28) and (2.29) into the right-hand side of the above equation, we can
immediately write down one solution of equation (2.9):

g(θ) =
∑
k+l=n
k>l

[cklg
R
kl(θ)+ dklgI

kl(θ)]. (2.35)



3654 G Rangarajan

It is easily verified that this is indeed a correct solution by direct substitution into
equation (2.9). It can be easily shown that it also satisfies equation (2.10).

We now go back to the discrete version of the problem (cf equations (2.6) and (2.7))
by making the following transformation

1

2π

∫ 2π

0
dθ −→ 1

K

K∑
i=1

. (2.36)

The discrete version of equation (2.9) is then given as follows

1

K

K∑
i=1

g(θi)R̂(θi)q
n
1 = f ′n (2.37)

whereg(θ) is given by equation (2.35). Comparing this expression with equation (2.6), we
obtain the following relations

β(i)n = g(θi)/K i = 1, 2, . . . , K (2.38)

R̂i = R̂(θi) i = 1, 2, . . . , K. (2.39)

If we choose the anglesθi to be equally spaced over the interval [0, 2π ], the functions
cosθi and sinθi still form an orthogonal set. Therefore, the solutiong(θ) given in
equation (2.35) is still the required solution. The only difference is thatg(θ) is now
evaluated only at the followingK equally spaced points

θi = (i − 1)
2π

K
i = 1, 2, . . . , K. (2.40)

Substituting the expression ofβ(n)i (cf equation (2.38)) into equation (2.4), we obtain the
following jolt polynomials:

g(i)n =
1

K
g(θi)R̂(θi)q

n
1 i = 1, 2, . . . , K. (2.41)

Using these jolt polynomials in equation (2.4), we get the desired jolt factorization formula.

3. Jolt factorization of the pendulum map

The nonlinear pendulum is described by the following HamiltonianH :

H(q1, p1) = p2
1

2
− cosq1+ 1. (3.1)

To apply the method of jolt factorization, we need to represent this Hamiltonian in terms
of a symplectic mapM. First, we expand cosq1 as a power series inq1:

cosq1 = 1− q
2
1

2!
+ q

4
1

4!
− q

6
1

6!
+ q

8
1

8!
− · · · . (3.2)

Substituting this into equation (3.1), we get the following expression for the Hamiltonian:

H(q1, p1) = p2
1

2!
+ q

2
1

2!
− q

4
1

4!
+ q

6
1

6!
− q

8
1

8!
+ · · · . (3.3)

We now obtain the symplectic mapM corresponding to this Hamiltonian (for unit time):

M = M̂e:f4:e:f6:e:f8: . . . . (3.4)

Write the quadratic part ofH (denoted byH2) as follows

H2 = 1
2

∑
a,b

Sabzazb. (3.5)
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Comparison with equation (3.3) gives

S =
(

1 0
0 1

)
. (3.6)

SinceS is time independent,M is given by [21]

M = exp[tJS] (3.7)

where the starting time has been taken to be zero and

J =
(

0 1
−1 0

)
. (3.8)

Explicitly evaluating the exponential in the expression forM we get

M =
(

cost sint
− sint cost

)
. (3.9)

For unit time this reduces to

M =
(

5.403× 10−1 8.415× 10−1

−8.415× 10−1 5.403× 10−1

)
. (3.10)

Following the procedure in [21], it is trivially seen that allfm’s for m odd are zero since
the correspondingHm (which denotes the sum of terms inH of degreem in components
of z) is zero. The polynomialf4 is given by [21]

f4 = −
∫ t

0
dt ′H4(M̂

−1z) (3.11)

whereM is given by equation (3.9) andH4 = −q4
1/4! (cf equation (3.3)). Substituting

these expressions into the above equation we obtain

f4 = 1

24

∫ t

0
dt ′ (q1 cost ′ − p1 sint ′)4. (3.12)

Evaluating this integral for unit time

f4 = 2.411× 10−2q4
1 − 3.812× 10−2q3

1p1+ 3.716× 10−2q2
1p

2
1

−2.089× 10−2q1p
3
1 + 5.168× 10−3p4

1. (3.13)

Similarly, f6 andf8 can be evaluated to give

f6 = 1.200× 10−4q6
1 − 1.026× 10−3q5

1p1+ 1.390× 10−3q4
1p

2
1 − 6.657× 10−4q3

1p
3
1

−8.008× 10−5q2
1p

4
1 + 1.748× 10−4q1p

5
1 − 4.963× 10−5p6

1 (3.14)

f8 = 1.900× 10−5q8
1 − 1.069× 10−5q7

1p1− 1.255× 10−4q6
1p

2
1 + 3.172× 10−4q5

1p
3
1

−3.530× 10−4q4
1p

4
1 + 2.228× 10−4q3

1p
3
1 − 8.331× 10−5q2

1p
6
1

+1.778× 10−5q1p
7
1 − 1.706× 10−6p8

1. (3.15)

Similar expressions can be obtained for higher orderfn’s.
For simplicity, let us truncate the symplectic map representing the pendulum

Hamiltonian at eighth order, i.e.

M8 = M̂e:f4:e:f6:e:f8:. (3.16)

One way of evaluating the action of this map on phase space coordinates would be to
expand out the exponentials using the Taylor series expansion. Keeping terms to order 8,
we obtain

M8zi = M̂
(

1+ : f4 : + : f4 :2

2
+ : f4 :3

6

)
(1+ : f6 :)(1+ : f8 :)zi i = 1, 2. (3.17)
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This gives the eighth-order Taylor series map. Figure 1 displays the results obtained using
this map. Since the map is non-symplectic, it gives rise to spurious ‘chaotic’ behaviour as
observed earlier.

We now derive the symplectic jolt factorization of this map and find that it gives
much better results. First, we fix the number of jolt maps and the matricesRi . Since the
maximum orderP of the map is equal to 8, the numberK of jolt maps required is 9 (cf the
discussion before equation (2.6)). We choose the nine corresponding anglesθi according to
equation (2.40) and the nine matricesRi according to equation (2.39).

Next, we consider the fourth-order term. Expandingq4
1 in the real resonance basis, we

obtain the relation (cf equations (2.20), (2.24) and (2.25))

q4
1 = a22|22〉R+ a31|31〉R+ a40|40〉R (3.18)

where

a22 = 3
8 a31 = 1

2 a40 = 1
8. (3.19)

The functionsgR,I (θ) are found to be given by the following expressions (cf equation (2.30)
and (2.31))

gR
22(θ) =

1

a22
= 8

3
(3.20)

gR
31(θ) =

2

a31
cos 2θ = 4 cos 2θ (3.21)

gI
31(θ) =

2

a31
sin 2θ = 4 sin 2θ (3.22)

gR
40(θ) =

2

a40
cos 4θ = 16 cos 4θ (3.23)

gI
40(θ) =

2

a40
sin 4θ = 16 sin 4θ. (3.24)

Sincef4 is the lowest order nonlinear term inM8, f ′4 is equal tof4 (i.e. no extra terms
have yet been produced). Expandingf4 in the real resonance basis, we get the following
relation

f4(q1, p1) = c22|22〉R+ c31|31〉R+ d31|31〉I + c40|40〉R+ d40|40〉I (3.25)

where

c22 = 1.563× 10−2 c31 = 9.472× 10−3 c40 = −9.854× 10−4 (3.26)

d31 = −1.475× 10−2 d40 = −2.153× 10−3. (3.27)

Next, from equation (2.35), the following expression is obtained forg(θ)

g(θ) = c22g
R
22(θ)+ c31g

R
31(θ)+ d31g

I
31(θ)+ c40g

R
40(θ)+ d40g

I
40(θ) (3.28)

where the coefficients are given by equations (3.26) and (3.27) while the functionsgR,I (θ)

are given by equations (3.20)–(3.24). Finally, from equation (2.38), we obtain the
coefficientsβ(4)i :

β
(4)
i = g(θi)/9 i = 1, 2, . . . ,9. (3.29)

Evaluating this, we find the following results

β
(1)
4 = 7.087× 10−3 β

(2)
4 = −7.590× 10−4 β

(3)
4 = −4.501× 10−4

β
(4)
4 = 5.764× 10−3 β

(5)
4 = 1.553× 10−2 β

(6)
4 = −4.337× 10−4

β
(7)
4 = 1.038× 10−3 β

(8)
4 = −8.864× 10−4 β

(9)
4 = 1.477× 10−2.

(3.30)



Jolt factorization of pendulum map 3657

Using a similar procedure, we can determine the coefficientsβ
(i)

6 and β(i)8 (for i =
1, 2, . . . ,9) corresponding to the sixth- and eighth-order terms respectively:

β
(1)
6 = −9.946× 10−5 β

(2)
6 = 3.725× 10−4 β

(3)
6 = 5.282× 10−5

β
(4)
6 = −7.000× 10−4 β

(5)
6 = 1.420× 10−3 β

(6)
6 = −3.345× 10−4

β
(7)
6 = −2.661× 10−4 β

(8)
6 = 2.727× 10−4 β

(9)
6 = 3.845× 10−4

(3.31)

and

β
(1)
8 = 2.864× 10−5 β

(2)
8 = 7.757× 10−6 β

(3)
8 = 1.471× 10−5

β
(4)
8 = 5.516× 10−5 β

(5)
8 = −3.416× 10−7 β

(6)
8 = 2.061× 10−5

β
(7)
8 = −1.663× 10−5 β

(8)
8 = −3.652× 10−5 β

(9)
8 = 2.830× 10−5.

(3.32)

Putting everything together, the eighth symplectic mapM8 (cf equation (3.16))
representing the pendulum Hamiltonian can be approximated by the following product of
nine jolt maps

J = M̂e:g(1):e:g(2): . . .e:g(9): (3.33)

where (cf equation (2.4))

g(i) = R̂i [β(i)4 q
4
1 + β(i)6 q

6
1 + β(i)8 q

8
1] i = 1, 2, . . . ,9. (3.34)

Figure 3. Eighth-order jolt factored pendulum map(t = 1.0). Numerical integration results
using three sets of initial conditions are shown.(qin1 , p

in
1 ) = (0.9, 0.0), (1.75, 0.0), and

(2.5, 0.0). The results agree very well with those obtained using the exact map (cf figure 2).
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Here, the coefficientsβ(i)4 , β(i)6 , andβ(i)8 are given by equations (3.30), (3.31) and (3.32)
respectively. The matricesRi are given by equation (2.39) and the anglesθi are given by
equation (2.40).

We can now numerically integrate the pendulum Hamiltonian using the mapJ given in
equation (3.33). The results, for a variety of initial conditions, are shown in figure 3. These
results should be compared with the exact results (valid for all times) given in figure 2. We
see that the jolt factored map gives much better results than the truncated Taylor series map
(figure 1).

4. Conclusions

In this paper, we applied the jolt factorization technique of symplectic integration to the
pendulum map. We obtained an explicit formula for the jolt factored map (to order 8).
This was used to numerically integrate the pendulum map. Numerical results agreed quite
well with the exact results and were much better than the results obtained using the non-
symplectic Taylor series method.
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