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Discrete cavity model of a standing-wave free-electron laser
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A standing-wave free-electron laser (SWFEL) has been proposed for use in a two-beam accelerator (TBA). Unlike a
conventional microwave free-electron laser, the SWFEL has a wiggler that is divided by irises into a series of standing-wave
cavities, and the beam is reaccelerated by induction cells between cavities. We introduce a one-dimensional discrete-cavity model
of the SWFEL. In contrast to the continuum model that has been extensively used to study the device, the new model takes into
account time-of-flight effects within the cavity and applies the reacceleration field only between cavities, where the ponderomotive
force is absent. As in previous SWFEL models, only a single signal frequency is considered. Using this model, effects of finite cavity
length are investigated. For moderately long cavities, it is shown that there are no adverse effects on the phase stability of the

device.

1. Introduction

A standing-wave frec-clectron laser (SWFEL) has
been proposed [1,2] as a power source for a high
gradient structure in a configuration known as the
“two beam accelerator” (TBA) [3]. In this device, iriscs
are placed along the FEL wiggler to form a series of
microwave cavities, and induction cells are placed be-
tween cavities to reaccelerate the beam (see fig. 1).
The standing-wave signal that builds up in the cavities
as the beam passes through is coupled to a parallel
high-gradient radio frequency accelerator.

Previously, a continuum model had been used to
study the device [1,2,4]. In this model, an infinitesimal
cavity length was assumed and the particles were reac-
celerated continuously. In this paper, we study the
effects of finitc cavity lcngth on phase fluctuations and
output power. Morcover, we rcaccelerate the particles
only between the cavities. In section 2, we describe our
model in some detail. In section 3, we summarize the
results obtained using this modcl. Scction 4 contains
our conclusions. :

2. Discrete cavity model

In this section, we develop a one-dimensional dis-
crete cavity model of the SWFEL. First, we obtain
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particle and field equations within a singlc cavity. We
assume that the one-dimensional beam couples only to
the TE,; waveguide mode [1]. For a waveguide with
height # and width w, the signal wavenumber &, is
given as follows:

1/2
ko= (w2/e*—w2/m?) " (1)
The wiggler field is generated using an idcalized linear
wiggler with a vector potential

2

oC

m
A, = a,, cos(k,z)x. (2)
e

Vector potential for the signal field is given as follows:

2
m.c

A, = N sin(wy/h) cos(k,z —w,t + d)X. (3)

We assume that the energy 'ymccz of all beam
electrons is sufficiently high that a,/y << 1. The signal
amplitude a is taken to be small compared with a,,.
Both a, and ficld phase ¢ are assumed to be slowly
varying compared with k,z and w,t. i

With these approximations, the wiggle-averaged
particle equations arc identical to those in a conven-
tional single-mode microwave FEL (due to this wiggle-
averaging, the cavity needs to be at lcast as long as a
wiggler wavelength for the equations to apply rigor-
ously within the cavity). Denoting the particle phase
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(k,+ k)2 =t by 6, and taking z 10 be the indepen-
dent variable, the equations are given as follows:
de, W w

=k, thk o~ ——
dz ¢ 2cy;

a
X1+ % ~ 2D a,(d, cos 6, —d; sin 0,)].

(4)
dy W, d

' s W ~ . ~
—— =D — —A(q_sin 6, +a; cos b ), 5
dz Y Y,( ' o /) (%)

where 4, and 4, arc the real and imaginary parts of the
complex ficld amplitude @ =4, + id, = a, expli¢). The
coupling cocfficient D, for a TE,, mode is given by

D =[Jy(&)—1(&)]/2. (6)

5

where & =w, ay,/(8ck,y}). The complex ficld ampli-
tude satisfics the following cquation (again given by
conventional FEL theory)

dé « exp{ —i6,) N
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where the cocfficient 7 is given by
8w el, D.a,

hw moct k

n (8)

The novel features of a SWFEL come into play
when we consider the interaction of an electron beam
with a scries of cavitics. The electron becam is divided
into beam slices. Each beam slice is a uniform distribu-
tion of particles with initial spreads A8, and Ay, in 6
and y respectively. As in previous SWFEL simulations
[1,2,4], the average 6 and y for a given beam slice are
prescribed as follows:
02k =a+B(k—1), <7(1>A:7rs (9)

where k is the beam slice index, vy = wfl +
az/2)/2c(k, +k,—w,/c) is the resonant encrgy and
a, B arc constants. Typically, we take « cqual to zero
and

B=—-7w/(K-1). (10)

Here, K is the total number of beam slices and is
related to the total beam length L, by the relation

L,=A(K+1/2), (1)
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Fig. 1. Conceptual layout of one section of a standing-wave TBA.
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where A, is the signal wavelength, The spacing be-
tween the centers of beam slices ALy is no longer A,
in this case but is slightly larger:

AL, =A |1+
2L,

/‘\

). (12)

Now, consider the first beam slice as it propogates
through the SWFEL structure. The particles within
this slice are distributed according to eq. (9) with
k =1. There is a small input ficld 4, within cach
cavity. As the beam slice propogates through the first
cavity, it cvolves according to cgs. (4) and (5) and
generates radiation ficld through eq. (7). When it exits
the cavity, the average cnergy lost in this cavity is
restored to all particles within the becam slice. How-
cver, nothing is done to the particle phases. The beam
slicc now cnters the sccond cavity which is also given
the same input ficld @, as the first cavity. As the beam
exits this cavity, we add the average energy lost in the
first cavity to all particles in the bcam slice rather than
the average cnergy lost in the second cavity [1]. This
process is continued for all subscquent cavities. Henee,
the rcacceleration field is independent of the cavity
number.

Next, consider the sccond beara slice. As it cnters
the first cavity, it still sces only the initial input ficld a,,
and not the additional ficld gencrated by the passage
of the first beam slice. This can be scen as follows.
Elcctrons in the beam slice can interact only with a
forward traveling wave. But the ficld generated by the
first slice takes a finite amount of time 7, to make a
round trip within the first cavity since the cavity has a
finite length L. This time is given as

T.=2L./c. (13)
Within this time period, K’ becam slices have alrcady
passcd through the cavity where (cf. cgs. (12) and (13))
K'=2L /AL,. (14)

The above situation applics to all the cavities. Hence
the first K’ beam slices all sec the same input signal
ficld amplitude. However, there could be differences in
their evolution duc to differences in other initial condi-
tions like 8, and bcam current.

Next, we consider the (K' + Dth beam slice. By the
time this cnters a cavity, the signal ficld generated by
the first beam slice has alrcady made a round trip
within the cavity, and the clectrons therefore sce an
enhanced input signal field amplitude. For the sake of
simplicity, in our present model we neglect losses due
to reflections and duc to leakage through the iris. To
solve the FEL c¢quations within the cavity, we also
rcquirc the initial ficld phase, which is determined as
follows. Since we want the ficld to set up a standing
wave within cach cavity after a few reflections, we take
the cavity length L, to be an integer multiple of the

signal wavelength A, Wc also assume that the ficld
phase ¢ changes by w radians during cach reflection.
With these assumptions, ¢ at the beginning of the
cavity after one round trip is the same as ¢ at the end
of the cavity after the passage of the first beam slice.
Now that we have determined all initial conditions, we
can solve the FEL cquations for the (K'+ 1)th beam
slice within cach cavity. As usual, we add the average
cnergy lost by the beam slice in the first cavity to all
the particles before they enter a new cavity.

We can repeat the above arguments for subscquent
bcam slices. In general, the input signal ficld for the
kth beam slice at the beginning of the /th cavity is
given by the output signal ficld for the (kK — K')th
becam slice at thc end of the /th cavity. The full
intcraction of the clectron becam with the SWFEL
structurc can thercfore be represented symbolically by
the following recursion relations:

O, =0, FF(O, oy T AV A ),

(15)
Ve =Yeo 1 F G0 v H AL A ko).

(16)
Ay =a, o TH(O v+ Ay dg o)

(17)

Here, 8 and y arc n-vectors where n is the number of
particles within a becam slice. The quality Ay, is the
average encrgy lost in the first cavity by the kth bcam
slice. For k equal to 1, we take @, .., =a, for all I.

3. Numerical results

We have numerically studied the discrete cavity
model explained in the previous scection. This section
contains a bricf summary of our results.

The parameters used for the simulation, listed in
table 1, arc the optimized values obtained previously

Table 1

Optimized simulation parameters for the standing-wave FEL
Average beam current 1 3.5 kA
Beam length Ly, 180.0 cm
Resonant energy Y: 16.4
Wiggler strength a,, 1.4
Wiggler wavelength Yo 37 cm
Wiggler length L, 40m
Waveguide height h 3cm
Waveguide width w 10 cm
Signal frequency w, /2w 17.1 GHz
Cavity Q Q 10*
Input power P, 8kW/m
Output energy Wim 10J/m
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Fig. 2. Output microwave energy as a function of distance z
along the wiggler. Results from both the short and long cavity
cases are shown.

[4] using the continuum model of the SWFEL. In our
model, we have an additional parameter that we can
vary — the cavity length. First, we set the cavity length
equal to a signal wavelength. In this limit, our model
should go over into the continuum model. The output
microwave encrgy and field phase ¢ are shown in figs.
2 and 3. The results are from a multi-particle simula-
tion. We have assumed an initial spread of 10% in 6
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Fig. 3. Field phase ¢ as a function of distance z along the
wiggler. Results from both the short and long cavity cases are
shown.

and 1% in y. We have also employed a linearly increas-
ing current. The results are seen to agree with thosc
given in ref. [4] for the continuum model. Similar
agreement was found for single-particle simulations
and for different parameter sets. These calculations
thus served as a benchmark for our numerical code.

Next, we set the cavity length to a realistic value of
14.7 ¢m. Other parameter values remain unchanged
from the short cavity case. The results are again shown
in figs. 2 and 3 so as to facilitate an casy comparison
with the short cavity results. The ripple seen in these
figures is at the synchrotron frequency and can be
explained analytically [4]. We see that the magnitude of
field phase fluctuations is still not significantly larger
than in thc continuum casc. This shows that the
SWFEL concept still holds promise as a stable mi-
Crowave power source.

At present, we are studying in detail the variation of
various physical quantities as a function of cavity length.
Sensitivity of the device to errors in input energy and
current is also being investigated.

4, Summary

We have developed a discrete cavity model of a
standing-wave free-electron laser. A numerical code
has been built to study this model. This code has been
benchmarked against the code for the continuum model
by taking the cavity length to be small. We found that a
cavity length of 14.7 cm has no deleterious effect on
the magnitude of fluctuations in the field phase.
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