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Abstract

Networks of coupled neural systems represent an important class of models in computational neuroscience. In some applications it is
required that equilibrium points in these networks remain stable under parameter variations. Here we present a general methodology to yield
explicit constraints on the coupling strengths to ensure the stability of the equilibrium point. Two models of coupled excitatory —inhibitory

oscillators are used to illustrate the approach.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider neural networks of the form

N
X =F(x) + D GHE), (1)
j=1

where x' is the M-dimensional state vector of the ith node.
Each node can either be a single neuron (M = 1) as in
Hopfield types of models (Hirsch, 1989; Wersing, Beyn, &
Ritter, 2001), or a group of neurons (M > 1), representing,
e.g. the cortical column of interacting excitatory and
inhibitory neurons (Li & Dayan, 1999; Truccolo, Ding, &
Bressler, 2000; Wilson & Cowan 1972). The dynamics of
the individual node is given by X' = F(x') and H : RM — RM
is the coupling function. The coupling matrix is G = [Gy]
where Gj; gives the coupling strength from node j to node i.

Without loss of generality assume that the origin is a
stable equilibrium point for the individual node and remains
an equilibrium point for the network. The stability of the
origin under coupling strength variations is the main
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concern of the present work. This problem is mainly
motivated by some computational considerations. For
example, a class of models assert that the background
state of the network, represented by the equilibrium point at
the origin, should be quiescent in the absence of input
(Baird, 1990; Buhmann, 1995; Carpenter, Cohen, &
Grossberg, 1987; Destexhe, 1994; Li, 1994; Li, 1999; Li
& Hopfield, 1989; Whittle, 1998; Yao & Freeman, 1990).
External inputs, treated as a slowly increasing and then
decreasing function of time, can lead the network through a
Hopf bifurcation to an oscillatory state and then return it to
its background or equilibrium state once the input has been
removed. This natural reset mechanism, requiring the origin
to be a stable equilibrium point, makes the network ready
for the next computational cycle. To endow the oscillatory
network the ability to differentiate patterns of inputs,
statistical learning takes place wherein the coupling
strengths between the network units change according to
certain learning rules. Without careful consideration the
learning related parameter changes can potentially alter
the stability of the background state, thereby defeating the
computational picture established earlier. It is thus desirable
to have constraints on the individual coupling strengths that
can be incorporated into the learning rules so that the
stability of the equilibrium point is ensured for all time.
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Previous work on stability constraints have mainly
concentrated on recurrent networks of the Hopfield type
(Atiya, 1988; Chen & Amari, 2001; Fang & Kincaid, 1996;
Feng & Brown, 1998; Guez, Protopopsecu, & Barhen, 1988;
Hirsch, 1989; Hoppendsteadt & Izhikevich, 1997; Kelly,
1990; Liang & Wu, 1998; Matsuoka, 1991; Michel, Farrell,
& Porod, 1989; Sugawara, Harao, & Noguchi, 1983;
Wersing et al., 2001; Yang & Dillon, 1994) with M = 1.
In this paper we consider a general approach that leads to
stability bounds on the individual coupling strengths in
recurrent networks with more complex local dynamics. Two
explicit models of coupled neural populations will be used
to illustrate our approach.

2. Theory

Our approach consists of three steps.

Step 1. For simplicity, let F(0) = 0, H(0) = 0, and the
real parts of the eigenvalues of the Jacobian DF(0) be
negative so that the origin is stable for the individual node.

Linearizing Eq. (1) around the origin gives (in matrix
form)

S = DF-S + DH'S-G", )

where S = (xl, x2, .., xN ). According to the Jordan canoni-
cal form theory, the stability of Eq. (2) is determined by the
eigenvalue A of G. Let the corresponding eigenvector from
GT be e and let u = Se. The equation for u reads

u = [DF + A-DH]u. 3)

The origin of Eq. (1) is stable if this equation is stable for
all the eigenvalues of G. This is true even when the coupling
matrix is defective (Hirsch & Smale, 1974).

Step 2. To proceed further we treat A in Eq. (3) as a
complex control parameter. Denote by (2 the region in the
Re(A) — Im(A) plane where all the eigenvalues of (D
F + A-DH) have negative real parts. Clearly, the equili-
brium point is stable if all eigenvalues of G lie within (2.
We henceforth refer to (2 as the stability zone. A
schematic of 2 is shown in Fig. 1. We note that {2 is
usually obtained numerically. For some situations analyti-
cal results are possible (see below).

Step 3. Thus far the stability criteria are stated in terms of
the eigenvalue of G. The goal in this work is to directly
constraint the coupling strengths themselves. This is done
by making use of the Gershgorin disc theorem (Horn &
Johnson, 1990).

Given an n X n matrix A = [a;;], the Gershgorin theorem
states that all eigenvalues of A are located in the union of n
discs (called the Gershgdrin discs) where each disc is given
by

{ZEC: |Z—aii|SZ|aﬁ|}, i:1,2,...,n.

JFi

Im(4)

Re(A)

—-——’/

Fig. 1. Schematic of the stability zone.

Alternative forms of the n discs are (Horn & Johnson,
1990):

{zEC: |z—aii|SZaiJ»|}, i=1,2,...,n.

J#Fi

Combining the two, we have the form used in the
remainder of this paper:

1
{Z (S C . |Z - aii' = E Z(|aﬂ| + |au)},
JFEi

“4)

i=1,2,..,n.

This form is more intuitive since it involves incoming
and outgoing coupling strengths for a given node.

The stability conditions for the equilibrium point can
now be stated as follows:

(1) the center G; (i = 1,2,...,N) of every Gershgorin disc
of G lies inside the stability zone (2,

(2) the radius of every Gershgorin disc is shorter than the
distance from the center of the disc to the boundary of
0.

In other words, letting &(x) denote the distance from
point x on the real axis to the boundary of (2, stability of the
equilibrium point is ensured if

1
GO EQ 5 > (Gl +1Gy) < 8(Gy), (5)

J#i

fori=1,2,...,N.
3. Examples

3.1. The case of M = 1

When one dimensional systems are coupled together, the
matrices DF and DH are reduced to real numbers.
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Representing them by w and v, respectively, the stability
zone is easily obtained as Re(A) < — u/v. The distance from
the center of the ith Gershgorin disc to the boundary of (2 is
given by 8(G;;) = —u/v — Gj;. Using Eq. (5) we obtain the
stability conditions as

1
Viall

This result was obtained before in Hirsch (1989) and
Wersing et al. (2001).

3.2. A coupled oscillator model with M = 2

The general topology for the model is shown in Fig. 2.
The basic unit in the model is a neural population
consisting of either excitatory or inhibitory cells (Baird,
1990; Li, 2001; Li & Hopfield, 1989; Wilson & Cowan,
1972). The functional unit in the network is a cortical
column consisting of mutually coupled excitatory and
inhibitory populations. The columns are then coupled
through mutually excitatory interactions to form the
network.

A single column is described by two first order
differential equations

dx
E +ax = _keiQ(y’ Qm) +1,

(N
dy

E + by = kieQ(-x’ Qm)

Here x, y represent the local field potentials of the
excitatory and inhibitory populations, respectively, and [
is the input (/ =0 in the subsequent analysis). The
constants a, b >0 are the damping constants.
The parameter k;, > 0 gives the coupling gain from the
excitatory (x) to the inhibitory (y) population whereas
k,; > 0 represents the strength of the reciprocal coupling.
The nonlinear neuronal interaction is realized through the
sigmoid function Q(-,Q,,) where Q,, is a parameter
controlling the slope of the function. Here we only need
to specify that Q(0,Q,,) =0 and Q'(0,0,,) = 1.

Fig. 2. Schematic of the network configuration.

The N columns are coupled together in the following
fashion:

dx, 1 &
dr +ax, = _keiQ(yn’ Qm) + ﬁ I; Can(-x P Qm) + Ins

(¥
dy,
dt

+ byn = kieQ(xm Qm)v

where the columns are indexed by n = 1,2,..., N and the
coupling strength c,, is the gain from the excitatory
population of column p to the excitatory population of
column n.

Variables used in Eq. (3) can be explicitly evaluated for
the present model as

—a —ky c, 10
DF = , [Gl,=-%, DH=
ko, —b N 00

where we have used the fact 0'(0,0,,)=1.

To discover the stability zone we study the eigenvalue «
of the matrix (DF + A-DH) as a function of A. The
characteristic polynomial of this matrix is given by

fla)=a® +ala+b — \) + (kk, + ab — bA).

For an arbitrary coupling matrix G, its eigenvalues A
could be complex:

A= AR +iAy.
Then the characteristic polynomial becomes

fla)=a?+a(a+b— g —iA)+ (k, ki, +ab — bAg — ibA)).

The range of parameter values which gives Re(a) <0
can be determined by applying the generalized Routh—
Hurwitz criterion (Appendix A). Following this procedure,
consider —if(ia):

—if(ia)=ia® 4+ ala+b— Ag) —iak,
—i(k,ik;, +ab — bAg) — bA;.

This has to be put into the following standard form:
—if(ia) = by’ +bya+b, +i[aga” +a,a+as).

Comparing the two equations we get
ag=— 1, a = _)\],

a, = _(keikie + ab — b)\R)’ b() = 0,

b1=(a+b—)\R), bzz_b)\l.

Applying the generalized Routh—Hurwitz criterion, we
have Re(a) <0 if the following two conditions are met:

1 _)\1
0 (a+b—Ap)

V2:’ >0
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and
1 _)\1 _(keikie+ab_b)\R) 0
0(a+b—Ag) —bA, 0
V4= >0.
0o 1 —A — (k,ikiy+ab—bAg)
O O (a+b_ /\R) _b)\l

Evaluating the above determinants and simplifying, we
get

(a+b—Ag)>0,
)
(kyikie+ab—bAg)(a+b—Ag)* —bAT(Ag—a)>0.

Solving the inequalities, the stability zone (2 (Fig. 3) is
found to be the region to the left of the curve

(k,ik;,+ab—bAg)(a+b—Ag)*

A=
! b(Ag—a)

(10)

The pointed tip of the curve in Fig. 3 along the real axis is
given by (min(a+b,a+k;.k,;/b),0) and it corresponds to the
symmetric coupling case.

The distance 6(Gj;) from the center of the ith Gershgorin
disc to the boundary is (Appendix B)

: { kiekei }
min< a+b,a +T

Gy, Re'(z)

Fig. 3. Stability zone for model Eq. (8).

8(Gy) = y(a — G — b — ok + 2Jkkal2b(a + b — Gp) + kkl

So the stability conditions (Eq.(5)) are given by

G; < min(a + b, a + k; k,;/b),
=

We note that, since the boundary curve of the stability
zone asymptotically approaches the straight line A, = a, we
can use this line to define a new stability zone to obtain
some simpler stability constraints. The distance to the new
boundary is easily found to be

6,‘ = |a - Giil'

In this case, the stability condition simplifies to
1 .
5 > Gl +1G;h+ G <a,  i=12,..,N. (1)

j#i

This simplified condition is a good approximation if
min(a + b, a + k;,k,;/b) is sufficiently close to a. We further
note that Eq. (11) is satisfied if

|GU|<CZ/N, i,jzl,z,-”’N'

That is, the equilibrium point is stable if

le, | <a Vn, p=1,2,...,N.

np

1
E Z (|Gjl| + |GU|) < \/(a - Gii)z - b2 - Zkiekei + 2\/kiekei[2b(a + b— Gii) + kiekei]'

This simple stability bound on the individual coupling
strengths can be very useful in practice.

3.3. A coupled oscillator model with M = 4

The previous model represents a neural population by a
first order differential equation. This has the property that its
impulse response has an instantaneous rise phase. Here we
consider another model where the neural population is a
second order differential equation possessing a finite rise
and decay impulse response. Each individual column is
described by a system of two second order differential
equations (Freeman, 1975):

d*x

dx
_ = —fk. I
a7 +(a+b) ” + abx kei Oy, Q) + 1,

(12)
d’y dy
i +(a+ b)E + aby = k;. Q(x, Q,,,).



W.A. Truccolo et al. / Neural Networks 16 (2003) 1453—1460 1457

The parameters have the same interpretation as before.
The N column equations are given by

dx,

dr?

dx
+(a+b)d—: + abx,

1 N
= _keiQ(yn’ Qm) + ﬁ Z Can(x s Qm) + In’ (13)
p=1

d2 n d n
(@t )
where the same network topology in Fig. 2 applies.

We first consider the stability of the single column
equations given in Eq. (12). When the input [ is zero, the
origin x = 0, y = 0 is an equilibrium point. In order to study
its stability properties, we convert the above second order
differential equations to the following system of first order
differential equations:

+ aby, = k;eQ(x,, O,

dz dz
d_tl = 2, d_t2 = —(a+b)zy — abz; — k,;iQ(z3, Op)s
dz dz,
5w g = @bz —abn + k0, Q).
where
dx dy
i1 =X Z2=E, 3=, = E
The Jacobian matrix DF is obtained as
0 1 0 0
—ab —(a+b) —k,; 0
DF = . (14)
0 0 0 1
ki, 0 —ab —(a+b)

Here we have used the fact that Q'(0,Q,,) = 1. For
stability of the origin, the real parts of all eigenvalues of DF
should be less than zero. The eigenvalues are determined
from the characteristic equation:

M42(a + DA + (d® + 4ab + bHA?
+ 2(a’b + ab®)A + ki k,; + a*b* = 0.
Applying the Lienard—Chipart criterion (Appendix A),

the real parts of all eigenvalues are negative if the following
inequalities be satisfied:

a0 + kiky; >0,  2d*b+2ab* >0,  2a+2b>0,

—4k;,k,; + 4ab(a + b)* > 0.

Since a, b, k,;, k;, > 0, the first three inequalities are
automatically satisfied. After simplification, the last
inequality can be written as:

ki k,; < ab(a + b)*. (15)

To summarize, the origin is stable for the single column
equations if the above condition is satisfied. Henceforth, we
will assume that this is true.

Next, we consider the stability of a network of coupled
columns given in Eq. (13). Here

_C}’lp

[G]np_ﬁa
and

0 0 0 O

1 0 0 O
DH =

0 0 0 O

0 0 0 O

As before, we examine the eigenvalue « of the matrix
DF + A-DH as a function of A. The characteristic poly-
nomial of this matrix is given by

fla)=a*+2(a+b)a® + [(a+b)* +2ab — A&’
+[2ab(a+b) — Ma+b)|a+[a*b® — abA + k; k,;].

For complex A, we are not able to obtain an analytical
form for the stability zone (2, since the characteristic
equation results in a eighth order polynomial when
applying the generalized Routh—Hurwitz criterion. How-
ever, numerical results are always possible. Fig. 4 shows
the stability zone (2 when a=0.22, b=0.72, k;,=0.1,
k,;=0.4. After numerically finding the distance 6(G;;)
from the center of the ith Gershgorin disc to the boundary
curve, Eq. (5) can again be used to give the stability
criteria.

If the coupling is symmetric, which implies that A is real,
the stability boundary is just the rightmost tip of the curve
along the real axis in Fig. 4. Then the distance 6 is given by
the absolute difference between the coordinates of the tip
point and the center of the ith Gershgorin disc. This tip can
be determined as follows.

Fig. 4. Stability zone for model Eq. (13).
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Again applying the Lienard—Chipart criterion (Appendix
A), the real parts of all eigenvalues are negative if the
following inequalities are satisfied:

a’b* — abA + k;k,; > 0,

2ab(a + b) — Ma + b) > 0, 2(a+b) >0, (16)

N = 2(a + b)*A + 4d’b + 2d*b* + ab® — ki k,;) > 0.

Since a, b are positive, the third inequality is automati-
cally satisfied. After simplification, the first two inequalities
become

ki k,; + a’b*
< <<«

A ,
ab

A < 2ab.

The last inequality is of the form
a1A2 - (lz)\ + as > 0,
where

a=1, ay=2a+b), a3=4[abla+b)* —k;,k,].

Note that a;, a, are obviously positive. It turns out a; is
also positive because of the local stability condition derived
in Eq. (15). The quadratic function a;A> — a,A + a5 with a;,
a,, az positive has a unique global minimum at A = a,/2a;.
Thus the minimum occurs at a positive value of A. It is also
seen that

a5 — 4aay = 4[(a+b)* — 4lab(a+b)* — k; k,;]].
This can be simplified as
a5 — dayay = 4[(a*> — b*)2 + 4k, k],

which is positive since k;, k,; is positive. Thus both the zeros
of the quadratic function (we will denote them n; and m),
with m; < m,) are real. Further, since a; >0 and the global
minimum occurs at a positive value, 1, > m; > 0. Conse-
quently, the last inequality is satisfied when A <7, or A >
1, where

M2 = (@+5) £1/(@ — b + bk,

Note that 7, is explicitly seen to be positive by applying
Eq. (15). Further, 1, > (a+b)*> > 2ab. Thus the inequality
A>m, >2ab is not possible given the stability condition
A <2ab derived earlier. Therefore, the last inequality in Eq.
(16) reduces to A < ;.

Summarizing, we get the following set of stability
conditions:

< kiekei + a2b2

A
ab ’

A<2ab, A<,

Let

ki k,; + a*b®
K= min{ ﬁ, 2ab, 7]1}
ab

then all these inequalities will be simultaneously satisfied if
A<k 7

Thus the rightmost tip of the boundary curve along the
real axis is (k, 0). Therefore, the distance function 6(G;;) is
given by
E(Gii): ‘K_GiiL i= 1,2,...,N. (18)

Applying Eq. (5), we obtain the following stability
condition for the present model with symmetric couplings:

1
E Z(|Gﬂ| + |GU|) + Gii = K,

J#i

i=1,2,...,N. (19)

As we discussed before, this condition is satisfied if the
individual coupling strengths obey the following stability
constraints:

le, | < k, forc,, = cpp, n,p=1,2,...,N. (20)

np

4. Conclusions

We have presented a general method for studying the
stability of the equilibrium state in neural network models.
When the single-neuron coupled networks, such as Hopfield
type of models, are studied, the stability result from our
general approach coincides with the known result found in
the literature. As a harder application, two typical neural
population models where the individual nodes are higher
dimensional were considered. The stability of the first
model, a coupled network of two-dimensional systems, was
solved completely. For the second model, a coupled
network of four-dimensional systems, stability criteria for
symmetric coupling was given analytically. For the
nonsymmetric case, our method was used to obtain
numerical criteria. Through the above examples we have
demonstrated that our general method is applicable to
arbitrary neural networks where the individual nodes can
themselves be high dimensional. When the dimension of the
individual node is not too high, analytical results are
possible.

From the stability criteria, we also derived simple bounds
on the coupling strengths which ensure stability. These
bounds put a limit on the magnitude of change that the
coupling strengths can undergo in the process of statistical
learning.
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Appendix A

In this section, we state the Lienard—Chipart and
generalized Routh—Hurwitz criteria. The statements are
taken directly from Gantmacher (1964) and are given here
for the sake of completeness.

A.l. Lienard— Chipart criterion

Consider a real polynomial
f@=a" +ad '+ +a,

with ay > 0. Necessary and sufficient conditions for all the
zeros of the polynomial to have negative real parts can be
given in any one of the following forms (Gantmacher,
1964):

1 a,>0,a,,>0,...; 4, >0,4; >0,...,
2) a,>0,a, ,>0,...;4,>0,4,>0,...,
3) a,>0,a, ,>0,a,3>0,...;4,>0,4,>0,...,
4 a,>0,a, {>0,a, 3>0,...;4,>0,4,>0,...

Here A, is the Hurwitz determinant of order p given by
the formula
a das as
ay ar ay
0 a a;

P 0 ag dy ay

ap

where a, = 0 for kK > n. In the literature, the equivalent
Routh—Hurwitz criterion is usually used. But the Lienard—
Chipart is better since the number of determinants that have
to be evaluated is half the number that have to be evaluated
for the Routh—Hurwitz criterion. This leads to a simpler set
of inequalities that need to be evaluated. In the main text, we
use the third form of the Lienard—Chipart criterion given
above.

A.2. Generalized Routh—Hurwitz criterion

Consider a polynomial f(z) with complex coefficients.
Suppose that

generality, we may assume that ay # 0. Otherwise, we
consider the polynomial g(z)= —if(z) and repeat the
analysis for this polynomial. Both f(z) and g(z) have
the same set of zeros and so no information is lost. This is
the case considered in the main text.

If V,, # 0, then all the zeros of f(z) have negative real
parts if

V,>0,V,>0,..,V,, >0,

where
apg ap - Ay
by by -+ by

Vy = 0 ay - apa| p=12..n,
0 by -+ by

where a;, = b, =0 for k > n. Note that the condition
V,, # 0 would be satisfied for a generic set of parameter
values. This is especially true in our case where a;, b; are
functions of system parameters.

Appendix B

The distance <y from the center (G;;,0) of the ith
Gershgorin disc to any point on the boundary of the stability
zone is given by

Y =0 — G + A7
Substituting A; from Eq. (10) and differentiating with

respect to A;, we have

dy' _ . (atb=Ap)’
a—z(/\R Gii) T Om—a)

[(Ag — a)* — b*1(ab + ki ko — bAg)

+ b()\R - a)2

Setting (dy*/dAg) = 0, we get two solutions:

ki k,;

2b(a+b — Gy + kioky)

Since the boundary of (2 lies to the right of the point
(a,0), we can discard the smaller solution. Substituting the
remaining solution in the equation for 7* and taking the
square root, we get the shortest distance as

8 = Ymin = \/(a = Gy)* = b — 2kickei + 2/kickei[2b(a + b — Gyp) + kicki], i=12,..,N.

f)=bod" +b 7" b, +i(apd + a2 4 +ay,),

where ay, ay,...,a,, by, by,...,b, are real numbers. If the
degree of f(z) is n, then by+iag## 0. Without loss of
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