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Abstract

Networks of coupled neural systems represent an important class of models in computational neuroscience. In some applications it is

required that equilibrium points in these networks remain stable under parameter variations. Here we present a general methodology to yield

explicit constraints on the coupling strengths to ensure the stability of the equilibrium point. Two models of coupled excitatory–inhibitory

oscillators are used to illustrate the approach.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider neural networks of the form

_xi ¼ FðxiÞ þ
XN
j¼1

GijHðxjÞ; ð1Þ

where xi is the M-dimensional state vector of the ith node.

Each node can either be a single neuron ðM ¼ 1Þ as in

Hopfield types of models (Hirsch, 1989; Wersing, Beyn, &

Ritter, 2001), or a group of neurons ðM . 1Þ; representing,

e.g. the cortical column of interacting excitatory and

inhibitory neurons (Li & Dayan, 1999; Truccolo, Ding, &

Bressler, 2000; Wilson & Cowan 1972). The dynamics of

the individual node is given by _xi ¼ FðxiÞ and H : RM ! RM

is the coupling function. The coupling matrix is G ¼ ½Gij�

where Gij gives the coupling strength from node j to node i:

Without loss of generality assume that the origin is a

stable equilibrium point for the individual node and remains

an equilibrium point for the network. The stability of the

origin under coupling strength variations is the main

concern of the present work. This problem is mainly

motivated by some computational considerations. For

example, a class of models assert that the background

state of the network, represented by the equilibrium point at

the origin, should be quiescent in the absence of input

(Baird, 1990; Buhmann, 1995; Carpenter, Cohen, &

Grossberg, 1987; Destexhe, 1994; Li, 1994; Li, 1999; Li

& Hopfield, 1989; Whittle, 1998; Yao & Freeman, 1990).

External inputs, treated as a slowly increasing and then

decreasing function of time, can lead the network through a

Hopf bifurcation to an oscillatory state and then return it to

its background or equilibrium state once the input has been

removed. This natural reset mechanism, requiring the origin

to be a stable equilibrium point, makes the network ready

for the next computational cycle. To endow the oscillatory

network the ability to differentiate patterns of inputs,

statistical learning takes place wherein the coupling

strengths between the network units change according to

certain learning rules. Without careful consideration the

learning related parameter changes can potentially alter

the stability of the background state, thereby defeating the

computational picture established earlier. It is thus desirable

to have constraints on the individual coupling strengths that

can be incorporated into the learning rules so that the

stability of the equilibrium point is ensured for all time.
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Previous work on stability constraints have mainly

concentrated on recurrent networks of the Hopfield type

(Atiya, 1988; Chen & Amari, 2001; Fang & Kincaid, 1996;

Feng & Brown, 1998; Guez, Protopopsecu, & Barhen, 1988;

Hirsch, 1989; Hoppendsteadt & Izhikevich, 1997; Kelly,

1990; Liang & Wu, 1998; Matsuoka, 1991; Michel, Farrell,

& Porod, 1989; Sugawara, Harao, & Noguchi, 1983;

Wersing et al., 2001; Yang & Dillon, 1994) with M ¼ 1:

In this paper we consider a general approach that leads to

stability bounds on the individual coupling strengths in

recurrent networks with more complex local dynamics. Two

explicit models of coupled neural populations will be used

to illustrate our approach.

2. Theory

Our approach consists of three steps.

Step 1. For simplicity, let Fð0Þ ¼ 0; Hð0Þ ¼ 0; and the

real parts of the eigenvalues of the Jacobian DFð0Þ be

negative so that the origin is stable for the individual node.

Linearizing Eq. (1) around the origin gives (in matrix

form)

_S ¼ DF·S þ DH·S·GT
; ð2Þ

where S ¼ ðx1; x2;…; xNÞ: According to the Jordan canoni-

cal form theory, the stability of Eq. (2) is determined by the

eigenvalue l of G: Let the corresponding eigenvector from

GT be e and let u ¼ Se: The equation for u reads

_u ¼ ½DF þ l·DH�u: ð3Þ

The origin of Eq. (1) is stable if this equation is stable for

all the eigenvalues of G: This is true even when the coupling

matrix is defective (Hirsch & Smale, 1974).

Step 2. To proceed further we treat l in Eq. (3) as a

complex control parameter. Denote by V the region in the

ReðlÞ2 ImðlÞ plane where all the eigenvalues of ðD

F þ l·DHÞ have negative real parts. Clearly, the equili-

brium point is stable if all eigenvalues of G lie within V:

We henceforth refer to V as the stability zone. A

schematic of V is shown in Fig. 1. We note that V is

usually obtained numerically. For some situations analyti-

cal results are possible (see below).

Step 3. Thus far the stability criteria are stated in terms of

the eigenvalue of G: The goal in this work is to directly

constraint the coupling strengths themselves. This is done

by making use of the Gershgörin disc theorem (Horn &

Johnson, 1990).

Given an n £ n matrix A ¼ ½aij�; the Gershgörin theorem

states that all eigenvalues of A are located in the union of n

discs (called the Gershgörin discs) where each disc is given

by

z [ C : lz 2 aiil #
X
j–i

lajil

8<
:

9=
;; i ¼ 1; 2;…; n:

Alternative forms of the n discs are (Horn & Johnson,

1990):

z [ C : lz 2 aiil #
X
j–i

laijl

8<
:

9=
;; i ¼ 1; 2;…; n:

Combining the two, we have the form used in the

remainder of this paper:

z [ C : lz 2 aiil #
1

2

X
j–i

ðlajilþ laijlÞ

8<
:

9=
;;

i ¼ 1; 2;…; n:

ð4Þ

This form is more intuitive since it involves incoming

and outgoing coupling strengths for a given node.

The stability conditions for the equilibrium point can

now be stated as follows:

(1) the center Gii ði ¼ 1; 2;…;NÞ of every Gershgörin disc

of G lies inside the stability zone V;

(2) the radius of every Gershgörin disc is shorter than the

distance from the center of the disc to the boundary of

V:

In other words, letting dðxÞ denote the distance from

point x on the real axis to the boundary of V; stability of the

equilibrium point is ensured if

ðGii; 0Þ [ V;
1

2

X
j–i

ðlGjilþ lGijlÞ , dðGiiÞ; ð5Þ

for i ¼ 1; 2;…;N:

3. Examples

3.1. The case of M ¼ 1

When one dimensional systems are coupled together, the

matrices DF and DH are reduced to real numbers.

Fig. 1. Schematic of the stability zone.
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Representing them by m and n; respectively, the stability

zone is easily obtained as ReðlÞ , 2m=n: The distance from

the center of the ith Gershgörin disc to the boundary of V is

given by dðGiiÞ ¼ 2m=n2 Gii: Using Eq. (5) we obtain the

stability conditions as

1

2

X
j–i

ðlGjilþ lGijlÞ þ Gii , 2m=n: ð6Þ

This result was obtained before in Hirsch (1989) and

Wersing et al. (2001).

3.2. A coupled oscillator model with M ¼ 2

The general topology for the model is shown in Fig. 2.

The basic unit in the model is a neural population

consisting of either excitatory or inhibitory cells (Baird,

1990; Li, 2001; Li & Hopfield, 1989; Wilson & Cowan,

1972). The functional unit in the network is a cortical

column consisting of mutually coupled excitatory and

inhibitory populations. The columns are then coupled

through mutually excitatory interactions to form the

network.

A single column is described by two first order

differential equations

dx

dt
þ ax ¼ 2keiQðy;QmÞ þ I;

dy

dt
þ by ¼ kieQðx;QmÞ:

ð7Þ

Here x; y represent the local field potentials of the

excitatory and inhibitory populations, respectively, and I

is the input (I ¼ 0 in the subsequent analysis). The

constants a; b . 0 are the damping constants.

The parameter kie . 0 gives the coupling gain from the

excitatory ðxÞ to the inhibitory ðyÞ population whereas

kei . 0 represents the strength of the reciprocal coupling.

The nonlinear neuronal interaction is realized through the

sigmoid function Qð·;QmÞ where Qm is a parameter

controlling the slope of the function. Here we only need

to specify that Qð0;QmÞ ¼ 0 and Q0ð0;QmÞ ¼ 1:

The N columns are coupled together in the following

fashion:

dxn

dt
þ axn ¼ 2keiQðyn;QmÞ þ

1

N

XN
p¼1

cnpQðxp;QmÞ þ In;

dyn

dt
þ byn ¼ kieQðxn;QmÞ;

ð8Þ

where the columns are indexed by n ¼ 1; 2;…;N and the

coupling strength cnp is the gain from the excitatory

population of column p to the excitatory population of

column n:

Variables used in Eq. (3) can be explicitly evaluated for

the present model as

DF¼
2a 2kei

kie 2b

 !
; ½G�np ¼

cnp

N
; DH¼

1 0

0 0

 !

where we have used the fact Q0ð0;QmÞ ¼ 1:

To discover the stability zone we study the eigenvalue a

of the matrix ðDF þ l·DHÞ as a function of l: The

characteristic polynomial of this matrix is given by

f ðaÞ ¼ a2 þ aða þ b 2 lÞ þ ðkeikie þ ab 2 blÞ:

For an arbitrary coupling matrix G; its eigenvalues l

could be complex:

l ¼ lR þ ilI :

Then the characteristic polynomial becomes

f ðaÞ¼a2þaðaþb2lR2 ilIÞþðkeikieþab2blR2 iblIÞ:

The range of parameter values which gives ReðaÞ,0

can be determined by applying the generalized Routh–

Hurwitz criterion (Appendix A). Following this procedure,

consider 2if ðiaÞ:

2if ðiaÞ¼ia2þaðaþb2lRÞ2 ialI

2 iðkeikieþab2blRÞ2blI :

This has to be put into the following standard form:

2if ðiaÞ¼b0a
2þb1aþb2þ i½a0a

2þa1aþa2�:

Comparing the two equations we get

a0 ¼1; a1 ¼2lI ; a2 ¼2ðkeikieþab2blRÞ; b0 ¼0;

b1 ¼ðaþb2lRÞ; b2 ¼2blI :

Applying the generalized Routh–Hurwitz criterion, we

have ReðaÞ,0 if the following two conditions are met:

72 ¼
1 2lI

0 ðaþb2lRÞ












.0

Fig. 2. Schematic of the network configuration.
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and

74¼

1 2lI 2ðkeikieþab2blRÞ 0

0ðaþb2lRÞ 2blI 0

0 1 2lI 2ðkeikieþab2blRÞ

0 0 ðaþb2lRÞ 2blI




























.0:

Evaluating the above determinants and simplifying, we

get

ðaþb2lRÞ.0;

ðkeikieþab2blRÞðaþb2lRÞ
22bl2

I ðlR2aÞ.0:

ð9Þ

Solving the inequalities, the stability zone V (Fig. 3) is

found to be the region to the left of the curve

l2
I ¼

ðkeikieþab2blRÞðaþb2lRÞ
2

bðlR2aÞ
: ð10Þ

The pointed tip of the curve in Fig. 3 along the real axis is

given by ðminðaþb;aþkiekei=bÞ;0Þ and it corresponds to the

symmetric coupling case.

The distance dðGiiÞ from the center of the ith Gershgörin

disc to the boundary is (Appendix B)

So the stability conditions (Eq.(5)) are given by

We note that, since the boundary curve of the stability

zone asymptotically approaches the straight line lR ¼ a; we

can use this line to define a new stability zone to obtain

some simpler stability constraints. The distance to the new

boundary is easily found to be

di ¼ la 2 Giil:

In this case, the stability condition simplifies to

1

2

X
j–i

ðlGjilþ lGijlÞ þ Gii , a; i ¼ 1; 2;…;N: ð11Þ

This simplified condition is a good approximation if

minða þ b; a þ kiekei=bÞ is sufficiently close to a: We further

note that Eq. (11) is satisfied if

lGijl , a=N; i; j ¼ 1; 2;…;N:

That is, the equilibrium point is stable if

lcnpl , a ;n; p ¼ 1; 2;…;N:

This simple stability bound on the individual coupling

strengths can be very useful in practice.

3.3. A coupled oscillator model with M ¼ 4

The previous model represents a neural population by a

first order differential equation. This has the property that its

impulse response has an instantaneous rise phase. Here we

consider another model where the neural population is a

second order differential equation possessing a finite rise

and decay impulse response. Each individual column is

described by a system of two second order differential

equations (Freeman, 1975):

d2x

dt2
þ ða þ bÞ

dx

dt
þ abx ¼ 2keiQðy;QmÞ þ I;

d2y

dt2
þ ða þ bÞ

dy

dt
þ aby ¼ kieQðx;QmÞ:

ð12Þ

dðGiiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða 2 GiiÞ

2 2 b2 2 2kiekei þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiekei½2bða þ b 2 GiiÞ þ kiekei�:

pq

Gii , minða þ b; a þ kiekei=bÞ;
1

2

X
j–i

ðlGjilþ lGijlÞ ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða 2 GiiÞ

2 2 b2 2 2kiekei þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiekei½2bða þ b 2 GiiÞ þ kiekei�:

pq

Fig. 3. Stability zone for model Eq. (8).
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The parameters have the same interpretation as before.

The N column equations are given by

d2xn

dt2
þ ða þ bÞ

dxn

dt
þ abxn

¼ 2keiQðyn;QmÞ þ
1

N

XN
p¼1

cnpQðxp;QmÞ þ In;

d2yn

dt2
þ ða þ bÞ

dyn

dt
þ abyn ¼ kieQðxn;QmÞ;

ð13Þ

where the same network topology in Fig. 2 applies.

We first consider the stability of the single column

equations given in Eq. (12). When the input I is zero, the

origin x ¼ 0; y ¼ 0 is an equilibrium point. In order to study

its stability properties, we convert the above second order

differential equations to the following system of first order

differential equations:

dz1

dt
¼ z2;

dz2

dt
¼ 2ða þ bÞz2 2 abz1 2 keiQðz3;QmÞ;

dz3

dt
¼ z4;

dz4

dt
¼ 2ða þ bÞz4 2 abz3 þ kieQðz1;QmÞ;

where

z1 ¼ x; z2 ¼
dx

dt
; z3 ¼ y; z4 ¼

dy

dt
:

The Jacobian matrix DF is obtained as

DF ¼

0 1 0 0

2ab 2ða þ bÞ 2kei 0

0 0 0 1

kie 0 2ab 2ða þ bÞ

0
BBBBBB@

1
CCCCCCA: ð14Þ

Here we have used the fact that Q0ð0;QmÞ ¼ 1: For

stability of the origin, the real parts of all eigenvalues of DF

should be less than zero. The eigenvalues are determined

from the characteristic equation:

l4þ2ða þ bÞl3 þ ða2 þ 4ab þ b2Þl2

þ 2ða2b þ ab2Þlþ kiekei þ a2b2 ¼ 0:

Applying the Lienard–Chipart criterion (Appendix A),

the real parts of all eigenvalues are negative if the following

inequalities be satisfied:

a2b2 þ kiekei . 0; 2a2b þ 2ab2 . 0; 2a þ 2b . 0;

24kiekei þ 4abða þ bÞ2 . 0:

Since a; b; kei; kie . 0; the first three inequalities are

automatically satisfied. After simplification, the last

inequality can be written as:

kiekei , abða þ bÞ2: ð15Þ

To summarize, the origin is stable for the single column

equations if the above condition is satisfied. Henceforth, we

will assume that this is true.

Next, we consider the stability of a network of coupled

columns given in Eq. (13). Here

½G�np ¼
cnp

N
;

and

DH ¼

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA

As before, we examine the eigenvalue a of the matrix

DF þ l·DH as a function of l: The characteristic poly-

nomial of this matrix is given by

f ðaÞ ¼a4 þ2ðaþbÞa3 þ½ðaþbÞ2 þ2ab2l�a2

þ½2abðaþbÞ2lðaþbÞ�aþ½a2b2 2ablþ kiekei�:

For complex l; we are not able to obtain an analytical

form for the stability zone V; since the characteristic

equation results in a eighth order polynomial when

applying the generalized Routh–Hurwitz criterion. How-

ever, numerical results are always possible. Fig. 4 shows

the stability zone V when a¼ 0:22; b¼ 0:72; kie ¼ 0:1;

kei ¼ 0:4: After numerically finding the distance dðGiiÞ

from the center of the ith Gershgörin disc to the boundary

curve, Eq. (5) can again be used to give the stability

criteria.

If the coupling is symmetric, which implies that l is real,

the stability boundary is just the rightmost tip of the curve

along the real axis in Fig. 4. Then the distance d is given by

the absolute difference between the coordinates of the tip

point and the center of the ith Gershgörin disc. This tip can

be determined as follows.

Fig. 4. Stability zone for model Eq. (13).
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Again applying the Lienard–Chipart criterion (Appendix

A), the real parts of all eigenvalues are negative if the

following inequalities are satisfied:

a2b2 2 ablþ kiekei . 0;

2abða þ bÞ2 lða þ bÞ . 0; 2ða þ bÞ . 0;

l2 2 2ða þ bÞ2lþ 4ða3b þ 2a2b2 þ ab3 2 kiekeiÞ . 0:

ð16Þ

Since a; b are positive, the third inequality is automati-

cally satisfied. After simplification, the first two inequalities

become

l ,
kiekei þ a2b2

ab
; l , 2ab:

The last inequality is of the form

a1l
2 2 a2lþ a3 . 0;

where

a1 ¼ 1; a2 ¼ 2ðaþbÞ2; a3 ¼ 4½abðaþbÞ2 2 kiekei�:

Note that a1; a2 are obviously positive. It turns out a3 is

also positive because of the local stability condition derived

in Eq. (15). The quadratic function a1l
2 2a2lþa3 with a1;

a2; a3 positive has a unique global minimum at l¼ a2=2a1:

Thus the minimum occurs at a positive value of l: It is also

seen that

a2
2 24a1a3 ¼ 4½ðaþbÞ4 24½abðaþbÞ2 2 kiekei��:

This can be simplified as

a2
2 24a1a3 ¼ 4½ða2 2b2Þ2þ4kiekei�;

which is positive since kiekei is positive. Thus both the zeros

of the quadratic function (we will denote them h1 and h2

with h1 ,h2) are real. Further, since a3 . 0 and the global

minimum occurs at a positive value, h2 .h1 . 0: Conse-

quently, the last inequality is satisfied when l,h1 or l.

h2 where

h1;2 ¼ðaþbÞ2 ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 2b2Þ2 þ4kiekei

q
:

Note that h1 is explicitly seen to be positive by applying

Eq. (15). Further, h2 . ðaþbÞ2 . 2ab: Thus the inequality

l.h2 . 2ab is not possible given the stability condition

l, 2ab derived earlier. Therefore, the last inequality in Eq.

(16) reduces to l,h1:

Summarizing, we get the following set of stability

conditions:

l ,
kiekei þ a2b2

ab
; l , 2ab; l , h1:

Let

k ¼ min
kiekei þ a2b2

ab
; 2ab;h1

( )
;

then all these inequalities will be simultaneously satisfied if

l , k: ð17Þ

Thus the rightmost tip of the boundary curve along the

real axis is ðk; 0Þ: Therefore, the distance function dðGiiÞ is

given by

dðGiiÞ ¼ lk2 Giil; i ¼ 1; 2;…;N: ð18Þ

Applying Eq. (5), we obtain the following stability

condition for the present model with symmetric couplings:

1

2

X
j–i

ðlGjilþ lGijlÞ þ Gii # k; i ¼ 1; 2;…;N: ð19Þ

As we discussed before, this condition is satisfied if the

individual coupling strengths obey the following stability

constraints:

lcnpl , k; for cnp ¼ cpn; n; p ¼ 1; 2;…;N: ð20Þ

4. Conclusions

We have presented a general method for studying the

stability of the equilibrium state in neural network models.

When the single-neuron coupled networks, such as Hopfield

type of models, are studied, the stability result from our

general approach coincides with the known result found in

the literature. As a harder application, two typical neural

population models where the individual nodes are higher

dimensional were considered. The stability of the first

model, a coupled network of two-dimensional systems, was

solved completely. For the second model, a coupled

network of four-dimensional systems, stability criteria for

symmetric coupling was given analytically. For the

nonsymmetric case, our method was used to obtain

numerical criteria. Through the above examples we have

demonstrated that our general method is applicable to

arbitrary neural networks where the individual nodes can

themselves be high dimensional. When the dimension of the

individual node is not too high, analytical results are

possible.

From the stability criteria, we also derived simple bounds

on the coupling strengths which ensure stability. These

bounds put a limit on the magnitude of change that the

coupling strengths can undergo in the process of statistical

learning.
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Appendix A

In this section, we state the Lienard–Chipart and

generalized Routh–Hurwitz criteria. The statements are

taken directly from Gantmacher (1964) and are given here

for the sake of completeness.

A.1. Lienard–Chipart criterion

Consider a real polynomial

f ðzÞ ¼ a0zn þ a1zn21 þ · · · þ an;

with a0 . 0: Necessary and sufficient conditions for all the

zeros of the polynomial to have negative real parts can be

given in any one of the following forms (Gantmacher,

1964):

(1) an . 0; an22 . 0;…; D1 . 0; D3 . 0;…;

(2) an . 0; an22 . 0;…; D2 . 0; D4 . 0;…;

(3) an . 0; an21 . 0; an23 . 0;…; D1 . 0; D3 . 0;…;

(4) an . 0; an21 . 0; an23 . 0;…; D2 . 0; D4 . 0;…

Here Dp is the Hurwitz determinant of order p given by

the formula

Dp ¼

a1 a3 a5 …

a0 a2 a4 …

0 a1 a3 …

0 a0 a2 a4

. .
.

ap













































; p ¼ 1; 2;…; n;

where ak ¼ 0 for k . n: In the literature, the equivalent

Routh–Hurwitz criterion is usually used. But the Lienard–

Chipart is better since the number of determinants that have

to be evaluated is half the number that have to be evaluated

for the Routh–Hurwitz criterion. This leads to a simpler set

of inequalities that need to be evaluated. In the main text, we

use the third form of the Lienard–Chipart criterion given

above.

A.2. Generalized Routh–Hurwitz criterion

Consider a polynomial f ðzÞ with complex coefficients.

Suppose that

f ðizÞ ¼ b0zn þb1zn21 þ · · ·þbn þ iða0zn þa1zn21 þ · · ·þanÞ;

where a0; a1;…;an; b0; b1;…;bn are real numbers. If the

degree of f ðzÞ is n, then b0 þ ia0 – 0: Without loss of

generality, we may assume that a0 – 0: Otherwise, we

consider the polynomial gðzÞ ¼2if ðzÞ and repeat the

analysis for this polynomial. Both f ðzÞ and gðzÞ have

the same set of zeros and so no information is lost. This is

the case considered in the main text.

If 72n – 0; then all the zeros of f ðzÞ have negative real

parts if

72 . 0;74 . 0;…;72n . 0;

where

72p ¼

a0 a1 · · · a2p21

b0 b1 · · · b2p21

0 a0 · · · a2p22

0 b0 · · · b2p22

..

. . .
. ..

.







































; p ¼ 1; 2;…; n;

where ak ¼ bk ¼ 0 for k . n: Note that the condition

72n – 0 would be satisfied for a generic set of parameter

values. This is especially true in our case where ak; bk are

functions of system parameters.

Appendix B

The distance g from the center ðGii; 0Þ of the ith

Gershgörin disc to any point on the boundary of the stability

zone is given by

g2 ¼ ðlR 2 GiiÞ
2 þ l2

I

Substituting lI from Eq. (10) and differentiating with

respect to lI ; we have

dg2

dlR

¼ 2ðlR 2 GiiÞ2
ða þ b 2 lRÞ

2

ðlR 2 aÞ

þ
½ðlR 2 aÞ2 2 b2�ðab þ kiekei 2 blRÞ

bðlR 2 aÞ2
:

Setting ðdg2=dlRÞ ¼ 0; we get two solutions:

lR ¼ a ^ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiekei

2bða þ b 2 Gii þ kiekeiÞ

s
:

Since the boundary of V lies to the right of the point

ða; 0Þ; we can discard the smaller solution. Substituting the

remaining solution in the equation for g2 and taking the

square root, we get the shortest distance as
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