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a b s t r a c t

Merton’s model views equity as a call option on the asset of the firm. Thus the asset is partially observed
through the equity. Then using nonlinear filtering an explicit expression for likelihood ratio for underlying
parameters in terms of the nonlinear filter is obtained. As the evolution of the filter itself depends on the
parameters in question, this does not permit direct maximum likelihood estimation, but does pave the
way for the ‘Expectation–Maximization’ method for estimating parameters.
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1. Introduction

The assessment of credit risk is one of the most important
problems in quantitative finance. A powerful approach to this
is based on the option theoretic interpretation by Merton [27]
(also see [4]). This approach is referred to as the Asset Value
Model (AVM), or structural approach to credit risk [2,5,14,16]. While
theoretically very gratifying, this still leaves wide open several
computational issues. The main aim of this article is to propose
a computational scheme for credit risk evaluation based on AVM.
While for purposes of exposition we stick to a simple model,
the underlying philosophy is broader and can be extended to
more elaborate models. It has the advantage of having a rigorous
footing based on methodologies that have already been utilized
extensively in the signal processing community and it accounts
for aspects not addressed hitherto in existing literature, as will
become apparent. There is another approach to credit risk known
as the reduced form (or intensity based) approach where the
reason behind a default is not investigated. Instead, the dynamics
of default are exogenously given through adefault rate or intensity;
see [1,14,16] and the references therein. We do not follow this
approach in this paper.

We begin by recalling in some detail the AVM model and the
current status of this problem. In this approach, the asset value
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process {At} of the firm is assumed to follow a geometric Brownian
motion (GBM) given by

dAt = νAtdt + σAtdWt , t ≥ 0 (1.1)

where ν is the net mean return rate on the assets, i.e., ν = µ − γ ,
where µ is the gross mean return on the assets and γ is the
proportional cash payout rate; σ is the volatility, and {Wt} is the
standard Brownian motion. It is also assumed that the company
has a simple capital structure consisting of one debt obligation
and one type of equity. Let Et denote the equity process of the
companywhich is traded publicly. Suppose the processDt denotes
the market value of the debt obligation of the company which is
assumed to have the cash profile of a zero-coupon bond maturing
at a prescribed future time T and interest adjusted face value K. In
the classical model [27] the company defaults if AT < K . If the
company defaults, then the payoff to the equity holders is zero.
If it does not, i.e., AT ≥ K , then there is a net profit of AT − K
after paying back the debt. Thus the total payoff to equity holders
is (AT − K)+

def
= max(AT − K , 0), which is identical to the payoff

for a European call option on {At} with strike price K , constant
dividend rateγ andmaturity T . Therefore for t ∈ [0, T ], Et is a long
European call Cγ

t from the point of view of the equity holders. Thus
by the Black–Scholes–Merton option pricing formula it follows that

Et = Cγ
t = e−γ (T−t)AtΦ(d1(At , T − t))

− Ke−r(T−t)Φ(d2(At , T − t)) (1.2)

where, for r def
= the risk-free interest rate,

d1(x, t)
def
=

log
 x
K


+


r − γ +

1
2σ

2

t

σ
√
t

(1.3)
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d2(x, t)
def
=

log
 x
K


+


r − γ −

1
2σ

2

t

σ
√
t

, (1.4)

and Φ(·) as usual denotes the Gaussian distribution function. The
value of the debt obligation DT at time T is given by

DT = min (K , AT ) = K − (K − AT )
+.

The above payoff is equivalent to that of a portfolio consisting of
a default-free loan with face value K maturing at T and a short
European put option on {At} with strike price K and maturity T .
Thus the value of Dt at time t is given by

Dt = Ke−r (T−t)
− Pγ

t (1.5)

where Pγ
t denotes the price of the put option on At with strike price

K , constant dividend rateγ andmaturity T . Using the put-call parity

Ate−γ (T−t)
+ Pγ

t = Cγ
t + Ke−r (T−t)

we obtain

Dt = Ate−γ (T−t)
− Et (1.6)

where At and Et are determined from (1.1) and (1.2) respectively.
The Eq. (1.6) gives the ‘theoretical’ price of the debt at time t .

Another key concept in the AVM is the default probability. In
the classical model the conditional probability of default is given
by

P(AT < K | At) = Φ


log Lt − m(T − t)

σ
√
T − t


, (1.7)

where m = ν −
1
2σ

2 and Lt =
K
At

is the leverage ratio of the firm
at time t .

We have thus far considered the case when default occurs only
at the time T of maturity of the debt. Black and Cox [3] introduced
the concept of first passage time to compute the default probability.
In this model, default occurs at a random time τ ∈ (0, T ]when the
asset value At falls below a level D for the first time. We assume
thatD ≤ K . IfD > K , then the debt holders are fully protected [16].
More precisely, let

τ1 =


T if AT < K
∞ otherwise.

Let τ2 be the stopping time given by

τ2 = inf{t ∈ (0, T ] | At < D}.

Then the default time τ is given by

τ = τ1 ∧ τ2.

Thus the forward conditional default probability at time t is given
by

pd (At) = 1 − P(τ1 ∧ τ2 > T |At).

A simple computation shows that

pd(At) = Φ


log Lt − m(T − t)

σ
√
T − t



+


D
At

 2m
σ2

Φ


log(D2/(KAt)) + m(T − t)

σ
√
T − t


. (1.8)

This default is obviously higher than the corresponding default
probability in the classical approach. Note that (1.7) is obtained as
a special case of (1.8) with D = 0.

In the first passage model the payoff to equity holders at
maturity is given by

ET = (AT − K)+I{MT ≥ D}

where Mt = mins≤t As. The above payoff corresponds to a Euro-
pean down-and-out call on At with strike price K , barrier D(< K),
constant dividend rate γ and maturity T . Thus at an earlier time t ,
Et is given by

Et = Cγ
t − e−γ (T−t)At


D
At

 2(r−γ )

σ2 +1

Φ(d3(At , T − t))

+ Ke−r (T−t)


D
At

 2(r−γ )

σ2 −1

Φ(d4(At , T − t)) (1.9)

where

d3(x, t)
def
=

log


D2

Kx


+


r − γ +

1
2σ

2

t

σ
√
t

(1.10)

d4(x, t)
def
=

log


D2

Kx


+


r − γ −

1
2σ

2

t

σ
√
t

. (1.11)

In this model, the value of the debt obligationDT at time T is given
by

DT = K − (K − AT )
+

+ (AT − K)+I{MT < D}

which is equivalent to a portfolio consisting of a risk free loan
with face value K , a short European put on At with strike price
K , constant dividend rate γ and maturity T , and a long European
down-in-call on At with strike price K , dividend rate γ , barrier D
and maturity T . Therefore at an earlier time the value of the debt
Dt is given by

Dt = Ate−γ (T−t)
− Cγ

t + e−γ (T−t)At


D
At

 2(r−γ )

σ2 +1

× Φ(d3(At , T − t)) − Ke−r (T−t)


D
At

 2(r−γ )

σ2 −1

× Φ(d4(At , T − t)). (1.12)

Various extensions of the first passage time models have been
studied in the literature which in particular include the case when
the default boundary is given by a suitable stochastic process;
see [2] and the references therein. The tractability of more general
models declines rapidly with growing enrichment of the models,
as pointed out in [13]. The AVM is the theoretical basis for the
popular commercial estimated default frequency (EDF) by KMV,
default probabilities by Moody’s and related ratings—see [14,22].
But these are based on historical data used in their commercial
software. These procedures are proprietary and not available in the
public domain. The option theoretic AVMmodels have also become
an integral part of valuations of corporate debts using (1.2) and
(1.5). One of the major difficulties in this approach is that the asset
value process {At} is not observable and the parameters ν, σ are
unknown. Since the equity process {Et} is traded in the market, it
is therefore observable. Suppose we assume that {Et} is also a GBM
given by, say,

dEt = µEEtdt + σEEtdW ′

t (1.13)

where {W ′
t } is a standard Brownian motion. Since {Et} is

observable, the parameters µE, σE can be estimated from the
market data. Assuming γ = 0, since {Et} is a call option on {At},
using Ito’s formula and some additional analysis, it has been shown
in [5] that

σE

σ
=

At

Et
Φ(d1(At , T − t)). (1.14)

Now At and σ are determined from the Eqs. (1.2) and (1.14).
This is the standard textbook approach to valuing corporate
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debt in AVM [5] and has been studied extensively—see [2,5,14],
and the references therein. Several authors have done important
extensions of the AVM model, e.g., [3,15,18,20,24,25,31]. Note
that by using the implicit function theorem, the Eqs. (1.2) and
(1.14) can only be solved locally. These local solutions may
not patch up to form a global solution for the entire planning
horizon [0, T ]. Moreover these two equations do not determine
the parameter ν. Thus the default probability cannot be estimated
using these equations. If we assume that entire dynamics is
described under a risk neutral probability then the risk neutral
default probability can ‘‘in principle’’ be determined using certain
risk neutral instruments. Since an option on the equity Et is also
traded in the market, the option on the equity can be treated as
a compound option on the asset At . This fact has been exploited
in [15,18] to estimate the desired parameters. The AVM model
with incomplete accounting information is addressed in [8,13].
In [13] it is assumed that a ‘noisy’ observation of {At} denoted by
Yt is available at finitely many discrete time points t1, t2, . . . , tn.
Under the additional assumption that the equity is not traded in
the market, the conditional distribution of At given {Yt1 , . . . , Ytn}

is derived using Bayes rule.
In this paper we develop a new approach to estimate the

parameters ν and σ based on nonlinear filtering. To motivate this,
first note that though {Et} is theoretically a call option on {At},
the price at which Et is traded in the market may be different
from its price as per the option pricing formula due to various
‘noise’ factors. Thus we may view {

 t
0 log(Es)ds + ‘noise’} as a

process of noisy observations, say, Yt (to be defined in the next
section) of {At}, whence the latter is a partially observed GBM.
One then has the well developed theory of nonlinear filtering that
allows us to recursively estimate the conditional law of At given
the observed Ys, s ≤ t , for t ≥ 0. One can explicitly write down
the likelihood function for the unknown parameters in terms of
the nonlinear filter whose evolution is also dependent on these
parameters. This then fits the framework of maximum likelihood
estimation under partial observations, for which the celebrated
Expectation–Maximization (EM) algorithm is awell established tool.
These developments are given in the next section.

The rest of our paper is structured as follows. In Section 2
we describe AVM as a partially observed GBM. Then we obtain
an exact expression for the likelihood ratio which forms the
basis of EM-algorithm. Section 3 deals with the estimation of
parameters involved in the AVM model using extended Kalman
filter. Section 4 contains some numerical results based on the
procedure developed in Section 3. We conclude our paper in
Section 5 with a few remarks.

2. AVM as a partially observed GBM

In this section we formalize the model we just described in
the previous section. Let the asset process be described by (1.1)
defined on a complete probability space (Ω, F , P). Let T > 0 be
the planning horizon as before. Let h(t, At) denote the price of a
call option on {At} given either by (1.2) or by (1.9). Let Et be the
observed equity price and let Yt = log E0 +

 t
0 log(Es)ds. Then Yt is

observed. Theoretically

Yt = Y0 +

∫ t

0
log h(s, As)ds.

We assume that Yt is a noisy observation of Y0 +
 t
0 log h(s, As)ds.

Thus we assume that

Yt = Y0 +

∫ t

0
log h(s, As)ds + cW ′

t , t ≥ 0, (2.1)

where {W ′
t } is a standard Brownian motion independent of

{Wt}, A0, and c > 0 is a constant. Define a newprobabilitymeasure

P0 on (Ω, F ) by: Under P0, {At} is given by (1.1) as before, but
c−1Yt , t ∈ [0, T ], is a standard Brownian motion independent of
{Wt}, A0. Let E0[ · ] denote the expectation under P0. By Portenko’s
theorem [29], it follows that

dP
dP0

def
= exp

∫ T

0
c−1 log h(t, At) dYt

−
1
2

∫ T

0
c−2(log h(t, At))

2dt


.

Let F Y
t

def
= be the completion of ∩t ′>t σ(Ys, s ≤ t ′) for t ≥ 0. Also,

introduce the notation η(f ) for

f dη for a function–measure pair

(f , η). We now state the main theorem.

Theorem 2.1. The likelihood ratio ΛT
def
= E0[ dP

dP0
|F Y

T ] is given by

ΛT = exp

c−1

∫ T

0
πt(log h(t, ·)) dYt

−
c−2

2

∫ T

0
πt(log h(t, ·))2dt


(2.2)

where πt is the regular conditional law of At given F Y
t for t ≥ 0.

Remark 2.1. {πt} is given by Fujisaki–Kallianpur–Kunita equation
of nonlinear filtering:

πt(f ) = π0(f ) +

∫ t

0
πs(Lf ) ds +

∫ t

0
(πs(log h(s, ·)f )

− πs(log h(s, ·))πs(f )) dŶs (2.3)

∀f ∈ C2
b (R)

def
= twice continuously differentiable bounded

functionsR → Rwith bounded first and second derivativeswhere
L

def
= νx ∂

∂x +
1
2σ

2x2 ∂2

∂x2
, and Ŷt

def
= Yt −

 t
0 πs(log h(s, ·))ds, t ≥ 0,

is the so called ‘innovations’ process, which is a standard Brownian
motion. See [6], Section V.1, for a derivation and discussion ofwell-
posedness. The conditional law πt is absolutely continuous with
respect to the Lebesgue measure for each sample path. Let φ(t, x)
denote the corresponding density. It then follows from (2.3) that
φ(t, x) satisfies

dφ(t, x) = (L∗φ)(t, x)dt + φ(t, x)(log h(t, x)

−

∫
φ(t, x′) log h(t, x′)dx′)dŶs (2.4)

where L∗ is the formal adjoint of L.

Proof of Theorem 2.1. Recall the non-negative measure-valued
process of ‘unnormalized conditional laws’ {pt} given by

pt(f )
def
= E0

[
f (At) exp

∫ t

0
c−1 log h(s, As) dYs

−
1
2

∫ t

0
c−2(log h(s, As))

2ds
 F Y

t

]
for f ∈ Cb(R). Then its evolution is given by the Dun-
can–Mortensen–Zakai equation

pt(f ) = π0(f ) +

∫ t

0
ps(Lf ) ds +

∫ t

0
ps(log h(s, ·)f ) dYs

for f ∈ C2
b (R2) ([6], Section V.1). In particular for f = 1 def

= the
constant function identically equal to 1, we have

pt(1) = 1 +

∫ t

0
ps(log h(s, ·)) dYs

= 1 +

∫ t

0
πs(log h(s, ·))ps(1) dYs (2.5)
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where we have used the fact πt(f ) =
pt (f )
pt (1)

∀f ∈ Cb(R). Treating
{πt} as a ‘parameter’ in (2.5), direct verification shows that

pt(1) = exp

c−1

∫ t

0
πs(log h(s, ·)) dYs

−
c−2

2

∫ t

0
πs(log h(s, ·))2ds


is the unique solution to (2.5). SinceΛT = pT (1), the desired result
follows. �

We shall use the foregoing to estimate the unknown parameter
θ

def
= [ν, σ , c]. Note that both h and {πt} depend on the parameters,

the latter through the dependence of L and h on θ in (2.3).
We shall render this dependence explicit by writing hθ (·), π θ

t
henceforth. From (2.2), it suffices to maximize the log-likelihood
function

λ̃T (θ)
def
=


c−1

∫ T

0
π θ
t (log hθ (t, ·)) dYt

−
c−2

2

∫ T

0
π θ
t (log hθ (t, ·))2dt


.

To facilitate the EM algorithm, we rewrite this as

λT (θ, θ ′)
def
=


c−1

∫ T

0
π θ
t (log hθ ′

(t, ·)) dYt

−
c−2

2

∫ T

0
π θ
t (log hθ ′

(t, ·))2dt


.

The EM algorithm starts with an initial guess θ0 and at step n, does
the following:

1. Expectation (E) step: Calculate {π
θn
t }. Use it to calculate λT (θn, ·).

2. Maximization (M) step: Find θn+1 by maximizing λT (θn, ·).

It is known that this algorithm converges, albeit possibly to a
local optimum. (See [10], also [9], Section 5.3. These works also
state sufficient conditions for convergence to a global optimum,
but these seem difficult to verify in the present context.) This
can be improved upon by using multistart, simulated annealing,
etc. In our case, the E-step involves calculation of the nonlinear
filter. This is in principle an infinite dimensional object, but
several approximation schemes exist. To begin with, there is the
classical extended Kalman smoother (EKS) [21]. There are several
alternative approaches of more recent vintage. These include
schemes based on discretization ([23], Section 12.7), operator
splitting [19], series expansions [26,28], particle filters [12], etc.
One can also consider the ‘pathwise filter’ [11] (see also, [6],
Section V.1), which is a deterministic parabolic partial differential
equation (i.e., one not involving a stochastic integral), wherein the
observation process appears as a (random) parameter. This can be
approached through standard numerical techniques for parabolic
p.d.e.s.

3. Estimation of parameters using extended Kalman smoother

In this section, we estimate the parameters ν, σ , c using
the Extended Kalman Smoother (EKS) in the E-step of the EM
algorithm. Let Xt

def
= log

 At
K


. Then the Eq. (1.1) can be written as:

dXt =


ν −

σ 2

2


dt + σdWt , t ≥ 0. (3.1)

The noisy observation Eq. (2.1) can be written as

dYt = log(h(t, At)) dt + cdW ′

t , t ≥ 0. (3.2)

Discretizing both these equations using a step size ∆t we get

Xk = Xk−1 +


ν −

σ 2

2


∆t + σ

√
∆twk,

Y ′

k = g(Xk) + c
√

∆tvk

(3.3)

where gk(Xk) = log(h(k∆t, Xk))∆t , Y ′

k = Yk − Yk−1, wk and vk
are independent, N(0,1)-distributed, and finally X0 is assumed to
be Gaussianwithmean x̄0 and variance σ 2

x0 . If we could observe the
states X̃N = {X0, X1, . . . , XN} in addition to the observations Ỹ ′

N =

{Y ′

1, Y
′

2, . . . , Y
′

N}, under the Gaussian assumption, the complete
data likelihood can be written as [30]:
log LX,Y ′(θ)

= −N log 2π − log σx0 −
(X0 − x̄0)2

2σ 2
x0

− N log(σ
√

∆t)

−
1

2σ 2∆t

N−
k=1

[
Xk − Xk−1 −


ν −

σ 2

2


∆t

]2

−N log(c
√

∆t) −
1

2c2∆t

N−
k=1

[Y ′

k − gk(xk)]2. (3.4)

Given that data X̃N is missing, we use the EM algorithm to
iteratively find the maximum likelihood estimates of θ = [ν, σ , c]
based on the incomplete data Ỹ ′

N by successively maximizing the
conditional expectation of the complete data likelihood. Let

Q (θ |θ (j−1)) = E[log LX,Y (θ)|Ỹ ′

N , θ (j−1)
], j = 1, 2, . . . . (3.5)

The iterative process is started with an initial guess θ (0) for θ . To
evaluate Q (in the E step; we have suppressed the arguments in
Q for notational convenience) we need to obtain the conditional
expectations of each term in log LX,Y (θ). To this end we define the
following quantities

X̂k|j = E[Xk|Y ′

1, . . . , Y
′

j , θ], Pk|j = var(Xk|Y ′

1, . . . , Y
′

j , θ),

Pk,k−1|j = cov(Xk, Xk−1|Y ′

1, . . . , Y
′

j , θ).
(3.6)

Moreover, we linearize gk(xk) around X̂k|N : gk(Xk) ≈ g(X̂k|N) +

g ′

k(Xk − X̂k|N), where g ′

k is the derivative of gk(x) evaluated at
x = X̂k|N . After some routine algebraic manipulation, we obtain
the following expression for Q in terms of the quantities defined
above:

Q = −N log 2π − log σx0 −
P0|N + (X̂0|N − x̄0) 2

2σ 2
x0

−N log σ −
N
2

log∆t

−
1

2σ 2∆t

N−
k=1


Pk|N + X̂2

k|N + Pk−1|N + X̂2
k−1|N − 2Pk,k−1|N

− 2X̂k|N X̂k−1|N − 2


ν −
σ 2

2


(X̂k|N − X̂k−1|N) ∆t

+


ν −

σ 2

2

2

∆t2


−N log c −
N
2

log∆t −
1

2c2∆t

×

N−
k=1

[(Y ′

k − gk(X̂k|N))2 + (g ′

k)
2Pk|N ]. (3.7)

To compute Q we therefore need to evaluate X̂k|N , X̂k−1|N , Pk|N ,
Pk−1|N and Pk,k−1|N . These are given by the Extended Kalman
Smoother (EKS). EKS is obtained by making one forward pass
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over the data followed by one backward pass. The forward pass
equations are nothing but the standard EKF equations [17]. For
k = 1, 2, . . . ,N we have

X̂k|k−1 = X̂k−1|k−1 +


ν −

σ 2

2


∆t, Pk|k−1 = Pk−1|k−1 + σ 2∆t

Kk = Pk|k−1g ′

k[(g
′

k)
2Pk|k−1 + c2∆t]−1,

X̂k|k = X̂k|k−1 + Kk[Y ′

k − gk(X̂k|k−1)]

Pk|k = Pk|k−1 − Kkg ′

kPk|k−1

with the initial conditions X̂0|0 = x̄0 and P0|0 = σ 2
x0 . The backward

pass equations are given by (for k = N,N − 1, . . . , 1):

Jk−1 = Pk−1|k−1(Pk|k−1)
−1,

X̂k−1|N = X̂k−1|k−1 + Jk−1(X̂k|N − X̂k|k−1),
(3.8)

Pk−1|N = Pk−1|k−1 + J2k−1(Pk|N − Pk|k−1) (3.9)

with initial conditions X̂N|N and PN|N obtained from the forward
pass equations above. Similarly, X̂k−1|k−1, X̂k|k−1, Pk|k−1 and Pk−1|k−1
are also obtained from the forward pass equations. Finally, the
lag-one covariance smoother Pk,k−1|N is given by the following
equation (for k = N,N − 1, . . . , 2):

Pk−1,k−2|N = Pk−1|k−1 Jk−2 + Jk−1 Jk−2(Pk,k−1|N − Pk−1|k−1), (3.10)

with the initial condition

PN,N−1|N = (1 − KNg ′

N)PN−1|N−1. (3.11)

In the above EKS equations, ν, σ and c should have a superscript
(j − 1) indicating that these are the parameter values obtained
in the previous iteration. This has been suppressed for notational
convenience.

EKS equations enable us to compute Q as a function of θ . This
completes the E step. In the M step, Q is maximized as a function
of θ to obtain the jth iterate values of θ . This can be accomplished
using a nonlinear optimization routine. The updated parameters
are then fed into the E step and the iterative process continues till
convergence is achieved.

4. Numerical results

We test the efficacy of ourmethod using numerical simulations.
We start by simulating 100 realizations of the state space equations
given in Eq. (3.3) where h(t, At) is given by Eq. (1.2). The parameter
values used are: ν = 0.04, σ = 0.08, c = 0.01, r = 0.06, and
γ = 0.03. We integrate the equations from t = 0 to t = T = 1
using 100 time steps. Once this is done, we assume that only Y ′ is
observed and estimate the parameters ν, σ and c from this noisy
observation using the EMmethod (with the E step evaluated using
EKS). The mean estimated values of the parameters are found to
be ν̂ = 0.03, σ̂ = 0.06 and ĉ = 0.01. Note that ν and σ are
underestimated by the EKSmethod. One should be able to do better
using themore sophisticatedmethods listed at the end of Section 2
for the E step.
Next, we repeat the above process for the state space equations
given in Eq. (3.3) where h(t, At) is now given by Eq. (1.9). The
parameter values used are: ν = 0.04, σ = 0.08, c = 0.01, r =

0.06, γ = 0.03, K = 97.0, A0 = 100.0 and D = 60. The
mean estimated values of the parameters are now found to be
ν̂ = 0.028, σ̂ = 0.065 and ĉ = 0.01. Again the discrepancy can
be reduced by using better estimation methods.

5. Conclusion

In this paper we have developed a nonlinear filtering method
for the structural approach to credit risk by treating AVM as

a partially observed GBM. For the sake of simplicity we have
assumed throughout the paper that the parameters involved
in the model are constants which is not always a reasonable
assumption. Quite often it is preferable to replace µ, γ , σ , r by
continuous functions µ(·), γ (·), σ (·), r(·) : [0, T ] → R, with the
proviso σ(·), r(·) > 0. In this case, the foregoing goes through
with appropriate modification. The parameters µ(·), γ (·), σ (·)
are a priori infinite dimensional objects, but one may represent
them by parsimoniously parametrized families such as linear
combinations of a small number of basis functions. The problem
then reduces to estimating these finite parameter vectors, which
can be addressed by the EM algorithm as above. See [7] for a
particular parametrization of time-variation in drift and volatility,
motivated by physical considerations.
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