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ABSTRACT

The mean square emittance is useful for analyzing the be-
havior of beams described by a two-dimensional phase space
(or of beams described by a higher dimensional phase space
but for which the various degrees of freedom are uncoupled)
because it remains invariant under beam transport through
any optical system for which there are no nonlinear forces. Us-
ing Lie algebraic properties of the symplectic group, we show
that in the general case of a six-dimensional phase space (in-
cluding possible coupling between all degrees of freedom) the
concept of mean square emittance can be generalized to pro-
duce three invariants. These invariants (which can be viewed
as eigen-emittances) are made out of second order moments,
and can be shown to form a complete set. They should be
very useful in the analysis of general beam transport. Finally,
the Lie algebraic methods can be extended to make infinitely

many invariants out of cubic and higher order moments.

I. INTRODUCTION

The main purpose of this paper is to provide a Lie alge-
braic treatment of moments of particle distributions and invari-
ants constructed out of these moments. In Section II, moments
are defined and their evolution under beam transport is deter-
mined. In Section III, the concept of mean square emittance
is generalized to obtain quantities that remain invariant un-
der full six dimensional linear beam transport with couplings
between the three degrees of freedom. Finally, a method to

construct higher order invariants is given.

I1. BASIC CONCEPTS

Let z = (2,p;,Y, Py, T, Pr) be the six dimensional vector
describing the location of a particle in phase space. Consider
the action of a linear beam transport system on this particle.
Its effect can be described by a linear transfer map M. Denot-
ing the initial and final locations of the particle by z* and z/

respectively, we can write
2 = Mz (2.1)

If our beam transport system is Hamiltonian, M is a 6 x6 sym-

plectic matrix, and satisfies the equation!
MIM=1J (2.2)

where M is the transpose of M and

J= (_OI g) : (2:3)

Here I is the 3x3 identity matrix.

In the following we derive the basic equation for trans-
port of moments. Let h(z) be the initial distribution function
describing particle density in phase space with coordinates z.
Also, let P,(z), where a is some running index, denote a com-
plete set of homogeneous polynomials in z. Then one can define

a set of initial moments w!, by the rule

w?, E/CPZ h(2)Pa(2). (2.4)

Now suppose the particle distribution h(z) is transported
through the system described by the linear transfer map M.
Then the final distribution at the end of the system is given
by h(M ~1z). Correspondingly, the final moments are given by

the expressions

wl = / d®z (M ™12)Py(2). (2.5)

Atter some mampulation using the symplectic property ot
M, we get
wl = / d%2' h(2')Pa(M2'). (2.6)

Also by completeness of P,(z) one has a relation of the form
P,(Mz) = D(M)qp Ps(2). (2.7)
Substituting this in Eq. (2.6) we finally get
wl = D(M)qp wh. (2:8)

This is the basic equation for moment transport.

III. KINEMATIC MOMENT INVARIANTS

A. DEFINITIONS

We are now in a position to define moment invariants.
Rewrite Eq. (2.8) as

w! = D(M)w'. (3.1)
Suppose a function I(w) has the following property
I(D(M)w) = I(w) (3.2)

for all M. Then I is called a kinematic moment invariant.

CH2669-0/89/0000-1280$01.00©1989 IEEE



Another important concept is that of moment equivalence
classes. Suppose there exists an M such that
wb = D(M)w®. (3.3)

Then we write

~w.

(3.4)

This relation is an equivalence relation. Let [w] be the set of
all w® such that w® ~ w®. The set [w] is called the equivalence

class of w.

This leads us to the observation that a kinematic moment
invariant is a class function i.e. I(w?) = I(w®) if w® ~ w®.
Thus

I = I([w)). (3.5)

From the above discussion, we conclude that the number of
functionally independent kinematic moment invariants is equal

to the dimensionality of the set of equivalence classes.

B. QUADRATIC MOMENT INVARIANTS

An example of a kinematic moment invariant is the famil-

iar two dimensional mean square emittance defined as

& =<z? ><p? > —(< zp, >)?. (3.6)

Using Eq. (2.8) it can be shown that mean square emittance
remains invariant under two dimensional linear beam trans-
port. One of our goals is to generalize this to obtain quantities
that remain invariant under full six dimensional linear beam
transport with couplings between the z, y, 7 degrees of free-
dom.

For the present, let us restrict our attention to quadratic
moments. Given any set of quadratic moments w, we can find?
an equivalent set w* (i.e. w ~ w*) such that the moments w*

have the following special properties

<zazp >* =0 if a#b, 3.7)
< zz >* =< p.p; >T, (3.8a)
<yy >" =< pypy >, (3.80)
<717 > =< prpr > (3.8¢)

This shows that there are three equivalence classes of quadratic
moments and hence three functionally independent kinematic
invariants made from quadratic moments.

We can take the three independent invariants to be the

eigen mean square emittances €2, 2, and €2 defined as follows:

zs Sy
€ =< zz >*< prp; >, (3.9a)
€ =< yy >*< pypy >, (3.90)
&€ =< 77 >*< ppr > (3.9¢)

Then any kinematic invariant made of quadratic moments can

be written in the form
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12 = 12(62

z

L2 €l). (3.10)

Another choice is to take the functions I;z)[w], Ié”[w],
and I;G)[w] defined by the relations

I2(2)[w] =e 4+ 6; + €, (3.11a)
I§4)[w] =€t +ep+er, (3.11b)
Iés)[w] =é + eg + €8, (3.11¢)

An alternative method for obtaining these invariants is
outlined below. The advantage of this method is that it can be
easily generalized to construct invariants made of higher order

moments. Let

K] = 5(-1)2e(27)" (312)

where Z is a 6 X 6 symmetric matrix whose elements are defined
as

Zap =< zq2zp > (3.13)

and J is the fundamental symplectic matrix defined in Eq.
(2.3). It can be shown that Iz(") [w] is invariant under linear
beam transport. Further, Ig") [w] for n = 2, 4 and 6 correspond
to the three independent invariants listed in Eq. (3.11). In
particular, one finds the result?

IPw]=<2?><p?>—<zp, >+ <y? ><pi >
—<ypy >+ <i><pl > —<1p, >?
+2 <2y ><p.py > -2 < xpy >< yp: >
+2< 2T >< pppr > —2< 2Py > TP >
+2 < yr >< pypr > —2 < ypr >< TPy >.(3.14)

The expressions for Ié“’ and I;G) in six dimensional phase space

are not listed since they are very long.

C. HIGHER ORDER MOMENT INVARIANTS

We now generalize the above concepts to construct in-
variants made of higher order moments. For simplicity, we
deal only with invariants made of cubic and quartic moments.
Generalizations to moments of arbitrary order can be found
elsewhere?.

Let

I w] = (272 7)™,
17 w] = (29 77)"]

(3.15)
(3.16)

where Z®) and Z® are third and fourth rank tensors whose

elements are cubic and quartic moments respectively:

Z® =< 242420 >, (3.17)

ZW =< z,z2024 > (3.18)



It can be shown that I3 and I; are kinematic moment
invariants. In two dimensional phase space, we find the func-
tionally independent cubic and quartic moment invariants to
be as follows (with the leading coefficient normalized to be

equal to +1):

Ié“[w] =< g >i< pd >? -3 < 2?p, >r< zpk >?
+4<2® ><ap? > +4 < a®p, >¥<pd >
—6<ad><alp, ><zpl><pdi>, (319)

Iﬁ”[w} =< gt ><pt > 43 < 2l >?

—4 <23, >< zpd >, (3.20)

IPw] =< z* >< pt >< 2?p? > — <zt ><apl >?
—<2'p? > — <2, >l<pl >

+2<2’p, ><zpd ><z?pl > (3.21)

Invariants can also be constructed using moments of dif-
ferent orders. A simple example of such a mixed invariant

combining linear and quadratic moments is given below:
If?z’l)[w] =< z?>< pe > -2« TP, >< T >< pp >
+<pls<ae>?. (3.22)

Such mixed moment invariants become important when the
beam transport system contains misaligned optical elements
and other “zeroth” order effects. When a particle distribution
is transported through such a system, none of the [.(,?)[w]’s
given above remain invariant. Instead it is combinations like
I;z)[w] + Il(’zil)[w] that remain invariant. Such combinations

always involve a mixed “invariant”.
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