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ABSTRACT 

The mean square emittance is useful for analyzing the be- 
havior of beams described by a two-dimensional phase space 
(or of beams described by a higher dimensional phase space 
but for which the various degrees of freedom are uncoupled) 
because it remains invariant under beam transport through 
any optical system for which there are no nonlinear forces. Us- 
ing Lie algebraic properties of the symplectic group, we show 
that in the general case of a six-dimensional phase space (in- 
cluding possible coupling between all degrees of freedom) the 
concept of mean square emittance can be generalized to pro- 
duce three invariants. These invariants (which can be viewed 
as eigen-emittances) are made out of second order moments, 
and can be shown to form a complete set. They should be 
very useful in the analysis of general beam transport. Finally, 
the Lie algebraic methods can be extended to make infinitely 
many invariants out of cubic and higher order moments. 

I. INTRODUCTION 

The main purpose of this paper is to provide a Lie alge- 
braic treatment of moments of particle distributions and invari- 
ants constructed out of these moments. In Section 11, moments 
are defined and their evolution under beam transport is deter- 
mined. In Section 111, the concept of mean square emittance 
is generalized to obtain quantities that remain invariant un- 
der full six dimensional linear beam transport with couplings 
between the three degrees of freedom. Finally, a method to 
construct higher order invariants is given. 

11. BASIC CONCEPTS 

Let z = ( z , p , , y , p y , ~ , p T )  be the six dimensional vector 
describing the location of a particle in phase space. Consider 
the action of a linear beam transport system on this particle. 
Its effect can be described by a linear transfer map M .  Denot- 
ing the initial and final locations of the particle by zi and zf 
respectively, we can write 

zf = M z ' .  (2.1) 

If our beam transport system is Hamiltonian, M is a 6x6 sym- 
plectic matrix, and satisfies the equation' 

A ~ J M = J  (2.2) 

where A2 is the transpose of M and 

J=(_01  ;) 
Here I is the 3x3  identity matrix. 

In the following we derive the basic equation for trans- 
port of moments. Let h ( z )  be the initial distribution function 
describing particle density in phase space with coordinates 2. 

Also, let P,(z), where (Y is some running index, denote a com- 
plete set of homogeneous polynomials in z. Then one can define 
a set of initial moments w i  by the rule 

w i  J d6z h(z)P,(z). (2.4) 

Now suppose the particle distribution h ( z )  is transported 
through the system described by the linear transfer map M .  
Then the final distribution at the end of the system is given 
by h ( M - ' z ) .  Correspondingly, the final moments are given by 
the expressions 

w; = J 8 2  h(M-'z)P,(z). 

Aiter some manipulation using the symplectic p r o p p y  01 

M ,  we get 

w; = J 8.2' h(z')P,(Mz'). (2.6) 

Also by completeness of Pa(,) one has a relation of the form 

Substituting this in Eq. (2.6) we finally get 

w; = D(M),p w;. 

This is the basic equation for moment transport. 

111. KINEMATIC MOMENT INVARIANTS 

A. DEFINITIONS 

We are now in a position to define moment invariants. 
Fkwrite Eq. (2.8) as 

wf = D ( M )  wi 

Suppose a function I(w) has the following property 

I(D(M)w) = I (w)  (3.2) 

for all M .  Then I is called a kinematic moment invariant. 

CH2669-0/89/0000-1280$01 .MO 1989 IEEE 



Another important concept is that of moment equivalence 
classes. Suppose there exists an M such that 

wb = D ( M ) w " .  (3.3) 

Then we write 
wb - wa (3.4) 

This relation is an equivalence relation. Let [w] be the set of 
all wb such that wb - wa.  The set [w] is called the equivalence 
class of w. 

This leads us to the observation that a kinematic moment 
invariant is a class function i.e. I ( w ~ )  = I ( w a )  if wb - W O .  

Thus 

I = I([w]). (3.5) 

From the above discussion, we conclude that the number of 
functionally independent kinematic moment invariants is equal 
to the dimensionality of the set of equivalence classes. 

B. QUADRATIC MOMENT INVARIANTS 

An example of a kinematic moment invariant is the famil- 
iar two dimensional mean square emittance defined as 

€2 =< x2 >< pq > -(< xp, >),. (3.6) 

Using Eq. (2.8) it can be shown that mean square emittance 
remains invariant under two dimensional linear beam trans- 
port. One of our goals is to generalize this to obtain quantities 
that remain invariant under full six dimensional linear beam 
transport with couplings between the x, y, T degrees of free- 
dom. 

For the present, let us restrict our attention to quadratic 
moments. Given any set of quadratic moments w ,  we can find2 
an equivalent set w* (i.e. w - w * )  such that the moments w* 
have the following special properties 

< Z,Zb >* = 0 if a # b, (3.7) 
< xx >* =< p,p, >*, 

< YY >* =< PyPy >*, 
< TT >* =< p,p, >* . 

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

This shows that there are three equivalence classes of quadratic 
moments and hence three functionally independent kinematic 
invariants made from quadratic moments. 

We can take the three independent invariants to be the 
defined as follows: eigen mean square emittances €2,  E : ,  and 

E: =< 22 >*< p,pz >*, 

E: =< TT >*< p,p, >* . 

(3.9a) 

(3.9c) 

E', =< yy >*< pyp, >*, (3.9b) 

Then any kinematic invariant made of quadratic moments can 
be written in the form 
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I2 = I,(€;, €;, €:). (3.10) 

Another choice is to take the functions Ii"[w], I p ' [ w ] ,  
and Ii"[w] defined by the relations 

I;"[w] = E: + €; + €:, 
I;"[W] = €4, + €4, + E ; ,  

I ,  ( 6 )  [w] = e; + €6, + €:. 

( 3 . 1 1 ~ )  

(3.1 1 b) 

(3.1 IC) 

An alternative method for obtaining these invariants is 
outlined below. The advantage of this method is that it can be 
easily generalized to construct invariants made of higher order 
moments. Let 

(3.12) 1i")[w1 = -(-l)Ptr(ZJ)n 

where Z is a 6 x 6 symmetric matrix whose elements are defined 
as 

1 
2 

z a b  =< ZaZb > (3.13) 

and J is the fundamental symplectic matrix defined in Eq. 
(2.3). It can be shown that Ii"'[w] is invariant under linear 
beam transport. Further, Ii"'[w] for n = 2, 4 and 6 correspond 
to the three independent invariants listed in Eq. (3.11). In 
particular, one finds the result3 

I p ' w ]  =< x2 >< p; > - < xp, >2 + < y2 >< p', > 
- < yp, >2 + < T 2  >< p: > - < rp, >2  

+ 2 < xy >< pzpy > -2 < xpy >< ypz > 
+ 2 < XT >< p,p, > -2 < xp, >< rpz > 
+ 2 < YT >< pyp, > -2 < yp, >< rpY >.(3.14) 

The expressions for If) and I i6)  in six dimensional phase space 
are not listed since they are very long. 

C. HIGHER ORDER MOMENT INVARIANTS 

We now generalize the above concepts to construct in- 
variants made of higher order moments. For simplicity, we 
deal only with invariants made of cubic and quartic moments. 
Generalizations to moments of arbitrary order can be found 
elsewhere*. 

Let 

where Z(3) and Z(4) are third and fourth rank tensors whose 
elements are cubic and quartic moments respectively: 



It can be shown that 1 3  and 14 are kinematic moment 
invariants. In two dimensional phase space, we find the func- 
tionally independent cubic and quartic moment invariants to 
be as follows (with the leading coefficient normalized to be 
equal to +I): 

1j4)[4 =< x3 p3, >2 -3 < xzp, > 2 <  xp: >2 

+ 4 < x3 >< xp2, >3 +4 < x2pz >3< p: > 
- 6 < x3 >< x’p, >< xp: >< p: >, (3.19) 

1 3 4  =< x4 >< p; > +3 < x2p2, > 2  

1j3)[w] =< x4 >< p; >< x2p: > - < x4 >< xp: >2 

- < xzpz, > 3  - < x3pz > 2 <  p: > 

- 4 < x3p, >< xp3, >, (3.20) 

+ 2 < x3pz >< xp: >< x2p: > . (3.21) 

Invariants can also be constructed using moments of dif- 
A simple example of such a mixed invariant ferent orders. 

combining linear and quadratic moments is given below: 

1y/’[w] =< x2 >< p, > 2  -2 < xp, >< x >< p, > 
+ < p: >< x >z . (3.22) 

Such mixed moment invariants become important when the 
beam transport system contains misaligned optical elements 
and other “zeroth” order effects. When a particle distribution 
is transported through such a system, none of the Ie’[w]’s 
given above remain invariant. Instead it is combinations like 
1i2’[w] + 1$’)[w] that remain invariant. Such combinations 
always involve a mixed “invariant”. 
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