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Abstract

Ž .We study the first passage time FPT problem in Levy type of anomalous diffusion. Using the recently formulated
fractional Fokker–Planck equation, we obtain an analytic expression for the FPT distribution which, in the large passage
time limit, is characterized by a universal power law. Contrasting this power law with the asymptotic FPT distribution from
another type of anomalous diffusion exemplified by the fractional Brownian motion, we show that the two types of
anomalous diffusions give rise to two distinct scaling behavior. q 2000 Published by Elsevier Science B.V.

PACS: 05.40.-a; 05.40.Jc; 05.45.Df

1. Introduction

Ž .For a stochastic process, the first passage time FPT is defined as the time T when the process, starting from
w xa given point, reaches a predetermined level for the first time, and is a random variable 1 . Escape times from a

random potential, intervals between neural spikes, and fatigue failure times of engineering structures are all
w x w x w xexamples of FPTs, arising in physics 2 , biology 3 , and engineering 4 , respectively. Thus, knowledge of the

Ž . ŽFPT distribution, f t , is essential for the effective application of probabilistic analysis. As a convention we use
.capital letters to denote random variables and lower case letters to denote their values. Unfortunately, only in

Ž .very few cases does one have explicit analytical expressions for f t . One such case is the ordinary Brownian
motion, an example of ordinary diffusion, in which the FPT is described by the famous inverse Gaussian law
w x Ž .5 . The main contribution of this work is the derivation of the exact solution of f t for a much broader class of

w xstochastic processes, namely, the Levy type of anomalous diffusion 6–18 in which the mean square
Ž . ² 2Ž .: gdisplacement of the diffusive variable X t scales with time as X t ; t with 0-g-2. Specifically,

Ž . w x Ž .using a recently formulated framework of fractional Fokker–Planck equation FFPE 19 , we express f t in
w xterms of Fox or H-functions 20,21 , which is shown to contain the inverse Gaussian distribution as a special

Ž . Ž . y1yg r2case. Furthermore, we show that in the asymptotic limit of large t, f t scales with t as f t ; t . Our
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next result concerns the comparison with a different type of anomalous diffusion, represented by fractional
Ž . w x ² 2Ž .: gBrownian motion fBm 22,23 , where again X t ; t with 0-g-2. For this type, we argue that

Ž . g r2y2 w xf t ; t for large t, a result that has been conjectured earlier 24 . Finally, we present numerical
simulations which verify the analytical results.

2. FFPE and derivation of FPT distribution

The Levy type of anomalous diffusion considered in this work is a class of non Gaussian and non Markovian
Ž .processes founded on the continuous time random walk CTRW where the waiting time obeys certain power

w x Ž .law distribution 6,7 . Let f y,u denote the joint probability density between the waiting time U and the jump
Ž .size Y. It can be shown that, depending on the specific form of f y,u , the CTRW can produce both

Ž . Ž . Ž . w xsubdiffusive 0-g-1 and superdiffusive processes 1-g-2 as well as ordinary diffusion gs1 6,7,25 .
For example, consider

1 ay1 rtŽ .
2 2f y ,u s exp yy r2s , 1Ž . Ž .a

2' 1qurtŽ .2ps

Žwhere Y and U are decoupled with Y being a Gaussian variable. We note that, strictly speaking, the
w xdistribution of U is not a Levy stable distribution, but belongs to the domain of attraction 23 of a one-sided

.stable Levy law. We call U a ALevy type of variableB for want of a better name. For 1-a-2, the
corresponding CTRW is characterized by a subdiffusive process with gsay1, and for aG2, one gets
ordinary diffusion with gs1. If, on the other hand, Y and U are coupled through

by1 rtŽ .
1 < <f y ,u s d urty y rs , 2Ž . Ž .Ž .2 b1qurtŽ .

Ž .where 2-b-3 and d P is the Dirac delta function, the CTRW describes a superdiffusive process with
gs4yb.

Ž . Ž . Ž .Let W x,t be the probability density function for a CTRW X t with X 0 s0. Consider the generalized
diffusion limit where s and t are scaling parameters for the space and time variables. For the subdiffusive case,

2 2 Ž . gthis means taking the limit s ™0 and t™0 with Kss r2 G 1yg t kept a constant, and for the
Ž .Ž . Ž . 2 Ž . gsuperdiffusive process, this means taking the same limit with Ks 3yg 2yg G gy1 s r2 5y2g t

w x Ž .kept a constant. In this limit it can be shown 6,7 that the evolution of W x,t is determined by the following
w xFFPE 19 :

E 2
ygW x ,t yW x ,0 s D K W x ,t , 0-g-2, 3Ž . Ž . Ž . Ž .0 t 2E x

yg w xwhere the Riemann-Liouville fractional integral operator D is defined as 26,270 t

1 t gy1X X XygD W x ,t s dt ty t W x ,t , g)0, 4Ž . Ž . Ž . Ž .H0 t
G gŽ . 0

Ž . w xwith G z being the gamma function 28 . The constant K is the generalized diffusion constant defined in the
Ž . ² 2Ž .: g Ž .above generalized diffusion limit. From Eq. 3 it is easily shown that X t s2 Kt rG 1qg .

In the framework of the Fokker–Planck equation, the first passage time problem is defined in terms of having
absorbing boundaries at xsy` and xsa, where a is the predetermined level of crossing, with the initial

Ž . Ž . w x Ž .condition W x,0 sd x 1 . An equivalent formulation, due to symmetry, is to solve Eq. 3 with the following
Ž . Ž . Ž . Ž .boundary and initial conditions: W 0,t s0, W `,t s0, W x,0 sd xya , where xsa is the new starting

Žpoint of the process, containing the initial concentration of the distribution. This latter formulation makes the
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. Ž . Ž .subsequent derivation less cumbersome. Once we solve for W x,t , the first passage time distribution f T is
w xgiven by 1

`d
f t sy dxW x ,t . 5Ž . Ž . Ž .H

dt 0

Ž .Taking into account of the boundary and initial conditions we are led to the following expansion for W x,t
w x29

`2
W x ,t s dksinkxsinkaA k ,t , 6Ž . Ž . Ž .H

p 0

Ž . Ž . Ž .with A k,0 s1. To determine the unknown function A k,t , we substitute the above expansion for W x,t in
Ž . Ž . 2 yg Ž .Eq. 3 and, after straightforward algebra, obtain A k,t y1syKk D A k,t . Taking the Laplace trans-0 t

form with respect to t, we have

1
A k , p s , 7Ž . Ž .2 1ygpqk Kp

Ž . Ž . w xwhere A k, p is the Laplace transform of A k,t . Here we have applied the result 27 that the Laplace
yg Ž . Ž . g Ž . w xtransform of D A k,t is A k, p rp . Inverse Laplace transform of Eq. 7 yields 300 t

A k ,t sE yk 2Ktg , 8Ž . Ž . Ž .g

Ž . w x Ž . Ž .where E z is the Mittag–Leffler function 30 . Substituting Eq. 8 into Eq. 6 we getg

`2
2 gW x ,t s dksinkxsinka E yk Kt . 9Ž . Ž . Ž .H g

p 0

w xTo proceed further, we introduce the Fox or H-function 20,21 which has the following alternating power
series expansion:

m n

G b yB s G 1ya qA sŽ .Ž .Ł Łk j j lk r r lksm ` l ka , AŽ . y1 zŽ .j j js1, . . . , p js1, j/l rs1m ,nH z s = ,Ý Ý q pp ,q k!Bb , BŽ .� 0 lj j ls1 ks0js1, . . . ,q G 1yb qB s G a yA sŽ . Ž .Ł Łu u lk Õ Õ lk
usmq1 Õsnq1

10Ž .

Ž .where s s b qk rB and an empty product is interpreted as unity. Further, m,n, p,q are nonnegative integerslk l l

such that 0FnFp, 1FmFq; A , B are positive numbers; a , b can be complex numbers. The H-functionj j j j
w xhas several remarkable properties 21 which are listed in Appendix A.

w x Ž . wBy comparing the series expansion 30 of the Mittag–Leffler function E z with that of the H-function cf.g

Ž .x Ž .Eq. 10 , Eq. 9 can be rewritten as

`2 0,1Ž .1,1 2 gW x ,t s dksinkx sinka H k Kt . 11Ž . Ž .H 1,2 ž /0,1 , 0,gp Ž . Ž .0

X Ž g .1r2 w Ž .xLetting k sk Kt and using Property 5 Eq. A.3 of H-functions, the above equation becomes

`1 0,1r2Ž .X X X X1,1W x ,t s dk cosk xya ycosk xqa H k . 12Ž . Ž . Ž . Ž .H 1,21r2g ž /0,1r2 , 0,gr2Ž . Ž .02p KtŽ .
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The Fourier cosine transforms can be solved by successive applications of a Laplace and an inverse Laplace
Ž w x . w xtransform a technique pioneered by Fox 31 for solving a wide variety of integral transforms to give 32

< <1 xya 1,1r2 , 1,gr2 , 1,1r2Ž . Ž . Ž .2,1W x ,t s HŽ . 3,3 1r2g< < ž /1,1 , 1,1r2 , 1,1r22 xya Ž . Ž . Ž .KtŽ .

1 xqa 1,1r2 , 1,gr2 , 1,1r2Ž . Ž . Ž .2,1y H . 13Ž .3,3 1r2gž /1,1 , 1,1r2 , 1,1r22 xqa Ž . Ž . Ž .Ž . KtŽ .
Ž .Now, applying Properties 2, 1, 3 and 6 of the H-functions listed in Appendix A in the given order, we finally

get

< <1 xya xqa1ygr2,gr2 1ygr2,gr2Ž . Ž .1,0 1,0W x ,t s H yH .Ž . 1,1 1,11r2 1r2 1r2g g gž / ž /0,1 0,1Ž . Ž .2 Kt Kt KtŽ . Ž . Ž .
14Ž .

Ž . Ž .Substituting Eq. 14 into Eq. 5 we have

< <`d 1 xya 1ygr2,gr2Ž .1,0f t sy dx HŽ . H 1,11r2 1r2g gž /0,1dt Ž .02 Kt KtŽ . Ž .

`d 1 xqa 1ygr2,gr2Ž .1,0q dx H . 15Ž .H 1,11r2 1r2g gž /0,1dt Ž .02 Kt KtŽ . Ž .
ŽRemoving the explicit time dependence in the integrands by rewriting the integrals in terms of zs xy

. Ž g .1r2 X Ž . Ž g .1r2a r KT , z s xqa r KT , the above integrals can be explicitly evaluated to give:

ag a 1ygr2,gr2Ž .1,0f t s H , 16Ž . Ž .1,11r2 Ž2qg .r2 1r2gž /0,12 K t Ž .KtŽ .
which is the main result of this Letter. It should be noted that H-functions were first used in the context of

w xprobability distributions by Schneider 33 . They have also been used to express solutions of fractional diffusion
w x w xequations 34 . In addition, the FPT problem in the context of Levy processes has been considered in Ref. 35 .

Ž . w Ž .xThe series expansion of the H-function in Eq. 16 cf. Eq. 10 is

k1r2g`ag yar KtŽ .Ž .
f t s . 17Ž . Ž .Ý1r2 Ž2qg .r2 k!G 1ygr2ykgr22 K t Ž .ks0

This turns out to be also the series expansion of the Maitland’s generalized hypergeometric function or the
w x Ž .Wright function c 30 . Thus, an alternative expression for f t is0 1

ag ay
f t s c ;y . 18Ž . Ž .0 11r2 Ž2qg .r2 1r2g1ygr2,ygr2ž /Ž .2 K t KTŽ .

Ž .For gs1 ordinary Brownian motion , the Wright function reduces to the following simple formula

a 2ya r4 K tf t s e . 19Ž . Ž .1r234p KtŽ .
w xThis is the expected inverse Gaussian distribution for the FPT distribution of the ordinary Brownian motion 5 .
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Ž .Next, we consider the asymptotic behavior of the FPT distribution for large values of t. Refer to Eq. 16 .
Ž g .1r2 w x 1,0Ž . < < b1 r B1Let zsar Kt . It is known that 21,36 , for small z, H z ; z s1, since b s0 and B s1.1,1 1 1

Ž .Therefore, the FPT distribution f t , for large t, is characterized by the power law relation

f t ; ty1yg r2 , 20Ž . Ž .
which becomes the well known y3r2 scaling law for the ordinary Brownian motion. This power law behavior

w x Ž .has been observed earlier by Balakrishnan 37 for subdiffusive processes 0-g-1 using a different method.
Using our method the same scaling law is shown to be applicable also to superdiffusive processes. After some
manipulation, we can also determine the location t of the maximum of the FPT distribution:max

Ž .2yg rg2 dg
t s , 21Ž .max ž /4yg

g rŽ2yg . 2rŽ2yg .'Ž .Ž . Ž . Ž .where ds 1ygr2 gr2 a K . From Eq. 20 , we see that the mean first passage time and
all higher moments of the FPT distribution are undefined for 0-g-2.

Ž .The theoretical prediction for the full FPT distribution given in Eq. 16 is verified by numerically simulating
Ž . w Ž .xthe underlying CTRW process characterized by the probability density function f y,u cf. Eq. 1 . For the

Ž . w xsake of numerical efficiency, we replace the waiting time distribution in f y,u by the Pareto distribution 38
which is well justified for small values of t . Ten million realizations of the CTRW process are used to generate
the numerical FPT distribution. The results are shown in Fig. 1 for gs0.5, as1.0, ts10y4 and Ks0.1. We
note that the numerical simulation is in excellent agreement with the theoretical prediction. The agreement

Ž 2would get even better as the generalized diffusion limit is approached that is, as t™0 and s ™0 with K
.held a constant .

Ž . Ž .Fig. 1. Comparison of the theoretical FPT distribution solid line with the distribution dashed line obtained by numerically simulating the
underlying CTRW process for a Levy type anomalous diffusion with gs0.5.
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3. Anomalous diffusion of the fBm type

Ž . w x Ž . Ž . w Ž .Fractional Brownian motion X t 22,23 is a Gaussian process with X 0 s0, -X t )s0 and - X t
Ž .x2 < <g Ž .yX s )s tys 0-g-2 . By definition it provides us with another type of anomalous diffusion. The

w xexact FPT distribution of this process is not known. It was conjectured 24 , based on scaling argument and
Ž .numerical evidence, that for large t, f t scales with t as

f t ; tg r2y2 . 22Ž . Ž .
Ž .Notice that this power law behavior is different from that in Eq. 20 even though the mean square displacement

Ž .2 Ž Ž .2 g .-X t ) has the same power law behavior -X t ); t for both types of anomalous diffusion. Below
w xwe give a heuristic argument for this power law using a recent result 39 concerning the distribution of the

maximum of a fBm over a given interval.
Without loss of generality we set the threshold at as1. Let the probability that the maximum M of the fBmt
Ž . Ž . w x Ž .X t with X 0 s0 is less than 1 in the time interval 0,t be denoted by P t :

P t sProb M -1 23Ž . Ž . Ž .t

Ž .Clearly, P t is also the probability that the first passage time T of the fBm is greater than t:
Prob T) t sP t . 24Ž . Ž . Ž .

Ž .This implies that the first passage time distribution f t is given by
d d d

f t s Prob TF t sy Prob TG t sy P t . 25Ž . Ž . Ž . Ž . Ž .
dt dt dt

w x Ž .Recent work by Molchan 39 shows that, in the large t limit, P t scales with t as

P t ; tg r2y1 , t™`. 26Ž . Ž .
Ž . Ž .Substituting this in Eq. 25 we obtain Eq. 22 .

Ž .Fig. 2. Comparison of the theoretically predicted power law behavior of the FPT distribution for a fBm with gs1.5 dashed line with the
Ž .numerical simulation solid line .
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Ž . w xWe present numerical results to verify Eq. 22 . Sinai’s formula 40 for the power spectrum of the fractional
Ž .Gaussian noise fGn is used to generate the fBm. The log-log plot of the FPT distribution is shown in Fig. 2

Ž .gs1.5 . It is clear that the predicted slope of gr2y2sy1.25 is in excellent agreement with the numerical
simulation.

4. Conclusions

Ž .The two types of anomalous diffusions considered in this work lead to two distinct scaling behavior, Eq. 20
Ž .and Eq. 22 , for the respective FPT distributions in the asymptotic limit, despite the fact that they are both

Ž .described by the same mean square displacement. Eq. 20 is expected to be applicable to all CTRW types of
Ž . Ž .processes, regardless of the specific forms of f y,u , for which the generalized diffusion limit leads to Eq. 3 .

Ž . w Ž . Ž .x2 < <gOn the other hand, we expect Eq. 22 to hold for Gaussian processes where - X t yX s ); tys for
< <large tys .

Ž .In this work we considered only processes with -X t )s0 where the asymptotic limits of the FPT
distributions are described by power laws. For a fBm, little is known about its FPT distribution when

Ž .-X t )/0. For a Levy type of diffusion process, some exact results can be derived for the Laplace transform
Ž .of the FPT distribution when -X t )/0. We will present these results in other publications.
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Appendix A. Properties of H-functions

w xThe H-function has the following properties 21 which have used in the main text.

Ž . Ž . Ž . Ž .Property 1. The H-function is symmetric in the pairs a , A , . . . , a , A , likewise a , A , . . . , a , A ;1 1 n n nq1 nq1 p p
Ž . Ž . Ž . Ž .in b , B , . . . , b , B and in b , B , . . . , b , B .1 1 m m mq1 mq1 q q

Property 2. Provided nG1 and q)m,

a , A , a , A , PPP , a , AŽ . Ž . Ž .1 1 2 2 p pm ,nH zp ,q b , B , PPP , b , B , a , AŽ . Ž .� 0Ž .1 1 qy1 qy1 1 1

a , A , PPP , a , AŽ . Ž .2 2 p pm ,ny1sH z . A.1Ž .py1,qy1 b , B , PPP , b , BŽ .� 0Ž .1 1 qy1 qy1
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Property 3. Provided mG2 and p)n,

a , A , PPP , a , A , b , BŽ . Ž .Ž .1 1 py1 py1 1 1m ,nH zp ,q b , B , b , B , PPP , b , BŽ . Ž .� 0Ž .1 1 2 2 q q

a , A , PPP , a , AŽ . Ž .1 1 py1 py1my1,nsH z . A.2Ž .py1,qy1 b , B , PPP , b , BŽ .� 0Ž .2 2 q q

Property 4.

a , A 1yb , BŽ . Ž .1j j j jjs1, . . . , p js1, . . . ,qm ,n n ,mH z sH . A.3Ž .p ,q q , p zb , B 1ya , AŽ . Ž .� 0 � 0j j j jjs1, . . . ,q js1, . . . , p

Property 5. For k)0,

a , A a ,kAŽ . Ž .1 j j j jjs1, . . . , p js1, . . . , pm ,n m ,n kH z sH z . A.4Ž .p ,q p ,qk b , B b ,kBŽ . Ž .� 0 � 0j j j jjs1, . . . ,q js1, . . . ,q

Property 6.

a , A a qr A , AŽ . Ž .j j j j jjs1, . . . , p js1, . . . , p
r m ,n m ,nz H z sH z . A.5Ž .p ,q p ,qb , B b qrB , BŽ . Ž .� 0 � 0j j j j jjs1, . . . ,q js1, . . . ,q
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