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Abstract

We study the first passage time (FPT) problem in Levy type of anomalous diffusion. Using the recently formulated
fractional Fokker—Planck equation, we obtain an analytic expression for the FPT distribution which, in the large passage
time limit, is characterized by a universal power law. Contrasting this power law with the asymptotic FPT distribution from
another type of anomalous diffusion exemplified by the fractional Brownian motion, we show that the two types of
anomalous diffusions give rise to two distinct scaling behavior. © 2000 Published by Elsevier Science B.V.

PACS 05.40.-a; 05.40.Jc; 05.45.Df

1. Introduction

For a stochastic process, the first passage time (FPT) is defined as the time T when the process, starting from
a given point, reaches a predetermined level for the first time, and is arandom variable [1]. Escape times from a
random potential, intervals between neura spikes, and fatigue failure times of engineering structures are all
examples of FPTSs, arising in physics [2], biology [3], and engineering [4], respectively. Thus, knowledge of the
FPT distribution, (1), is essential for the effective application of probabilistic analysis. (As a convention we use
capital letters to denote random variables and lower case letters to denote their values.) Unfortunately, only in
very few cases does one have explicit analytical expressions for f(t). One such case is the ordinary Brownian
motion, an example of ordinary diffusion, in which the FPT is described by the famous inverse Gaussian law
[5]. The main contribution of this work is the derivation of the exact solution of f(t) for a much broader class of
stochastic processes, namely, the Levy type of anomalous diffusion [6-18] in which the mean square
displacement of the diffusive variable X(t) scales with time as { X2(t)) ~t” with 0 < y < 2. Specificaly,
using a recently formulated framework of fractional Fokker—Planck equation (FFPE) [19], we express f(t) in
terms of Fox or H-functions [20,21], which is shown to contain the inverse Gaussian distribution as a special
case. Furthermore, we show that in the asymptotic limit of large t, f(t) scales with t as f(t) ~t~*~7/2 Our
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next result concerns the comparison with a different type of anomalous diffusion, represented by fractiona
Brownian motion (fBm) [22,23], where again { X?(t)) ~t” with 0< y< 2. For this type, we argue that
f(t) ~t?/272 for large t, a result that has been conjectured earlier [24]. Finally, we present numerical
simulations which verify the analytical results.

2. FFPE and derivation of FPT distribution

The Levy type of anomalous diffusion considered in this work is a class of non Gaussian and non Markovian
processes founded on the continuous time random walk (CTRW) where the waiting time obeys certain power
law distribution [6,7]. Let ¢(y,u) denote the joint probability density between the waiting time U and the jump
size Y. It can be shown that, depending on the specific form of ¢(y,u), the CTRW can produce both
subdiffusive (0 < y < 1) and superdiffusive processes (1 < y < 2) as well as ordinary diffusion (y = 1) [6,7,25].
For example, consider

exp[—yz/Zcrz](a—l)/Ta,
2mo? (1+u/7)
where Y and U are decoupled with Y being a Gaussian variable. (We note that, strictly speaking, the
distribution of U is not a Levy stable distribution, but belongs to the domain of attraction [23] of a one-sided
stable Levy law. We call U a “Levy type of variable” for want of a better name.) For 1< a < 2, the
corresponding CTRW is characterized by a subdiffusive process with y=a — 1, and for a > 2, one gets
ordinary diffusion with y = 1. If, on the other hand, Y and U are coupled through

(B-1) /7
(L+u/r)?

where 2< 8< 3 and &(-) is the Dirac delta function, the CTRW describes a superdiffusive process with
y=4— .

Let W(x,t) be the probability density function for a CTRW X(t) with X(0) = 0. Consider the generalized
diffusion limit where o and 7 are scaling parameters for the space and time variables. For the subdiffusive case,
this means taking the limit 02— 0 and 7— 0 with K=02/2I'(1— y)r” kept a congtant, and for the
superdiffusive process, this means taking the same limit with K= (3 - y)2— y)I'(y— 1o ?2/25 - 2y)r”
kept a constant. In this limit it can be shown [6,7] that the evolution of W(x,t) is determined by the following
FFPE [19]:

P(y.u) = (1)

d(y,u)=38(u/T—Iyl/a) (2)

62
W(x,t) = W(x0) =oD; K= W(xt), 0<y<2, (3)

where the Riemann-Liouville fractional integral operator ,D, " is defined as [26,27]
D‘VW(xt)—;/‘tdt’(t—t’)“/_lW(xt’) >0 (4)
0 t ’ F(’y) 0 ’ ’ '}’ ’

with I'(z) being the gamma function [28]. The constant K is the generalized diffusion constant defined in the
above generalized diffusion limit. From Eq. (3) it is easily shown that { X2(t)) = 2Kt”/I'(1+ ).

In the framework of the Fokker—Planck equation, the first passage time problem is defined in terms of having
absorbing boundaries at x= —o and x=a, where a is the predetermined level of crossing, with the initial
condition W(x,0) = 8(x) [1]. An equivalent formulation, due to symmetry, is to solve Eq. (3) with the following
boundary and initial conditions: W(0,t) = 0, W(e,t) = 0, W(x,0) = §(x — &), where x = a is the new starting
point of the process, containing the initial concentration of the distribution. (This latter formulation makes the
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subsequent derivation less cumbersome.) Once we solve for W(x,t), the first passage time distribution f(T) is
given by [1]

d .=
f(t) = — Efo dXW( X, t). (5)

Taking into account of the boundary and initial conditions we are led to the following expansion for W(x,t)
[29]

2 .=
W(x,t)=;f0 dksinkxsinkaA( k, ), (6)

with A(k,0) = 1. To determine the unknown function A(k,t), we substitute the above expansion for W(x,t) in
Eq. (3) and, after straightforward algebra, obtain A(k,t) — 1= —Kk? ;D; YA(k,t). Taking the Laplace trans-
form with respect to t, we have

A(k,p) = (7)

where A(k,p) is the Laplace transform of A(k,t). Here we have applied the result [27] that the Laplace
transform of D, YA(k,t) is A(k,p)/p”. Inverse Laplace transform of Eq. (7) yields [30]

A(k,t) = E,( —Kk?Kt?), (8)
where E (2) is the Mittag—L effler function [30]. Substituting Eg. (8) into Eq. (6) we get

W(x,t) = EfwdksinkxsinkaEy(—sztV). (9)
mJ0

To proceed further, we introduce the Fox or H-function [20,21] which has the following alternating power
series expansion:

m n

(—1) 2% j:lj#lr(bj_BjS”()rl:[lF(l_ar—’—Arslk)
% :

KIB, q

u=m

HM™M z
P (bJ'Bi)j=1 ..... q I=1 k=0

9 ’
F(l_bu+BuS|k) ]._.[ F(a‘v_ALrslk)
+1 v=n+1
(10)

where s, = (b, + k) /B, and an empty product is interpreted as unity. Further, m,n, p,q are nonnegative integers
suchthat 0<n<p, l<mx<gq; A, B; are positive numbers; a;, b, can be complex numbers. The H-function
has several remarkable properties [21] which are listed in Appendix A.

By comparing the series expansion [30] of the Mittag—Leffler function E, (2) with that of the H-function [cf.
Eqg. (10)], Eq. (9) can be rewritten as

w(xt)=EfmdksinkxsinkaHlv1 k2Kt? (1) (11)
’ 7 Jo 12 (0,1), (0,y)
Letting k' = k(Kt”)'/2 and using Property 5 [Eq. (A.3)] of H-functions, the above equation becomes
1 o (0,1/2)
W(x,t)=———— [ dk[cosk'(x—a) — cosk'( x+ a)| HL}| K : 12
() = 5y 72 Jy KooK (x=2) L L P A I
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The Fourier cosine transforms can be solved by successive applications of a Laplace and an inverse Laplace
transform (a technique pioneered by Fox [31] for solving a wide variety of integral transforms) to give [32]

(11/2), (Ly/2), (1,1/2))
(1,1), (1,1/2), (1,1/2)

_X+a (11/2), (1v/2). (11/2)
(Kt)Y2 | (LY, (11/2), (112 )

Now, applying Properties 2, 1, 3 and 6 of the H-functions (listed in Appendix A) in the given order, we finally
get

Ix—al
(Kt7)Y?

W(x,t) = HZ3

2|x—a

1

B 2(x+a) H3s -

- ‘ Ix—a [(1-1v/2,y/2) ’ x+a |(1-1v/2,v/2)
W( x,t) = W[Hif(m (0.1) —HiY (k)2 (0.) .
(14)
Substituting Eq. (14) into Eq. (5) we have
d 1 = Ix—al |(1-v/2,v/2)
I 10| 127
(= dtlZ( Kw)l/zfo s (Kt )Y (0.1) )]
d 1 o 5 X+a |(1-v/2,y/2)
+E[—2( KtV)l/Zfo dxH-0 )7 (01) ” (15)

Removing the explicit time dependence in the integrands by rewriting the integrals in terms of z=(x—
a)/(KT")Y2 Z =(x+ a)/(KT")Y2, the above integrals can be explicitly evaluated to give:

(1-v/2,v/2)
(0,1)

a
( Kty)l/Z

which is the main result of this Letter. It should be noted that H-functions were first used in the context of

probability distributions by Schneider [33]. They have also been used to express solutions of fractional diffusion

equations [34]. In addition, the FPT problem in the context of Levy processes has been considered in Ref. [35].
The series expansion of the H-function in Eq. (16) [cf. Eq. (10)] is

(o v (8 ke)¥?)"
2K 1/2t2+7)/2 o kKIiIr(i—vy/2- k'y/2) .

ay
f(t) = 2K 1/21@+7)/2

1,0
Hl,l

: (16)

(17)

This turns out to be also the series expansion of the Maitland’s generalized hypergeometric function or the
Wright function 4y, [30]. Thus, an alternative expression for f(t) is

ay — a
f(t) = Sxaz@z o U2 (1-v/2.- /2" (kT2 )’ (18)
For v =1 (ordinary Brownian motion), the Wright function reduces to the following simple formula
a
f(t) = ———5e ¥/ (19)
(4mKt?)?

This is the expected inverse Gaussian distribution for the FPT distribution of the ordinary Brownian motion [5].
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Next, we consider the asymptotic behavior of the FPT distribution for large values of t. Refer to Eq. (16).
Let z=a/(Kt")*2. It is known that [21,36], for small z, H}%(2) ~|2|*/® =1, since b, =0 and B, = 1.
Therefore, the FPT distribution f(t), for large t, is characterized by the power law relation

f(t) ~t~tv/2 (20)
which becomes the well known —3/2 scaling law for the ordinary Brownian motion. This power law behavior
has been observed earlier by Balakrishnan [37] for subdiffusive processes (0 < vy < 1) using a different method.

Using our method the same scaling law is shown to be applicable also to superdiffusive processes. After some
manipulation, we can aso determine the location t,,, of the maximum of the FPT distribution:

2dy @=-v)/y
toex = 7= , (21)

where d = (1 — y/2)(y/2)y/<2‘”(a/\/K)Z/Q‘7). From Eq. (20), we see that the mean first passage time and
all higher moments of the FPT distribution are undefined for 0 < y < 2.

The theoretical prediction for the full FPT distribution given in Eq. (16) is verified by numerically simulating
the underlying CTRW process characterized by the probability density function ¢(y,u) [cf. Eg. (1)]. For the
sake of numerica efficiency, we replace the waiting time distribution in ¢(y,u) by the Pareto distribution [38]
which is well justified for small values of 7. Ten million realizations of the CTRW process are used to generate
the numerical FPT distribution. The results are shown in Fig. 1 for y=0.5, a= 1.0, 7= 10"*% and K = 0.1. We
note that the numerical simulation is in excellent agreement with the theoretical prediction. The agreement
would get even better as the generalized diffusion limit is approached (that is, as 7— 0 and o2 — 0 with K
held a constant).

0.06 —T T

0.05

0.04

0.02

0.01

0.01 0.1 1 10 100 1000

Fig. 1. Comparison of the theoretical FPT distribution (solid line) with the distribution (dashed line) obtained by numerically simulating the
underlying CTRW process for a Levy type anomalous diffusion with y = 0.5.
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3. Anomalous diffusion of the fBm type

Fractional Brownian motion X(t) [22,23] is a Gaussian process with X(0) =0, < X(t)>=0and <[X(t)
—X(9)?> =|t—s|” (0< y< 2). By definition it provides us with another type of anomalous diffusion. The
exact FPT distribution of this process is not known. It was conjectured [24], based on scaling argument and
numerical evidence, that for large t, f(t) scales with t as

f(t) ~t7/2°2, (22)
Notice that this power law behavior is different from that in Eq. (20) even though the mean square displacement
< X(t)?> has the same power law behavior (< X(t)2> ~t?) for both types of anomalous diffusion. Below
we give a heuristic argument for this power law using a recent result [39] concerning the distribution of the
maximum of a fBm over a given interval.

Without loss of generality we set the threshold at a = 1. Let the probability that the maximum M, of the fBm
X(t) with X(0) = 0 is less than 1 in the time interval [0,t] be denoted by P(t):

P(t) = Prob( M, < 1) (23)
Clearly, P(t) is aso the probability that the first passage time T of the fBm is greater than t:
Prob(T >t) = P(t). (24)
This implies that the first passage time distribution f(t) is given by
d d d
f(t) = —Prob(T<t) = — —Prob(T>1t) = — —P(t). 2
(t) " ob(T<t) " ob(T=>1) m (1) (25)
Recent work by Molchan [39] shows that, in the large t limit, P(t) scales with t as
P(t) ~t7/271, t—oo, (26)
Substituting this in Eq. (25) we obtain Eq. (22).
100 - — T
10} i
) Slope = -1.25
VamnS )
+~ 1t .
N—r
S~
0.1 3 4
0.01 1 . !
0.01 0.1 1 10

t

Fig. 2. Comparison of the theoretically predicted power law behavior of the FPT distribution for a fBm with y = 1.5 (dashed ling) with the
numerical simulation (solid line).
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We present numerical results to verify Eq. (22). Sinai’s formula[40] for the power spectrum of the fractional
Gaussian noise (fGn) is used to generate the fBm. The log-log plot of the FPT distribution is shown in Fig. 2
(y=1.5). It is clear that the predicted slope of v/2 — 2= —1.25 is in excellent agreement with the numerical
simulation.

4. Conclusions

The two types of anomalous diffusions considered in this work lead to two distinct scaling behavior, Eq. (20)
and Eqg. (22), for the respective FPT distributions in the asymptotic limit, despite the fact that they are both
described by the same mean square displacement. Eg. (20) is expected to be applicable to all CTRW types of
processes, regardless of the specific forms of ¢(y,u), for which the generalized diffusion limit leads to Eq. (3).
On the other hand, we expect Eq. (22) to hold for Gaussian processes where <[ X(t) — X(s)]?> ~|t—g|” for
large [t — 9.

In this work we considered only processes with < X(t) > = 0 where the asymptotic limits of the FPT
distributions are described by power laws. For a fBm, little is known about its FPT distribution when
< X(t) > +# 0. For aLevy type of diffusion process, some exact results can be derived for the Laplace transform
of the FPT distribution when < X(t) > # 0. We will present these results in other publications.
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Appendix A. Properties of H-functions

The H-function has the following properties [21] which have used in the main text.

Property 1. The H-function is symmetric in the pairs (a;, A, ... (&,, A), likewise (a,, 1, A, 1), ... (8, A));
in (by,By),...,(b,,B,) adin (b, ;,By.1)-..,(by, By

Property 2. Provided n>1 and g> m,

- (a, A, (3, Ay), T (ap. Ap)
Pa Z(bl'Bl)v T (bq—l’Bq—l)' (al'Al)
S (a2,A2), -+, (a5, Ap)
:Hp—l,q—l(z (b.B), -, (bq—l!Bq—l) . (A1)
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Property 3. Provided m> 2 and p > n,

|, (a1, Ay, T (ap—l'Ap—l)' (by,By)
P91 [(byBy), (b, By), (bq,By)
T (a, A, -, (ap—laAp—l)
PR T (2B, (bg.By)
Property 4.
Hmn (aJ’Al)j—l ..... p — Hnm 1 (1 bl’Bl)]—l ..... q
P (b,B), Pl z|(1-4a,A)
1" )j=1,..., q 177 j=1,..., p

Property 6.
e PA) e |l (@ RALA)
2’| 2l B =M 2l p 4 B B
(]’ 1)1:1 ..... q (J P5;, J)j:1 ..... q
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