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Abstract

Identifying causal relations among simultaneously acquired signals is an important problem in multivariate tim
analysis. For linear stochastic systems Granger proposed a simple procedure called the Granger causality to detect suc
In this work we consider nonlinear extensions of Granger’s idea and refer to the result as extended Granger causality.
approach implementing the extended Granger causality is presented and applied to multiple chaotic time series and o
of nonlinear signals. In addition, for situations with three or more time series we propose a conditional extended
causality measure that enables us to determine whether the causal relation between two signals is direct or mediated
process.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Given the deluge of multi-channel data genera
by experiments in both science and engineering,
role of multivariate time series analysis, especia
nonlinear time series processing, has become cru
in understanding the patterns of interaction amo
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different elements of nonlinear systems. In particu
identifying causal relations among signals is import
in fields ranging from physics to biology to economi
One approach to evaluating causal relations betw
two time series is to examine if the prediction of o
series could be improved by incorporating informat
of the other. This was originally proposed by Wien
[1] and later formalized by Granger in the context
linear regression models of stochastic processes
Specifically, if the variance of the prediction error
the second time series at the present time is redu
by inclusion of past measurements from the first ti
.
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series in the linear regression model, then the first t
series is said to have a causal influence on the se
time series. The roles of the two time series can
reversed to address the question of causal influe
in the opposite direction. From this definition it
clear that the flow of time plays a vital role in makin
direction related inference from time series data.

Since Granger causality was formulated for l
ear models, its direct application to nonlinear syste
may or may not be appropriate, depending on
specific problem. In some cases, the linear Gran
causality is able to identify the correct patterns
interaction for multiple nonlinear time series, but
some other cases, as will be shown later in this
per, it fails to do so. We deal with this issue by e
tending Granger’s idea to nonlinear problems. O
starting point is the standard delay embedding
construction of the phase space attractors. Cle
a full description of a given attractor requires a nonl
ear set of equations. But, locally, one can approxim
the dynamics linearly. Applying Granger’s causal
idea to each local neighborhood and averaging the
sulting statistical quantity over the entire attractor
sults in extended Granger causality index (EGCI).
examine the effectiveness of this idea on numeric
generated nonlinear time series with known pattern
interaction.

Works related to the identification of interdepe
dence in nonlinear systems have appeared in the
erature [3–7]. Particularly relevant for the work in th
paper are works based on delay coordinate embed
reconstruction of phase space. Along this directio
number of methods of detecting nonlinear interdep
dence or coupling based on nonlinear prediction t
ory have appeared in the past few years [8–17].
basic ideas in these papers are similar, all involv
the use of the points in a neighborhood in the rec
structed space to predict future dynamical behav
In [9–16], time indices of neighborhood points in t
spaceX reconstructed from one time seriesx are used
to predict the dynamics in spaceY reconstructed from
the second time seriesy. If this prediction is good
enough, then it implies a dependence fromx to y.
Similarly, the reverse dependence can be found.
ferent authors define different criteria to quantify t
goodness of the prediction, but the common assu
tion that nearby points in one reconstructed spacX
map to nearby points in another reconstructed sp
Y is adopted. These methods tend to detect stron
teractions such as synchronization, phase synchro
tion or generalized synchronization. In order to d
tect weak interactions, a modification [17] was ma
by presenting a mixed-state prediction method wh
a reconstruction of mixing two time series was e
ployed. It is important to note that all these nonl
ear prediction based methods employ the same
of predictor (a zeroth-order predictor) which takes
mean or weighted mean as the prediction value. S
points in a given neighborhood come both from
past and the future of the reference point this kind
prediction does not account properly for the flow
time. Our idea differs from the previous methods
two main respects: (a) an linear regression predi
is employed for each local neighborhood and (b)
a consequence the flow of time is explicitly incorp
rated in the predictor which is an essential elemen
inferring causal relations in multiple time series [
A nonlinear approach that shares a number of sim
ities with ours has appeared in [5].

2. Theory

In this section we will first review the basic idea
Granger causality formulated for analyzing linear s
tems and then propose a generalization of Grang
idea to attractors reconstructed with delay coordina

2.1. Granger causality

The method of detecting causal relations amo
multiple linear time series is based on linear predict
theory. For a stationary time seriesx(t), consider
the following autoregressive (AR) prediction of th
current value ofx(t) based onm past measurements

(1)x(t) =
m∑

j=1

αj x(t − j) + εx(t).

Here εx(t) is the prediction error whose magnitu
can be evaluated by its variance var(εx(t)). Suppose
that simultaneously we have also acquired ano
stationary time seriesy(t). Consider the following
prediction of the current value ofx(t) based both on
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its own past values and the past values ofy(t):

(2)

x(t) =
m∑

j=1

ajx(t − j) +
m∑

j=1

bjy(t − j) + εx|y(t).

If the prediction improves by incorporating the pa
values ofy(t), that is, var(εx|y(t)) < var(εx(t)) in
some suitable sense, then we say thaty(t) has a causa
influence onx(t). Similarly, we may consider

(3)y(t) =
m∑

j=1

βjy(t − j) + εy(t),

(4)

y(t) =
m∑

j=1

cjx(t − j) +
m∑

j=1

djy(t − j) + εy|x(t),

and say thatx(t) has a causal influence ony(t) if
var(εy|x(t)) < var(εy(t)). We note that Eqs. (2) an
(4) together form the following vector autoregress
model (VAR):

x(t) =
m∑

j=1

ajx(t − j) +
m∑

j=1

bjy(t − j) + εx|y(t),

(5)

y(t) =
m∑

j=1

cjx(t − j) +
m∑

j=1

djy(t − j) + εy|x(t),

where standard techniques exist to estimate s
models from time series data.

2.2. Extended Granger causality

Consider two nonlinear time seriesx(t) andy(t).
The joint dynamics is reconstructed with the followi
delay vector [18,19]

(6)z(t) = (
x(t)T,y(t)T)T,

where

x(t) = (
x(t), x(t − τ1), . . . , x(t − (m1 − 1)τ1)

)T
,

y(t) = (
y(t), y(t − τ2), . . . , y(t − (m2 − 1)τ2)

)T
,

mi is embedding dimension andτi is time delay for
i = 1,2. Usually, the embedding dimensions and ti
delays for different series can be different. Howev
when we investigate Granger causality, the time de
must be equal so that causal inferences can be m
Hereafter we takeτ1 = τ2 = τ .
.

In the delay embedding space, there exists a fu
tion f that maps a given pointz(t) to its observed
imagez(t + τ ). Usually, this function has no know
analytical form but can be locally approximated
a linear map around some reference point [20,2
z(t + τ ) = Az(t) + r(t), where A is (m1 + m2) ×
(m1+m2) coefficient matrix which can be determine
by the least-squares technique andr(t) is the error vec-
tor. Substituting Eq. (6) in the above relations, we
the following equations:(

x(t + τ )

y(t + τ )

)
= A1

(
x(t)

y(t)

)
+ A2

(
x(t − τ )

y(t − τ )

)

+ · · · + Am

(
x(t − (m − 1)τ )

y(t − (m − 1)τ )

)

(7)+
(

εx|y
εy|x

)
,

where

Ai =
(

a
(i)
11 a

(i)
12

a
(i)
21 a

(i)
22

)
,

εx|y andεy|x are the error terms, and we have assum
m1 = m2 = m for simplicity. If m1 �= m2, some
diagonal terms ofAi would turn out to be zero.

We note that Eq. (7) is just another form of Eq. (
for non-unit time step. Therefore, in Eq. (7),εx|y (or
εy|x) actually gives the prediction error ofx (or y)
after incorporatingy (or x). To proceed further, we
also reconstruct each series independently around
x andy parts of the same reference point using lin
regression approximations to obtain

x(t + τ ) =
m1∑
j=1

αj x
[
t + (j − 1)τ

]+ εx,

(8)y(t + τ ) =
m2∑
j=1

βjy
[
t + (j − 1)τ

]+ εy.

We can now apply the ideas from Granger causa
to these local linear systems. Thus, if the ratio of
errors var(εx|y)/var(εx) (or var(εy|x)/var(εy)) is less
than 1, it impliesy (or x) has causal influence o
x (or y). So far, this procedure only involves da
in one local neighborhood around a given refere
point. Clearly, for nonlinear systems the coefficie
matrix in the linear approximation is a function
the local neighborhood. We repeat the process ab
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for a set of chosen neighborhoods scattered over
entire attractor and average the error ratios from
the neighborhoods to obtain the extended Gran
causality. See below for a more formal formulation

The idea above is actually very similar to oth
ideas of detecting directional interdependence ba
on nonlinear mutual prediction [9–17]. The differen
is that the previous work used the average or weigh
average value of the images of the points in a gi
neighbor as the basis for prediction. Thus they su
from the lacuna that points in the neighborhood of
reference point have no explicit time relations to
reference point itself. On the other hand, we emp
a linear model which preserves explicit time relatio
and are therefore able to derive unambiguous caus
relationships.

Summarizing, we propose the following four-st
procedure to evaluate causal relations between
nonlinear time series:

(1) Reconstruct the attractor using the delay coo
nate embedding technique [cf. Eq. (6)].

(2) Fit an autoregressive model for all the points
the neighborhoodΘ of a reference pointz0 in the
reconstructed spaceRm1+m2, whereΘ = {z: |z −
z0| � δ}.

(3) Perform the reconstruction and fitting process
the individualx and y time series in the sam
neighborhood and compute the error ratio defin
earlier. Average the error ratio over a number
local neighborhoods in order to sample the full
tractor adequately. Compute the extended Gran
causality index (EGCI) defined as∆y→x = 〈1 −
var(εx|y)/var(εx)〉, where〈 · 〉 stands for averagin
over the neighborhood sampling the entire attr
tor.

(4) Compute EGCI as a function of the neighborho
size δ. For linear systems this index will sta
roughly the same asδ becomes smaller. Fo
nonlinear systems this index, in the smallδ limit,
reveals the true nonlinear causal relation wh
may or may not be captured at the full attrac
level (i.e., takingδ to be the size of the whol
attractor).

To reconstruct the attractor, the embedding dim
sion and time delay have to be determined. Usu
the embedding dimension is determined by the fa
nearest neighbor technique [22] and the time dela
obtained as the first minimum of the mutual inform
tion function [23]. If the reconstructed attractor is
fixed point with some noise, then a criterion such
AIC [24] for linear stochastic processes can be use
determine the order of the model. A difficult issue f
the present work is to determine the optimal neighb
hood sizeδ. The number of points in the neighborho
should be large enough to establish good statistics
the other hand, the size of the neighborhood shoul
small enough so that linearization is valid. In step
above we seek a compromise by examining the EG
as a function ofδ in the attempt to get to the true no
linear effect whenδ becomes small enough. We r
fer to this step as a zooming-in procedure. For su
ciently large dataset, the usual rule is that, the sma
the neighborhood size, the better the nonlinear pre
tion achieved [14,15,17].

2.3. Conditional extended Granger causality

The above analysis for two time series can
extended to more than two time series by analyz
them pairwise. However, pairwise analysis of mo
than two time series cannot detect indirect cau
influences, an issue that has been addressed in l
time series analysis [25]. For example, consider th
time series A, B and C. Two possible causal relati
among them are shown in Fig. 1(a) and (b).
Fig. 1(a), the causal influence or driving from A to
is indirect and mediated by B. In Fig. 1(b), both dire
and indirect influences exist. Pairwise analysis wo
show an arrow from A to C and thus cannot sepa
these two cases. We propose the following proced
for the case of three time series which, as we show
the next section, is able to reveal the true pattern
causal interactions.

SupposesA(t), sB(t), sC(t) are the given three tim
series, we reconstruct vectorz in whole space as [19]

(9)z(t) = (
sA(t)T, sB(t)T, sC(t)T)T,

where

sA(t) = (
sA(t), sA(t − τ ), . . . , sA(t − (m1 − 1)τ )

)T
,

sB(t) = (
sB(t), sB(t − τ ), . . . , sB(t − (m2 − 1)τ )

)T
,

sC(t)T = (
sC(t), sC(t − τ ), . . . , sC(t − (m3 − 1)τ )

)T
.
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Fig. 1. Two patterns of causal interactions. (a) A drives C by wa
B and (b) there is a direct pathway from A to C.

Then the vector autoregression obtained from a lo
linear approximation is given by

sA(t + τ ) =
m1∑
i=1

a
(i)
11sA

[
t − (i − 1)τ

]

+
m2∑
i=1

a
(i)
12sB

[
t − (i − 1)τ

]

+
m3∑
i=1

a
(i)
13sC

[
t − (i − 1)τ

]+ εA|BC,

sB(t + τ ) =
m1∑
i=1

a
(i)
21sA

[
t − (i − 1)τ

]

+
m2∑
i=1

a
(i)
22sB

[
t − (i − 1)τ

]

+
m3∑
i=1

a
(i)
23sC

[
t − (i − 1)τ

]+ εB|AC,
sC(t + τ ) =
m1∑
i=1

a
(i)
31sA

[
t − (i − 1)τ

]

+
m2∑
i=1

a
(i)
32sB

[
t − (i − 1)τ

]

(10)

+
m3∑
i=1

a
(i)
33sC

[
t − (i − 1)τ

]+ εC|AB.

The termεC|AB is the prediction error of the seriessC

after incorporating bothsA andsB . If this prediction is
no better than the prediction obtained by incorpora
only the seriessB , it meanssA has no direct causa
influence onsC . Therefore we can define a condition
extended Granger causality index (CEGCI) as

∆A→C|B =
〈
1− var(εC|AB)

var(εC|B)

〉
.

This can be used to distinguish between direct
indirect causal relations. Conditional causality indic
between other time series pairs can be simila
defined.

It is worth mentioning that for more than three tim
series, if the causality between any two time se
is indirect, then taking one additional series or m
than one additional series in the causality chain
the conditional one(s) will not make the results a
different. Therefore, analysis of three time series
sufficient to detect the intrinsic causal influences
any multiple time series system.

3. Numerical simulations and discussion

In order to make the whole discussion concrete,
study some examples. The number of reference po
around the attractor is 100 for all the examples.

Example 1. Let us consider two time series genera
from unidirectionally coupled 2D maps. Two diffe
ent coupling schemes, one linear and one nonlin
are examined. The system with linear coupling is w
ten as

x(n) = 3.4x(n − 1)
(
1− x2(n − 1)

)
e−x2(n−1)

+ 0.8x(n− 2),

y(n) = 3.4y(n − 1)
(
1− y2(n − 1)

)
e−y2(n−1)

(11)+ 0.5y(n− 2) + cx(n − 2),
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Fig. 2. Reconstructed attractors from time series from Example 1. (a) Driving attractor; (b) linearly driven attractor; (c) nonlinearl
attractor.
tem
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and the system with nonlinear coupling is

x(n) = 3.4x(n − 1)
(
1− x2(n − 1)

)
e−x2(n−1)

+ 0.8x(n − 2),

y(n) = 3.4y(n − 1)
(
1− y2(n − 1)

)
e−y2(n−1)

(12)+ 0.5y(n − 2) + cx2(n − 2).

It is obvious thaty is driven byx in both systems. In
order to make the simulations realistic, some sys
noise and measurement noise are added to the
series. The attractor reconstructed from thex time
series is given in Fig. 2(a). Fig. 2(b) and (c) gi
the reconstructed attractors from they time series
driven linearly and nonlinearly byx with the coupling
strengthc = 0.5.

Both these cases are analyzed using our proce
in the previous section withm = 2 andτ = 1. We ob-
tain the EGCI as a function of the neighborhood s
δ in Fig. 3. For both linear driving [Fig. 3(a)] and no
linear driving [Fig. 3(b)],∆y→x (shown as the thicke
curve) is seen to be zero. Thusx is not influenced by
y as expected from the construction of our model
Fig. 3(a),∆x→y is non-zero starting from large neig
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Fig. 3. Extended Granger causality index (EGCI) as a function
the sizeδ of the neighborhood from Example 1. (a) Linear drivin
case; (b) nonlinear driving case.

borhood sizesδ and increases asδ decreases. This im
plies thatx has a causal influence on or drivesy. Fur-
ther, since∆x→y is non-zero even for largeδ values,
this means that even a linear causality analysis wo
have detected the correct causal relations in this c
On the other hand, in Fig. 3(b) (for nonlinear driving
∆x→y becomes non-zero only whenδ is sufficiently
small. In this case, a linear causality analysis wo
fail to detect the correct pattern of driving. This e
ample illustrates the importance of nonlinear causa
analysis in such cases.
.

Example 2. We consider two time series generated
two coupled two-dimensional ODEs where the fix
point in the origin is stable:

ẋ1 = −0.25x1 + x2 − x3
2,

ẋ2 = x1 − x2 − x1x2,

ẏ1 = −0.25y1 + y2 − y3
2 + cx2

1,

(13)ẏ2 = y1 − y2 − y1y2.

Adding some system noise and measurement n
and takingx1 andy1 as the acquired signals, we g
two modified time seriesx andy. Clearly in this case
x series drivesy series. Reconstructing the attracto
from these two time series withτ = 2, finding the
neighborhood of every reference point and fitting
second order AR model (m = 2) in every neighbor-
hood, we obtain the extended Granger causality in
(EGCI) as a function of the neighborhood sizeδ for
different coupling strengths as shown in Fig. 4(a).
make three observations. First,∆y→x ≈ 0, whereas
∆x→y is non-zero, clearly demonstrating that thex se-
ries drives they series but not vice-versa. Second,
level of EGCI is proportional to the coupling streng
Third, since the processes here are linear, the EGC
not a function ofδ.

Example 3. Next we look at an ODE system e
hibiting chaotic behaviors. The following two couple
Rössler oscillators are considered:

ẋ1 = −(y1 + z1),

ẏ1 = x1 + 0.2y1,

ż1 = 0.2+ z1(x1 − 4.7),

ẋ2 = −(y2 + z2) + cx1,

ẏ2 = x2 + 0.2y2,

(14)ż2 = 0.2+ z2(x2 − 4.7).

As done earlier, some system noise and meas
ment noise are added to the two time seriesx1 andx2
to obtainx andy time series. Reconstructing the a
tractors withm = 3 andτ = 2 and fitting linear models
in every local neighborhood, we obtain EGCI sho
in Fig. 4(b). It is seen thatx has a causal influenc
on y as expected. Besides,∆x→y is non-zero even
for large neighborhood sizes. Thus, a linear causa
analysis would detect the correct causal relation
this strongly nonlinear system.



Y. Chen et al. / Physics Letters A 324 (2004) 26–35 33

. (a)
(b)

rn
in
ear

ee

ee
; (b)

line
) for

led
(a)

(b)

Fig. 4. EGCI between two time series from Examples 2 and 3
ODEs with a stable fixed point and different coupling strengths;
ODEs with chaotic behavior.

Example 4. To show how to distinguish the patte
of interaction shown in Fig. 1(b) from that shown
Fig. 1(a), let us consider three time series. Both lin
systems and nonlinear systems are considered.

For a linear stochastic system the following thr
coupled AR(1) models are considered:

x(n) = 0.2x(n − 1) + ε1,

y(n) = 0.5y(n − 1) + 0.5x(n− 1) + ε2,

z(n) = 0.4z(n − 1) + 0.3y(n − 1)

(15)+ cx(n − 1) + ε3.
(a)

(b)

Fig. 5. Simulating two patterns of interactions in Fig. 1 with thr
coupled AR models (Example 4). (a) Pairwise analysis results
Conditional causality analysis separates the two cases. Dotted
gives the conditional extended Granger causality index (CEGCI
c = 0.5 and the solid line forc = 0.

For chaotic time series, the following three coup
1d maps are considered:

x(n) = 3.4x(n − 1)
(
1− x2(n − 1)

)
e−x2(n−1),

y(n) = 3.4y(n − 1)
(
1− y2(n − 1)

)
e−y2(n−1)

+ 0.5x(n− 1),

z(n) = 3.4z(n − 1)
(
1− z2(n − 1)

)
e−z2(n−1)

(16)+ 0.3y(n − 1) + cx(n − 1).
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Fig. 6. Simulating two patterns of interactions in Fig. 1 with thr
coupled chaotic 1d-maps (Example 4). (a) Pairwise analysis res
the two patterns of interaction are not distinguished; (b) CEG
analysis is able to distinguish between the two different patte
Dotted line gives the CEGCI forc = 0.5 and the solid line forc = 0.

Herex, y andz correspond to A, B and C in Fig. 1
In addition,c = 0 simulates the indirect causality ca
(Fig. 1(a)) andc = 0.5 simulates the direct causali
case (Fig. 1(b)).

Numerical results for the linear case are sho
in Fig. 5 and results for the chaotic time series
shown in Fig. 6. Figs. 5(a) and 6(a) display resu
obtained using pairwise analysis. Similar plots
obtained for bothc = 0 andc = 0.5. As we can see
based on just pairwise analysis, one would concl
that Fig. 1(b) is the pattern of interaction for bo
c = 0 and c = 0.5. That is, the direct and indirec
causal relationships cannot be separated by pair
analysis alone. Figs. 5(b) and 6(b) give the res
obtained by simultaneously analyzing all three ti
series using conditional EGCI. In this case, forc = 0
we obtain∆x→z|y ≈ 0 (solid curve) indicating that n
direct causal relation exists betweenx andz. Thus the
correct causality graph [Fig. 1(a)] is obtained. On
other hand, forc = 0.5, ∆x→z|y is non-zero (dotted
curve) indicating direct causality betweenx andz and
the causality graph shown in Fig. 1(b) is obtained.

4. Conclusions

We have extended the Granger causality theor
nonlinear time series by incorporating the embedd
reconstruction technique for multivariate time seri
A four-step algorithm was presented and used
analyze various linear and nonlinear coupled syste
The following conclusions were found:

(1) Linear Granger causality analysis may or may
work for nonlinear time series. On the other ha
our method of applying the extended Grang
causality index to nonlinear time series alwa
gives reliable results.

(2) When three or more time series have to be a
lyzed, the conditional extended Granger causa
index proposed here can distinguish between
rect and indirect causal relationships between
two of the time series. This is not possible usi
simple pairwise analysis.

As with other methods for analyzing nonline
time series, the amount of data required for relia
analysis can be large. Possible improvements a
this direction are being studied.
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