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Abstract

Identifying causal relations among simultaneously acquired signals is an important problem in multivariate time series
analysis. For linear stochastic systems Granger proposed a simple procedure called the Granger causality to detect such relations
In this work we consider nonlinear extensions of Granger’s idea and refer to the result as extended Granger causality. A simple
approach implementing the extended Granger causality is presented and applied to multiple chaotic time series and other types
of nonlinear signals. In addition, for situations with three or more time series we propose a conditional extended Granger
causality measure that enables us to determine whether the causal relation between two signals is direct or mediated by anothe
process.
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1. Introduction different elements of nonlinear systems. In particular,
identifying causal relations among signals is important
Given the deluge of multi-channel data generated in fields ranging from physics to biology to economics.
by experiments in both science and engineering, the One approach to evaluating causal relations between
role of multivariate time series analysis, especially two time series is to examine if the prediction of one
nonlinear time series processing, has become crucialseries could be improved by incorporating information
in understanding the patterns of interaction among of the other. This was originally proposed by Wiener
[1] and later formalized by Granger in the context of
rE— . linear regression models of stochastic processes [2].
e vacos e (v crey, SPeciically if he variance of he predicion ertor of
rangaraj@math.iisc.ernet.in (G. Rangarajan), the second time series at the present time is reduced
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series in the linear regression model, then the first time Y is adopted. These methods tend to detect strong in-
series is said to have a causal influence on the seconderactions such as synchronization, phase synchroniza-
time series. The roles of the two time series can be tion or generalized synchronization. In order to de-
reversed to address the question of causal influencetect weak interactions, a modification [17] was made
in the opposite direction. From this definition it is by presenting a mixed-state prediction method where
clear that the flow of time plays a vital role in making a reconstruction of mixing two time series was em-
direction related inference from time series data. ployed. It is important to note that all these nonlin-
Since Granger causality was formulated for lin- ear prediction based methods employ the same kind
ear models, its direct application to nonlinear systems of predictor (a zeroth-order predictor) which takes the
may or may not be appropriate, depending on the mean or weighted mean as the prediction value. Since
specific problem. In some cases, the linear Granger points in a given neighborhood come both from the
causality is able to identify the correct patterns of past and the future of the reference point this kind of
interaction for multiple nonlinear time series, but in prediction does not account properly for the flow of
some other cases, as will be shown later in this pa- time. Our idea differs from the previous methods in
per, it fails to do so. We deal with this issue by ex- two main respects: (a) an linear regression predictor
tending Granger’'s idea to nonlinear problems. Our is employed for each local neighborhood and (b) as
starting point is the standard delay embedding re- a consequence the flow of time is explicitly incorpo-
construction of the phase space attractors. Clearly, rated in the predictor which is an essential element of
a full description of a given attractor requires a nonlin- inferring causal relations in multiple time series [2].
ear set of equations. But, locally, one can approximate A nonlinear approach that shares a number of similar-
the dynamics linearly. Applying Granger's causality ities with ours has appeared in [5].
idea to each local neighborhood and averaging the re-
sulting statistical quantity over the entire attractor re-
sults in extended Granger causality index (EGCI). We Theory
examine the effectiveness of this idea on numerically

generated nonlinear time series with known patterns of ] ] o ] o
interaction. In this section we will first review the basic idea of

Works related to the identification of interdepen- Granger causality formulated for analyzing linear sys-

dence in nonlinear systems have appeared in the lit- ©€Ms and then propose a generalization of Granger's
erature [3-7]. Particularly relevant for the work in this idea to attractors reconstructed with delay coordinates.

paper are works based on delay coordinate embedding
reconstruction of phase space. Along this direction a 2.1. Granger causality
number of methods of detecting nonlinear interdepen-

dence or coupling b_ased on nonlinear prediction the- 114 method of detecting causal relations among
ory have appeared in the past few years [8-17]. The  isiple [inear time series is based on linear prediction
basic ideas in thgse papers are S|m|Iar,.aII involving theory. For a stationary time seriesr), consider
the use of the points in a neighborhood in the recon- yo to)10wing autoregressive (AR) prediction of the

structed sp_ace_to_predict fu_ture dynamica_l be_havior. current value of () based onn past measurements:
In [9-16], time indices of neighborhood points in the

spaceX reconstructed from one time seriegre used m

to predict the dynamics in spa¥ereconstructed from ;) — Z“/x(’ — ) +ex(0). (1)
the second time seriesg. If this prediction is good
enough, then it implies a dependence framo y.
Similarly, the reverse dependence can be found. Dif- Here ¢, (¢) is the prediction error whose magnitude
ferent authors define different criteria to quantify the can be evaluated by its variance gKr)). Suppose
goodness of the prediction, but the common assump-that simultaneously we have also acquired another
tion that nearby points in one reconstructed spdce stationary time series (). Consider the following
map to nearby points in another reconstructed spaceprediction of the current value of(¢) based both on

j=1
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its own past values and the past values @j: In the delay embedding space, there exists a func-

m m tion f that maps a given poirt(z) to its observed
x(t) = Zajx(f — D+ ijy(, — )+ Exy(0). imagez(t + ). Usually, this function has no known

o ) ’ analytical form but can be locally approximated by

(2) a linear map around some reference point [20,21]:

If the prediction improves by incorporating the past 2(r + 7) = Az(1) 4+ r(z), whereA is (my + m2) x
values of y(r), that is, vate,|y(r)) < var(e,(t)) in (m1+m2) coefﬁmentmatrl)_(whlch can be determined
some suitable sense, then we say i@t has acausal by the least-squares technique and is the error vec-
influence onx (7). Similarly, we may consider tor. Substituting Eq. (6) in the above relations, we get

m the following equations:
YO =Y Byt — )+, 3) (x(tw) . (x(t)) A (x(t _f>)

j=1 yit+1)) ! y() 2 y(it—r1)

= R . x(t — (m— 1)
v =Y epxte— )+ Y diye — )+ ey, +-~-+Am( )

; ' ; ' " y( —(m—1r)

(4) Ex|y (7)
and say thatc(r) has a causal influence oy() if Eyix )
var(ey|x (1)) < var(ey(t)). We note that Egs. (2) and Where
(4) together form the following vector autoregressive 0 0
model (VAR): (alll a1l2>
Ll UNOREON &
dp1 422

X)) =) ajx(t— )+ bjyt—j)+exy(0),

ex|y andey, are the error terms, and we have assumed

-y —
'/m jm m1 = mp = m for simplicity. If m1 # mp, some
. . diagonal terms of\; would turn out to be zero.
t) = cix(t—j)+ diy(t —j)+ ey (), ! e
Y ; =) ; (=) &) We note that Eq. (7) is just another form of Eq. (5)
(5) for non-unit time step. Therefore, in Eq. (&), (or
where standard techniques exist to estimate suchéylx) actually gives the prediction error af (or y)
models from time series data. after incorporatingy (or x). To proceed further, we
also reconstruct each series independently around the
2.2. Extended Granger causality x andy parts of the same reference point using linear
regression approximations to obtain
Consider two nonlinear time seriass) and y(z). m1
The jointdynamics is reconstructed with the following  x (s 4 7) = Z“-/"[’ +(j— 1)f] + &y,
delay vector [18,19] =1
T mo
2()=(x",y»")", 6 .
( y ) ©) y(l+f)=2,3jy[l+(]—1)‘[]+8y. (8)
where i1
X(t) = (x @, x(t—11),...,x({— (m1— 1)r1))T, We can now apply the ideas from Granger causality

T to these local linear systems. Thus, if the ratio of the
YO = (@), y(t =),y = (m2 = Dr2)) errors vafey|y)/Var(e,) (Or var(e,;)/var(e,)) is less

m; is embedding dimension angl is time delay for than 1, it impliesy (or x) has causal influence on

i =1, 2. Usually, the embedding dimensions and time x (or y). So far, this procedure only involves data
delays for different series can be different. However, in one local neighborhood around a given reference
when we investigate Granger causality, the time delays point. Clearly, for nonlinear systems the coefficient
must be equal so that causal inferences can be madematrix in the linear approximation is a function of
Hereafter we take; = 1o = 7. the local neighborhood. We repeat the process above
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for a set of chosen neighborhoods scattered over thenearest neighbor technique [22] and the time delay is
entire attractor and average the error ratios from all obtained as the first minimum of the mutual informa-
the neighborhoods to obtain the extended Grangertion function [23]. If the reconstructed attractor is a
causality. See below for a more formal formulation.  fixed point with some noise, then a criterion such as
The idea above is actually very similar to other AIC [24] for linear stochastic processes can be used to
ideas of detecting directional interdependence baseddetermine the order of the model. A difficult issue for
on nonlinear mutual prediction [9-17]. The difference the present work is to determine the optimal neighbor-
is that the previous work used the average or weighted hood sizes. The number of points in the neighborhood
average value of the images of the points in a given should be large enough to establish good statistics. On
neighbor as the basis for prediction. Thus they suffer the other hand, the size of the neighborhood should be
from the lacuna that points in the neighborhood of the small enough so that linearization is valid. In step (4)
reference point have no explicit time relations to the above we seek a compromise by examining the EGCI
reference point itself. On the other hand, we employ as a function of in the attempt to get to the true non-
a linear model which preserves explicit time relations linear effect whens becomes small enough. We re-
and are therefore able to derive unambiguous causalityfer to this step as a zooming-in procedure. For suffi-
relationships. ciently large dataset, the usual rule is that, the smaller
Summarizing, we propose the following four-step the neighborhood size, the better the nonlinear predic-
procedure to evaluate causal relations between two tion achieved [14,15,17].
nonlinear time series:
2.3. Conditional extended Granger causality
(1) Reconstruct the attractor using the delay coordi-
nate embedding technique [cf. Eq. (6)]. The above analysis for two time series can be
(2) Fit an autoregressive model for all the points in extended to more than two time series by analyzing
the neighborhood of a reference poirdp inthe  them pairwise. However, pairwise analysis of more
reconstructed spad®”1*"'2, where® = {z: |z - than two time series cannot detect indirect causal
Zp| < 4}, influences, an issue that has been addressed in linear
(3) Perform the reconstruction and fitting process on time series analysis [25]. For example, consider three
the individualx and y time series in the same  time series A, B and C. Two possible causal relations
neighborhood and compute the error ratio defined among them are shown in Fig. 1(a) and (b). In
earlier. Average the error ratio over a number of Fig. 1(a), the causal influence or driving from A to C
local neighborhoods in order to sample the full at- s jndirect and mediated by B. In Fig. 1(b), both direct
tractor adequately. Compute the extended Granger and indirect influences exist. Pairwise analysis would
causality index (EGCI) defined as, ., = (1 — show an arrow from A to C and thus cannot separate
var(ey|y)/var(ex)), where(-) stands foraveraging  these two cases. We propose the following procedure
over the neighborhood sampling the entire attrac- for the case of three time series which, as we show in

tor. . . the next section, is able to reveal the true patterns of
(4) Compute EGCI as a function of the neighborhood ¢ausal interactions.
size 8. For linear systems this index will stay SupposeA (1), sg(t), sc(t) are the given three time

roughly the same as becomes smaller. For  series, we reconstruct vectoin whole space as [19]
nonlinear systems this index, in the smallmit,

reveals the true nonlinear causal relation which z(r) = (s 07, ss®)T, sc(t)T)T, (9)
may or may not be captured at the full attractor
level (i.e., takingé to be the size of the whole
attractor).

where

Sa(1) = (sa(t), st —T), ..., 540 — (m1 — D))",

To reconstruct the attractor, the embedding dimen- s () = (SB(;), sg(t—=1),...,55(t — (m2 — 1)f))T,
sion and time delay have to be determined. Usually T
the embedding dimension is determined by the false sc)T = (sc(t),sc(t = 1), ....50( — (m3 = D)) .



30

(b)

Fig. 1. Two patterns of causal interactions. (a) A drives C by way of
B and (b) there is a direct pathway from Ato C.
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sc(t+1)= Zaé’l)sA t— (i — D]

+ Zaélz)slg t—(@—1r]

—I—Zaél?zsC t— (i —l)t]+€c|AB.

(10)
The termec|a is the prediction error of the serieg
after incorporating bote, andsg. If this prediction is
no better than the prediction obtained by incorporating
only the seriessg, it meanss, has no direct causal
influence orsc. Therefore we can define a conditional
extended Granger causality index (CEGCI) as

Var(8CAB)>
Var(8c|3)

This can be used to distinguish between direct and
indirect causal relations. Conditional causality indices
between other time series pairs can be similarly
defined.

It is worth mentioning that for more than three time

series, if the causality between any two time series
is indirect, then taking one additional series or more

Ap—c|B= <1 -

Then the vector autoregression obtained from a local than one additional series in the causality chain as

linear approximation is given by

mq

satt+1)=Y afisa[t — (i — 1]

i=1

+ Zai’z)slg t—(@i—1r]

+ Zagsc t— (@ —Dt]+easc,
sB(t+r)_Zagl)sA (i — D]

+ Zag’z’sg t— (i — D]

+ ZagSc [t — (i —D1] +¢Bjac.

the conditional one(s) will not make the results any
different. Therefore, analysis of three time series is
sufficient to detect the intrinsic causal influences in
any multiple time series system.

3. Numerical smulations and discussion

In order to make the whole discussion concrete, we
study some examples. The number of reference points
around the attractor is 100 for all the examples.

Example 1. Let us consider two time series generated
from unidirectionally coupled 2D maps. Two differ-
ent coupling schemes, one linear and one nonlinear,
are examined. The system with linear coupling is writ-
ten as

x(n)=34x(n — (1 —x*(n — 1))e—x2(n—l)
+0.8x(n —2),

34y(n — D(1— y2(n — D) "D
+0.5y(n—2) +cx(n—2),

y(n) =
(11)



Y. Chen et al. / Physics Letters A 324 (2004) 26-35 31

. x{n-1)
~y(n-1)

y(n)
©

Fig. 2. Reconstructed attractors from time series from Example 1. (a) Driving attractor; (b) linearly driven attractor; (c) nonlinearly driven
attractor.

and the system with nonlinear coupling is series is given in Fig. 2(a). Fig. 2(b) and (c) give
) the reconstructed attractors from thetime series
x(n)=34x(n — 1)(1 — xz(n - 1))e*x (n—1) driven linearly and nonlinearly by with the coupling
_ strengthc = 0.5.
+08x(n -2, ) Both these cases are analyzed using our procedure
y(n)=34y(n—1)(1— y?(n — 1))e~> "7 in the previous section withh = 2 andr = 1. We ob-
+05y(n—2) + ex2(n — 2) (12) tain the EGCI as a function of the neighborhood size

8 in Fig. 3. For both linear driving [Fig. 3(a)] and non-
It is obvious thaty is driven byx in both systems. In  linear driving [Fig. 3(b)],A,— » (shown as the thicker
order to make the simulations realistic, some system curve) is seen to be zero. Thuds not influenced by
noise and measurement noise are added to the timey as expected from the construction of our model. In
series. The attractor reconstructed from theime Fig. 3(a),A. is non-zero starting from large neigh-
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Fig. 3. Extended Granger causality index (EGCI) as a function of
the sizes of the neighborhood from Example 1. (a) Linear driving
case; (b) nonlinear driving case.

borhood sizes and increases asdecreases. This im-
plies thatx has a causal influence on or drives-ur-
ther, sinceA,_, , is non-zero even for largé values,

Y. Chen et al. / Physics Letters A 324 (2004) 26-35

Example 2. We consider two time series generated by
two coupled two-dimensional ODEs where the fixed
point in the origin is stable:

%1 = —0.25x1 + x2 — x3,

X2 = X1 — X2 — X1X2,

J1=—0.25y1 4 y2 — y3 + cxf,

Y2=Y1— Y2 — y1y2. (13)
Adding some system noise and measurement noise
and takingx1 andy; as the acquired signals, we get
two modified time series andy. Clearly in this case

x series drivey series. Reconstructing the attractors
from these two time series with = 2, finding the
neighborhood of every reference point and fitting a
second order AR modeh{ = 2) in every neighbor-
hood, we obtain the extended Granger causality index
(EGCI) as a function of the neighborhood sizéor
different coupling strengths as shown in Fig. 4(a). We
make three observations. Firsh,,_,, ~ 0, whereas
A,y is non-zero, clearly demonstrating that thee-

ries drives they series but not vice-versa. Second, the
level of EGCI is proportional to the coupling strength.
Third, since the processes here are linear, the EGCl is
not a function o®.

Example 3. Next we look at an ODE system ex-
hibiting chaotic behaviors. The following two coupled
Rossler oscillators are considered:

x1=—(y1+2z1),

y1=x1+ 0.2y1,

21 =024 z1(x1 —4.7),

X2 =—(y2+2z2) +cx1,

y2 =x2+0.2y2,

22=02+z2(x2—4.7). (14)

As done earlier, some system noise and measure-
ment noise are added to the two time sexesandx;

this means that even a linear causality analysis would to obtainx andy time series. Reconstructing the at-
have detected the correct causal relations in this case tractors withn = 3 andr = 2 and fitting linear models

On the other hand, in Fig. 3(b) (for nonlinear driving),
A, becomes non-zero only whéenis sufficiently

in every local neighborhood, we obtain EGCI shown
in Fig. 4(b). It is seen that has a causal influence

small. In this case, a linear causality analysis would on y as expected. Besides\,_,, is non-zero even

fail to detect the correct pattern of driving. This ex-

for large neighborhood sizes. Thus, a linear causality

ample illustrates the importance of nonlinear causality analysis would detect the correct causal relations in

analysis in such cases.

this strongly nonlinear system.
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Fig. 4. EGCI between two time series from Examples 2 and 3. (a)
ODEs with a stable fixed point and different coupling strengths; (b)

ODEs with chaotic behavior.

Example 4. To show how to distinguish the pattern
of interaction shown in Fig. 1(b) from that shown in
Fig. 1(a), let us consider three time series. Both linear

02

systems and nonlinear systems are considered.

For a linear stochastic system the following three

coupled AR(1) models are considered:

x(n)=02x(n — 1) + &1,

y(n)=0.5y(n —1)+0.5x(n — 1) + &2,

z(n) =0.4z(n — 1)+ 0.3y(n — 1)
+cx(n—1) +e3.

(15)
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Fig. 5. Simulating two patterns of interactions in Fig. 1 with three
coupled AR models (Example 4). (a) Pairwise analysis results; (b)
Conditional causality analysis separates the two cases. Dotted line
gives the conditional extended Granger causality index (CEGCI) for

¢ =0.5 and the solid line for = 0.

For chaotic time series, the following three coupled

1d maps are considered:

x(n)=34x(n—1)(1— x2(n — 1))e—x2(n—l)’

y(n) =3.4y(n — (1= y2(n — 1)) D
+0.5x(n—1),

2(n) =3.4z(n — D(1— 2%(n — 1))efz2(n71)
+0.3y(n — 1) 4 cx(n — 1).

(16)
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Fig. 6. Simulating two patterns of interactions in Fig. 1 with three
coupled chaotic 1d-maps (Example 4). (a) Pairwise analysis results,
the two patterns of interaction are not distinguished; (b) CEGCI
analysis is able to distinguish between the two different patterns.
Dotted line gives the CEGCI far= 0.5 and the solid line for = 0.

Herex, y andz correspond to A, B and C in Fig. 1.
In addition,c = 0 simulates the indirect causality case
(Fig. 1(a)) andc = 0.5 simulates the direct causality
case (Fig. 1(b)).

Numerical results for the linear case are shown
in Fig. 5 and results for the chaotic time series are
shown in Fig. 6. Figs. 5(a) and 6(a) display results
obtained using pairwise analysis. Similar plots are
obtained for bothr = 0 andc = 0.5. As we can see,

Y. Chen et al. / Physics Letters A 324 (2004) 26-35

that Fig. 1(b) is the pattern of interaction for both
¢ =0 andc = 0.5. That is, the direct and indirect
causal relationships cannot be separated by pairwise
analysis alone. Figs. 5(b) and 6(b) give the results
obtained by simultaneously analyzing all three time
series using conditional EGCI. In this case, ot 0

we obtainA,_. |, ~ 0 (solid curve) indicating that no
direct causal relation exists betweemandz. Thus the
correct causality graph [Fig. 1(a)] is obtained. On the
other hand, for = 0.5, A,_, |, is non-zero (dotted
curve) indicating direct causality betweerandz and

the causality graph shown in Fig. 1(b) is obtained.

4. Conclusions

We have extended the Granger causality theory to
nonlinear time series by incorporating the embedding
reconstruction technique for multivariate time series.
A four-step algorithm was presented and used to
analyze various linear and nonlinear coupled systems.
The following conclusions were found:

(1) Linear Granger causality analysis may or may not
work for nonlinear time series. On the other hand,

our method of applying the extended Granger

causality index to nonlinear time series always

gives reliable results.

When three or more time series have to be ana-
lyzed, the conditional extended Granger causality
index proposed here can distinguish between di-
rect and indirect causal relationships between any
two of the time series. This is not possible using

simple pairwise analysis.

)

As with other methods for analyzing nonlinear
time series, the amount of data required for reliable
analysis can be large. Possible improvements along
this direction are being studied.
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