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Abstract

In order to perform numerical studies of long-term stability in nonlinear Hamiltonian systems, one needs a numerical
integration algorithm which is symplectic. Further, this algorithm should be fast and accurate. In this Letter, we propose such
a symplectic integration algorithm using polynomial map refactorization of the symplectic map representing the Hamiltonian
system. This method should be particularly useful in long-term stability studies of particle storage rings in accelerators. 2001
Elsevier Science B.V. All rights reserved.

PACS: 29.20.Dh; 41.85.Ja; 05.45.-a; 02.20.-a

1. Introduction

Long-term single particle stability studies of parti-
cle storage rings play an important role in the design
of accelerators [1]. These storage rings are generally
described by nonlinear, nonintegrable Hamiltonians.
Therefore analytical results on long-term stability of
particle motion in such storage rings are difficult to ob-
tain. By default, numerical integration of particle tra-
jectories is the primary tool used to explore the dy-
namics of these systems. However, standard numeri-
cal integration algorithms cannot be used since they
are not symplectic [2]. This violation of the symplec-
tic condition can lead to spurious chaotic or dissipa-
tive behavior. Numerical integration algorithms which
satisfy the symplectic condition are called symplectic
integration algorithms [3].
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Several symplectic integration algorithms have been
proposed in the literature [4]. Some of these directly
use the Hamiltonian whereas others use the symplectic
map [2] representing either the entire storage ring (in
which case one obtains the so-called one-turn map) or
major segments of the ring. For complicated systems
like the Large Hadron Collider which has thousands
of elements, using individual Hamiltonians for each
element can drastically slow down the integration
process. On the other hand, the map based approach
is very fast in such cases [5]. Further, if nonlinearities
in the symplectic map are too “large”, one can use
scaling and squaring techniques [6] to alleviate the
problem.

One class of the map-based methods uses jolt factor-
ization [7,8]. But there are still unanswered questions
on how to best choose the underlying group and ele-
ments in the group [9]. Further, some of these meth-
ods [8] can be quite difficult to generalize to higher
dimensions. Another class of methods uses solvable
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maps [10] or monomial maps [11]. Even though they
are fairly straightforward to generalize to higher di-
mensions, they tend to introduce spurious poles and
branch points not present in the original map [9].

In this Letter, we propose a new symplectic inte-
gration method where the symplectic map is refac-
torized using “polynomial maps” (maps whose action
on phase space variables gives rise to polynomials).
This does not introduce spurious poles and branch
points. Moreover, it is easy to generalize to higher di-
mensions. In this Letter, we restrict ourselves to maps
in six-dimensional phase space which are appropriate
for single particle stability studies. We show that the
method gives good results. Further, since it is map-
based, it is also very fast.

2. Preliminaries

We start by representing a Hamiltonian system by
a symplectic map [2]. For simplicity we restrict our-
selves to a six-dimensional phase space. Let us de-
note the collection of six phase-space variablesqi,pi

(i = 1,2,3) by the symbolz:

(1)z = (q1, q2, q3,p1,p2,p3).

The Lie operator [2] corresponding to a phase-space
functionf (z) is denoted by:f (z):. It is defined by its
action on a phase-space functiong(z) as shown below:

(2):f (z):g(z) = [
f (z), g(z)

]
.

Here [f (z), g(z)] denotes the usual Poisson bracket
of the functionsf (z) and g(z). Next, we define the
exponential of a Lie operator. It is called a Lie trans-
formation [2] and is given as follows:

(3)e:f (z): =
∞∑

n=0

:f (z):n
n! .

The effect of a Hamiltonian system on a particle can
be formally expressed as the action of a mapM that
takes the particle from its initial statezin to its final
statezfin:

(4)zfin =Mzin.

It can be shown thatM is a symplectic map [2].
Consider its Jacobian matrix which we denote byM.
Symplectic maps are maps whose Jacobian matrices

M satisfy the following “symplectic condition”:

(5)M̃JM = J,

whereM̃ is the transpose ofM andJ is the fundamen-
tal symplectic matrix.

Using the Dragt–Finn factorization theorem [2,12],
the symplectic mapM can be factorized as shown
below:

(6)M = M̂e:f3:e:f4: . . . e:fn: . . . .

Herefn(z) denotes a homogeneous polynomial (inz)
of degreen uniquely determined by the factorization
theorem. FurtherM̂ gives the linear part of the map
and hence has an equivalent representation in terms of
the Jacobian matrixM of the mapM [2]:

(7)M̂zi = Mij zj = (Mz)i.

The infinite product of Lie transformations exp(:fn:)
(n = 3,4, . . .) in Eq. (6) represents the nonlinear part
of M.

Using the above procedure, one can represent each
element in the storage ring by a symplectic map.
By concatenating [2] these maps together, we obtain
the so-called “one-turn” map representing the entire
storage ring. This concatenation is made possible by
the Campbell–Baker–Hausdorff (CBH) theorem [13].
The one-turn map gives the final statez(1) of a particle
after one turn around the ring as a function of its initial
statez(0):

(8)z(1) =Mz(0).

To obtain the state of a particle afterN turns, one has
to merely iterate the above mappingN times, i.e.,

(9)z(N) =Mnz(0).

SinceM is explicitly symplectic, this gives a sym-
plectic integration algorithm. Further, since the entire
ring can be represented by a single (or at most a few)
symplectic map(s), numerical integration of particle
trajectories using symplectic maps is very fast.

3. Symplectic integration using polynomial maps

It is obvious that one cannot useM in the form
given in Eq. (6) for any practical computations. It in-
volves an infinite number of Lie transformations.
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Therefore, we have to truncateM by stopping after
a finite number of Lie transformations:

(10)M ≈ M̂e:f3:e:f4: . . . e:fP :.

However, each exponentiale:fn: in M still contains an
infinite number of terms in its Taylor series expansion.
One possible solution is to truncate the Taylor series
generated by the Lie transformations to orderP . But
this violates the symplectic condition.

We get around the above problem by refactorizing
M in terms of simpler symplectic maps which can be
evaluated exactly without truncation. We use “poly-
nomial maps” which give rise to polynomials when
acting on the phase space variables. This avoids the
problem of spurious poles and branch points present
in generating function methods [9], solvable map [10]
and monomial map [11] refactorizations. To deter-
mine which symplectic maps give rise to polynomial
mappings, consider exp(:h(z):), whereh(z) is a poly-
nomial. Since all Lie transformations are symplectic
maps [2], this is a symplectic map. Its action on phase
space variables is equivalent to solving the Hamilton’s
equations of motion from timet = 0 to t = −1 using
h(z) as the Hamiltonian. For example, consider the ac-
tion of exp(:q3

1:) onq1,p1 in a two-dimensional phase
space. We first solve the following Hamilton’s equa-
tions of motion:

(11)
dq1

dt
= ∂h

∂p1
,

dp1

dt
= − ∂h

∂q1
,

with h = q3
1. Solving these simple equations, we ob-

tain

(12)q1(t) = q1(0), p1(t) = p1(0) − 3q1(0)2t,

whereq1(0) andp1(0) denote the values ofq1 andp1
at timet = 0. To obtain the action of the map exp(:q3

1:)
on the phase space variables, sett = −1 in the above
equations and denoteq1(−1), p1(−1) by qfin

1 , pfin
1 and

q1(0), p1(−0) by q in
1 , pin

1 , respectively. Thus we get

(13)qfin
1 = q in

1 , pfin
1 = pin

1 + 3
(
q in

1

)2
.

Using Eq. (3), we can easily verify that the above
result is indeed correct.

Using the above procedure, we can identify sym-
plectic maps exp(:h(z):) which give rise to polyno-
mial mappings of the phase space variables into them-
selves. These results [14] can be codified as the fol-

lowing simple principles which are easily generalized
to higher dimensions also:

1. All polynomials of the formh(z) where both a
phase space variable and its canonically conjugate
variable [15] do not occur simultaneously give rise
to polynomial symplectic maps via exp(:h(z):).

2. If a canonically conjugate pair{qi,pi} is present in
the polynomialh(z), it only appears either in the
form a(z′)qi + g(pi, z

′) or a(z′)pi + g(qi, z
′) or

its integer powers. Herez′ denotes the collection
of phase space variables{qj ,pk} with j �= k �= i.
Further,a andg are polynomials in the indicated
variables.

We now return to the problem of symplectic integra-
tion. For the present, we restrict ourselves to one-turn
symplectic maps in a two-dimensional phase space
truncated at order 4. The results obtained below can
be generalized to higher orders using symbolic manip-
ulation programs. The Dragt–Finn factorization of the
symplectic map is given by

(14)M = M̂e:f3:e:f4:,

where

f3 = a1q
3
1 + a2q

2
1p1 + a3q1p

2
1 + a4p

3
1,

(15)
f4 = a5q

4
1 + a6q

3
1p1 + a7q

2
1p2

1 + a8q1p
3
1 + a9p

4
1.

Here the coefficientsa1, . . . , a9 can be explicitly
computed given a Hamiltonian system [2]. The above
map captures the leading-order nonlinearities of the
system. Since the action of the linear partM̂ on
phase space variables is well known (cf. Eq. (7)) and
is already a polynomial action, we only refactorize
the nonlinear part of map using polynomial maps. It
turns out that we require 7 polynomial maps for this
purpose:

(16)M ≈P = M̂e:h1:e:h2: . . . e:h7:,

where the numeral appearing in the subscript indexes
the polynomial maps. Thehi ’s are given as follows:

h1 = b1q
3
1 + b5q

4
1,

h2 = b4p
3
1 + b9p

4
1,

h3 = (b2 + b3)(q1 + p1)
3,

h4 = (b3 − b2)(q1 − p1)
3,

h5 = (
q1 + p1 + b8p

2
1

)3
,
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h6 = (−q1 − p1 + b6q
2
1

)3
,

(17)h7 = b7(q1 + p1)
4.

Here bi ’s are at present unknown coefficients. By
forcing the refactorized formP to equal the origi-
nal mapM up to order 4 and using the CBH theo-
rem [13], we can easily compute these unknown co-
efficients in terms of the knownai ’s. These expres-
sions are given in the Appendix. The explicit actions
of the polynomial maps on the phase space variables
are also given there. This completely determines the
refactorized mapP . Each exp(:hi :) is a polynomial
map which can be evaluated exactly and is explicitly
symplectic. Thus by usingP instead ofM in Eq. (9),
we obtain an explicitly symplectic integration algo-
rithm. Further, it is fast to evaluate and does not intro-
duce spurious poles and branch points. The above fac-
torization is not unique. However, the principles out-
lined earlier impose restrictions on the possible forms
and this eases considerably the task of refactorization.
Moreover, we require the coefficientsbi to be polyno-
mials in the known coefficientsai . Otherwise this can
lead to divergences whenai ’s take on certain special
values. Finally, we minimize the number of polyno-
mial maps in the refactorized form. Our studies show
that different polynomial map refactorizations obey-
ing the above restrictions do not lead to any significant
differences in their behavior.

The above refactorization has also been extended
to symplectic maps in a six-dimensional phase space
truncated at order 4. In this case, we require 23 poly-
nomial maps in the refactorization to makeP equal to
M up to order 4:

(18)M ≈P = M̂e:h1:e:h2: . . . e:h23:,

where the numeral appearing in the subscript indexes
the polynomial maps. Since listing out the explicit
forms of thehi ’s and their coefficients is not particu-
larly illuminating, we do not list them here. However,
a FORTRAN program which implements the above
polynomial map refactorization is available from the
author upon request.

We now analyze the leading-order error committed
in our method. In our method, we first truncate the
symplectic map to a given order and then refactorize it
using a product of polynomial maps. Both these stages
give rise to errors. When we truncate the symplectic

mapM at thenth order, we obtain

(19)Mn = M̂ exp(:f3:)exp(:f4:) . . .exp(:fn:).
The leading term that has been omitted is exp(:fn+1:).
From properties of Lie transformations and Lie opera-
tors [2], we have

(20)exp(:fn+1:)z = z + [fn+1, z] + · · · ,
where [ , ] denotes the usual Poisson bracket. Now,
[fn+1, z] gives terms of the formzn [2]. Thus error
due to truncation of the symplectic map is of orderzn.

Next, we refactorize the truncated symplectic map
Mn as a product ofk polynomial maps:

(21)Mn = M̂ exp(:h1:)exp(:h2:) . . .exp(:hk :).
These polynomial maps are obtained by first using
the CBH series to combine the Lie transformations
and then comparing with the original symplectic map.
Both these maps are made to agree up to ordern.
Therefore, the leading error term is again of the form
exp(:fn+1:) giving rise to an error of orderzn.

4. Applications

We now consider two applications of the above
method. The first example is to find the region of sta-
bility of the following simple symplectic map:

(22)M = M̂ exp
[:(q1 + p1)

3:],
where

(23)M̂ =
(

cosθ sinθ

−sinθ cosθ

)
,

andθ = π/3. We chose this example since the exact
action of the above map is known and hence the exact
region of stability can also be determined. We found
excellent agreement between results obtained using
polynomial maps and the exact results.

We have also applied the method to more compli-
cated Hamiltonian systems like particle storage rings.
We studied an electron storage ring with radio fre-
quency bunching cavities. The storage ring is com-
posed of drifts, bending magnets, quadrupoles, sex-
tupoles and RF cavities. The efficacy of our method is
best revealed for such complicated Hamiltonian sys-
tems. Since there are many constituent elements (in
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Fig. 1. This figure shows theq3–p3 phase space plot for one million turns around a storage ring using the polynomial map method (only every
1000th point is plotted).

storage rings like the Large Hadron Collider, there can
be thousands of elements), numerical integration us-
ing Hamiltonians for each element is cumbersome and
slow. On the other hand, a map based approach where
one represents the entire storage ring in terms of a sin-
gle map is much faster [5]. When this is combined
with our polynomial map refactorization, one obtains
a symplectic integration algorithm which is both fast
and accurate and is ideally suited for such complex
real life systems. Theq3–p3 phase plot for one mil-
lion turns around the ring using our polynomial map
method is given in Fig. 1. In this case,q3 andp3 repre-
sent the deviations from the closed orbit time of flight
and energy, respectively. From theoretical considera-
tions, we expect the so-called synchrotron oscillations
in these variables. This manifests itself as ellipses in
the phase space plot ofq3 andp3 variables (just as the
oscillations of the simple pendulum manifest them-

selves as ellipses in the coordinate–momentum phase
space plot). In Fig. 1, we observe the expected syn-
chrotron oscillations.

5. Conclusions

To conclude, we have proposed a new symplectic
integration algorithm based on polynomial map refac-
torization. This should be of help in studying long term
stability of complicated accelerator systems and other
Hamiltonian systems.
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Appendix

The coefficientsbi in Eq. (17) can be easily deter-
mined using the CBH theorem [13]. Their expressions
in terms of the known coefficientsai of the symplectic
mapM (cf. Eq. (15)) is given as follows:

b1 = a1 − a3/3, b2 = a2/6,

b3 = a3/6, b4 = a4 − a2/3,

b6 = (
2a6 − 2a7 + a8 + 18b1b2 − 36b2

2 − 36b1b3

+ 36b2
3 + 9b1b4 + 18b2b4 − 18b3b4

)/
6,

b7 = (−a6 + 2a7 − a8 − 18b1b2 + 36b2
2 + 18b1b3

− 36b2
3 − 9b1b4 − 18b2b4 + 18b3b4

)/
4,

b8 = (
a6 − 2a7 + 2a8 + 18b1b2 − 36b2

2 − 18b1b3

+ 36b2
3 + 9b1b4 + 36b2b4 − 18b3b4

)/
6,

b5 = a5 − 9b1b2 − 9b2
2 + 9b2

3 − 3b6 − b7,

(24)b9 = a9 − 9b2
2 + 9b2

3 + 9b3b4 − b7 − 3b8.

Note that the formulas have been sequenced in such a
way that once a givenbi is evaluated, it is used in the
formulas for thebi ’s following it.

The actions of the polynomial maps exp(:hi :) (i =
1,2, . . . ,7) on the phase space variablesq1,p1 are
easily evaluated using the procedure outlined in the
main text (see the discussion before Eq. (11). We
obtain the following results:

e:h1:q1 = q1, e:h1:p1 = p1 + 3b1q
2
1 + 4b5q

3
1,

e:h2:q1 = q1 − 3b4p
2
1 − 4b9p

3
1, e:h2:p1 = p1,

e:h3:q1 = q1 − 3(b2 + b3)(q1 + p1)
2,

e:h3:p1 = p1 + 3(b2 + b3)(q1 + p1)
2,

e:h4:q1 = q1 + 3(b3 − b2)(q1 − p1)
2,

e:h4:p1 = p1 + 3(b3 − b2)(q1 − p1)
2,

e:h5:q1 = q1 − c1(1+ 2b8p1 + b8c1),

e:h5:p1 = p1 + c1,

e:h6:q1 = q1 + c2,

e:h6:p1 = p1 − c2(1− 2b6q1 − b6c2),

e:h7:q1 = q1 − 4b7(q1 + p1)
3,

(25)e:h7:p1 = p1 + 4b7(q1 + p1)
3,

where

c1 = 3
(
q1 + p1 + b8p

2
1

)2
,

(26)c2 = 3
(−q1 − p1 + b6p

2
1

)2
.
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