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In the wigglers of future free-electron lasers, the electron beam will be required to travel over a
length of 10 m or more in pipes with small diameters. Transverse resistive wall effects could lead to
beam breakup during this transport. To investigate this possibility, the equation of motion for a
bunched beam is solved analytically. Results show that a steady-state solution is reached for times
larger than the diffusion time. This solution can either oscillate or grow exponentially with the
length of the pipe, depending on the relative magnitudes of the resistive wall effect and the focusing
force in the wiggler. The magnitude of the resistive wall effect depends on the pipe radius b (it in-
creases as 1/b?) but is independent of the thickness and conductivity of the pipe. The thickness and
conductivity affect only the time required to reach the steady-state solution. The possibility of a

significant transient is also discussed.

I. INTRODUCTION

When a charge travels in a smooth pipe of small ra-
dius, it will generate a wake field if the pipe is not perfect-
ly conducting. Even though the transverse force is zero
immediately behind the bunch because of the cancellation
of the electric force of the image charge and the magnetic
force of the induced current, a finite conductivity allows
the induced magnetic field to penetrate into the metal
pipe with the result that the magnetic force decays more
slowly than the electric force. This gives rise to a net
wake-field force on the later bunches. This force in-
creases rapidly as the radius of the pipe decreases. In fu-
ture free-electron lasers (FEL'’s), because of efficiency re-
quirements and limitations on achievable wiggler field, an
electron beam will be required to travel in a pipe only a
few millimeters in diameter over a length of 10 m or more
in a wiggler. Therefore the question arises as to whether
transverse resistive wall effects of the electron beam could
compromise the performance of a wiggler.

Estimates of transverse resistive wall instability were
done previously with formulas derived by Caporaso et
al.! These formulas were derived for a dc beam and with
an induced magnetic field decreasing as the square root of
time, a dependence valid only for a limited time. For an
FEL injected with an rf linac which has a bunched beam
of long duration, these results are not appropriate. Neil
and Whittum? have recently analyzed the case of a
bunched beam. They investigated the problem in the fre-
quency domain and used the dominant mode in the ex-
pression for the wake field. Their analysis is limited to
the case where the first bunch is displaced off-axis and the
subsequent bunches follow on-axis.

In this paper, an analysis of transverse resistive wall in-
stability of a bunched electron beam in a wiggler is car-
ried out. The full expression for the wake field is used
and a complete solution is obtained analytically. Various

39

approximations are investigated and the steady-state
solution is discussed with a brief discussion of the tran-
sient state. Throughout the paper cgs units will be used.

II. TRANSVERSE RESISTIVE WALL WAKE
FIELD OF A BUNCHED BEAM MOVING
IN A CIRCULAR PIPE

The transverse wake field induced by a beam of relativ-
istic particles off-axis has been investigated by Bodner et
al.® The results are summarized and extended in this sec-
tion.

When a dc beam current I established at time =0 is
traveling (in the z direction) at a distance £ off-axis in a
pipe (cf. Fig. 1) of inner radius b, outer radius d, thick-
ness 7(=d —b), and conductivity o, the wake field is
given as a magnetic field B":

8IE & exp(—t/T;)

B¥(1)= , 2.1
g cb? 5 G @D
where
Conductivity o
Thickness T
Beam T
r—— b d
i

FIG. 1. Schematic diagram of the geometry used in resistive
wall effect analysis.
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and y;’s are zeros of the function

Here J;’s and N,’s are Bessel functions of the first and
second kind, respectively. The summation over / in Eq.
(2.1) represents a summation over an infinite number of
modes.

The expression for the magnetic field at position z and
time ¢ after a (8 function) bunch with charge ¢ has
passed, can be found from Eq. (2.1) to be*

al(t')

— 4 def 4 __ 41 ’
By(t)-—f_m—é?——By (t—1")dt’ .

Since the bunch passes position z at ¢t =0, the current it
produces takes on the form I(¢)=¢q6(t). Carrying out
the integration with this expression for I,
8g& = exp(—t/T;)

Cb 2 i=1 C,' Ti

B,(1)=— (2.4)

The magnetic field of a bunched beam with a fixed time
interval A between any two bunches will be a sum of the
fields of the individual bunches.

In Eq. (2.4), the longest decay time is T,. For a thin-
wall approximation (small 7/b), T, is given by
2mobT

. (2.5)
o2

T =

T, is usually referred to as the diffusion time. Table I
shows the parameters used for a proposed extreme ultra-
violet (XUV) FEL,* where the pulse length refers to the
duration of the bunched beam. For these parameters, the
diffusion time has a value of 0.5 us and the corresponding
first mode is the dominant mode.

An approximate formula for the magnetic field behind
a (8-function) bunch, valid for times short compared to
the diffusion time, can be derived from Eq. (2.4) as

B,(1)=——295 2.6)

mb3ot)?

This approximate formula was used in Ref. 1. In Fig. 2,
it is compared to the exact result given in Eq. (2.4).

TABLE I. Proposed parameters for XUV FEL.

Inner pipe radius b 0.18 cm
Outer pipe radius d 0.198 cm
Conductivity of pipe o 2X10'" s7!
(for titanium)
Wiggler field 075 T
Pulse length 300 ms
Electron energy 500 MeV
Length of pipe z 800 cm
Bunch separation A 6.8 ns
Average current [ 300 mA
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FIG. 2. Variation of the transverse resistive wall wake field B
with time ¢ elapsed since the passage of a bunch. The results ob-
tained using the exact formula [Eq. (2.4)] are compared with
those obtained using the approximate formula [Eq. (2.6)].

Equation (2.6) is a good approximation to the exact result
up to one diffusion time. After one diffusion time, the
magnetic field drops off rapidly as an exponential func-
tion of time because it has diffused through the pipe wall.
One diffusion time is much shorter than the value of a
pulse length of 300 us (see Table I) typical of an rf-based
FEL. Therefore the exact formula should be used for the
analysis of most rf-based FEL’s.

III. TRANSVERSE RESISTIVE WALL
INSTABILITY OF A BUNCHED BEAM

The beam is considered to be a series of bunches travel-
ing with speed c¢. The transverse displacement from the
axis of the Kth bunch is denoted by &(z=ct,K). Em-
ploying the Lorentz force equation and Eq. (2.4), the
equation of motion for £(¢,K ) is

2
aL,K) ;’;K’ +w3E(1,K)
t

© K—1
=3 G; Y exp[ (K—DA/T;)&(t,1), (3.1)
i=1  I1=0
where
. L— (3.2)
myc°b°C;T;

Here o, is the frequency of the slow betatron motion in
the wiggler, y is the usual relativistic factor, and v is the z
component of beam velocity. The sum over / represents a
sum of the interactions between the Kth bunch and the
wake fields of all bunches ahead of it. In Secs.
III A-IIIF, the solution of Eq. (3.1) will be presented
and various limiting cases of this solution will be investi-
gated.
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A. Complete solution

Assuming the initial transverse velocity to be zero for all bunches, Eq. (3.1) can be solved analytically using Laplace
transforms as described in Appendixes A and B. The solution for £(¢,K ) is found to be [cf. Eq. (A18)]

K ©
E&t,K)= 3 E0,K—m) I F(n) 3
m=1 = [, =

1i

.S G,
i,=1

m—1 m—ml—l m—ml—"'—m"_z*l
G, G S 3 b
m|=1 m2=1 mn71=1

Xexp( —mIA/T,-l)exp( —mzA/T,-z) -+ - exp( _—m"*lA/Tf,.fl)

Xexp[—(m—m;— - —m, A/T, 1,
where

E(t,K)=&(t,K)—E£(0,K )cos(wgt ) (3.4)
and

Fim=—T" ()" TV, plegt) . (3.5)

2n+1/2w(2)nn!

The above solution consists of a transient state fol-
lowed by a steady state for large K. Numerical results
show that the transient state is not significant for the
FEL considered here* (cf. Sec. III E) and for the rf-based
FEL considered in Ref. 2. Therefore a detailed discus-
sion is given below only for the steady-state solution. A
brief description of the transient state is given in Sec.
IIIF.

B. Steady-state solution

If all the bunches are assumed to start out with the
same transverse displacement d, it is shown in Appendix
C that £(z,K) approaches a steady state as K tends to
infinity. An expression for the state-steady value &(¢, o)
is derived. On the other hand, knowing that a steady-
state solution exists allows us to present a simpler deriva-
tion of £(z,00) in this section. In the limit K — 0, all
£(t,K) in Eq. (3.1) can be replaced by &(, ) to give

2
dL0) 0006 )=0 (3.6

(3.7

~
Il
It

Q2 represents the defocusing effects of the resistive wall
instability. For Q% < w3, Eq. (3.6) is just a betatron oscil-
lation equation with reduced focusing. The motion of a
bunch is therefore given by

&£(t, 0 )=d cos[(w3—Q*) %] . (3.8)

The betatron frequency has changed from o, to
wo(1—Q%/0})'2. For Q> o}, the defocusing effects be-
come so large that the transverse displacement of a bunch
grows exponentially with time. For the parameters given
in Table I, w, and Q have values of 9.53X 10’ s~ ' and
3.06X107s7, respectively.

Q? can be proved to be independent of thickness and

(3.3)

[

conductivity of the pipe. To show this, the sum over in-
dex j in Eq. (3.7) is represented by an integral over 7
(where 7=jA). This approximation is a good one in our
case since A << pulse length (cf. Table I). Performing the
integration over 7 we get
8elv & 1
QP=——3 — .
myc?b? ,Z'l C;
Comparison of Egs. (2.7) and (4.10) in Ref. 3 for t=0
gives

& 1
=—. 3.9
ig c s (3.9)
Therefore,
=20 (3.10)
myc*b

As claimed, Q2 is independent of the thickness and con-
ductivity of the pipe. It is seen to be inversely propor-
tional to b2.

On the other hand, the time required to achieve a
steady-state solution does depend on 7 and o of the pipe.
We saw earlier that the magnetic field diffuses out
through the wall on a time scale of one diffusion time
(T,). Therefore, one would expect £(¢,K) to attain
£(t,0) within a few T’s. Using 5T, for specificity, we
obtain the number of bunches K required to reach a
steady-state solution to be

sz 1071’0'2177' (311)
Ac

Thus K, is directly proportional to o, 7, and b of the

pipe. For the parameters given in Table I, we estimate

the value of K  to be approximately 330.

C. Second-order approximation

When the resistive wall effect is small, the full solution
in Eq. (3.3) can be expanded in terms of a dimensionless
parameter

- G;texp(—A/T;)

i

(3.12)
2w,

If §; is small for all / (which is true in many practical situ-
ations), the expansion can be truncated at second order
(in §;). For the parameter values given in Table I,
8,=0.002. With £(0,j) equal to d for all j, the second-
order solution £?)(¢,K ) can be expressed as follows:
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K—1
E¥(t,K)=d coslwyt)+d sin(wyt) 3 3 8.exp(—jA/T;)

j=1i=1

2wot)

[sin(wgt ) — (gt Jeos(wpt )] > > 5,

i=1j=1

K-2 m
8, X X exp[—(m—m)A/T;lexp(—m A/T);) .

m=0 m,; =0

(3.13)

When the beam pipe thickness is small compared to the radius b, the summations over i and j usually converge rapidly
and only a few terms are required. The second-order solution also has the property [as is easily seen from Eq. (3.13)]
that £'2(¢,K)—&%(¢t,K —1)—0as K — 0, i.e., &?)(¢,K ) approaches a steady state when K — .

D. Single-mode approximation

There are situations when only the first mode dominates. For example, this happens when the thickness of the pipe 7
is very small compared to the radius b. In such cases, a simpler expression for £(z,K ) can be obtained. The reduction
from the full solution to a solution valid for one mode is described in Appendix D. The final result [cf. Eq. (D9)] is

LGICE '

K
£(6,K)=3 £(0,K —klexp(—kA/T,) 3 5
k=0 n=0

where

(—n)(—n—1)---(—n—1+1)
I )

The steady-state value &;(t,0) is given by [cf. Eq.
(D11)]

cr=(—1) (3.15)

&\(t,0)=d cos[(w}—Q})"?], (3.16)
where
Qi=G, I exp(—jA/T,) (3.17)

j=1

represents the defocusing effect of the first mode. This
steady-state solution can be obtained directly from Egs.
(3.7) and (3.8) by setting

Q=3 0}=0%.

i=1

(3.18)

Following the line of reasoning outlined in Sec. III B, the
sum over j in Eq. (3.17) can be approximated by an in-
tegral to give

8elv 1
V=————, (3.19)
" mye?? C,
where C, is given by Eq. (2.3). For small 7/b, an approx-

imate value for y, is given by (2b /7)!/2.

E. Numerical results

Equation (3.1) was also solved numerically using a
computer program. £(0,j) was assumed to be equal to
1.0 for all j. All modes were included. The results for
1=30 and 300 mA are shown in Fig. 3. They show the
transverse displacement of the beam bunches at the end
of the pipe (ct=800 cm) as a function of time or,
equivalently, bunch number. They confirm the earlier
observation that £(¢,K) approaches a steady state after

n +(l/2)w%nn!

n+(1/2)J

(Cl)ot) n._(]/z)((l)ot) s (314)

=

the passage of several bunches. The true displacement
does not have the unbounded growth seen using the ap-
proximate formula for magnetic field [Eq. (2.6)] because
the true magnetic field decays exponentially for times
longer than one diffusion time. The adverse effects of
resistive wall instability on the operation of the FEL are
therefore limited. The large oscillations of bunch dis-
placement expected to represent a transient state preced-
ing the steady state are not observed.

Computer programs were also written to implement

-0.74
W
4-*"‘\”‘f
ra
’¢
= -0.76 1 2
Q +
£ + + 300 mA
1) +
o + « 30mA
= 0781 +
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©
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S 0.827 e
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0.84 T T T T T
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FIG. 3. The transverse displacement of the beam at the end
of the wiggler as obtained by numerically solving Eq. (3.1). The
bunches travel along the beam pipe executing betatron oscilla-
tions with frequencies modified by resistive wall effects. The
amplitude of all oscillations are the same and are normalized to
unity. Values of all the parameters are taken from Table I. Re-
sults obtained using 7/ =30 mA are also shown for comparison.
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TABLE II. Normalized steady-state displacement &£(z, )
given by the various approximate solutions are compared to the
exact result.

Approximation used E(t, o)
Exact —0.7373
Third order —0.7435
Second order —0.7438
First order —0.7528
Dominant mode —0.7462
Numerical integration —0.7439

the dominant mode solution [Eq. (3.14)] and the first- [the
first line in Eq. (3.13)], second- [Eq. (3.14)], and third-
order solutions. The third-order solution has not been
given in this paper, as it is quite complicated. A compar-
ison of their results for the steady-state value is given in
Table II. As expected, the third-order solution is closest
to the exact result. However, both the second-order solu-
tion and the numerical integration of the equations of
motion are seen to be quite adequate (for the parameter
values given in Table I).

F. Transient solution

Figure 3 shows that the transverse bunch displacement
approaches a steady state monotonically from below.
This behavior is typical for parameters considered for rf-
based FEL’s. Figure 4 depicts a situation when parame-
ters are beyond this typical range. The transverse dis-
placement will exhibit oscillations before reaching a
steady state. These oscillations represent a transient state
and will be discussed briefly in this section.

A rough estimate as to when the transient state be-
comes important can be given as follows. It is seen from

Normalized Displacement
o

44

-6 T T
0 2 4 6 8 10

Time(us)

FIG. 4. An extreme situation where the transient state dom-
inates the steady state. The parameter values used are z =600
m, =43 A, and A=0.46 ns. The other parameters have
values given in Table I.

4753

Eq. (3.13) that the transient amplitude of the Kth bunch
is given by Q% t /2w, where

K )
Q=3 3 Gexp(—jA/T;).

j=1i=1

(3.20)

Since Q% is less than Q2 for all K, a general condition for
the transient state to become important is

0% 0%z
—=—"21. .
200 200 (3.21)

For the parameter values in Table I, this quantity has a
value of 0.13. Equation (3.21) shows that the transient
state becomes important when the length of wiggler in-
creases. A more detailed analysis of the transient is being
carried out and the results will be presented in a forth-
coming paper.

IV. CONCLUSIONS

The transverse motion of a beam traversing a narrow
beam pipe is modified by resistive wall effects. Depend-
ing on the ratio of strengths of the focusing force due to
the alternating wiggler field and the resistive wall effect,
the effect on the steady state ranges from a modification
of the betatron oscillation to a growth in transverse dis-
placement with the length of pipe. The strength of the
resistive wall effect depends only on the pipe radius b (in-
creasing as 1/b2), but is independent of the thickness (7)
and conductivity (o) of the pipe. However, 7 and o
affect the time needed to attain the steady state. A tran-
sient state preceding the steady state can become impor-
tant for parameter values beyond those considered here.
A criterion for determining when the transient state be-
comes important has been derived.
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APPENDIX A

This appendix describes the derivation of a complete
solution of Eq. (3.1):

2
dEu,K) ;I‘;K’ +w3E(,K)

© K—1
=3 G, 3 exp[—(K—DA/T;1&t,1) .

i=1 1=0

(A1)

Equation (A1) can be rewritten as
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-1
d’€(t,K) | i
+wpé(t,K)= G; sk —16(,1) (A2) A= S
dr? 0 El 2 x—18l iHad) | 2+w0) El
where Expressing this as a power series,
S;m=exp(—mA/T;) . (A3) - =
A = 2 _—2‘—*——?;]* 2 GS (A9)
Assuming that the initial transverse velocity of all the i (¥2+o?) i=1
bunches is zero, Eq. (A2) can be Laplace transformed to The solution for Z(y) can now be written as
Wred g, k) ' 1=£0,K)
—_— — S . N - had
e 21 2 =60 D=4 f9=3 — 1S 65 &0, (A10
( +a) 8 i=1
(Ad) To obtain £(t), an inverse Laplace transform is per-
where formed:
o 0 n
§(y,K)=fO dt exp(—yt)&(t,K) . (AS) =3 |3 GS; §(0)571;IT
n=0 |i=1
Noting the similarity between Eq. (24) in Ref. 5 and Eq. "
(A4), the above equation can be written in matrix form as X f" 4 (_ﬁe"p(ﬂ) ,
— iw y
A&(y)=¢&(0), (A6) (A11)
where where a is an arbitrary positive constant. It can be
(y2+wd) | = shown that
A=——I—— 3 G;S, . (A7) 1 ratie y——2 —explyt)
y Yy = 2mi Jamie P (p24 )y p
Here I is the identity matrix and S, is given by a2
T n(1/2) 2n ,(a’ot)nﬂl/z}-]nﬂvz)(a’ot)
0 0 0 0 @o 1>
s;p 0 00 =F(n), (A12)
S;= 52 sin 0 0 (A8 which implies
i3 Si2 S O ® o n
o E)= 3 F(n) | > G £(0) (A13)
n=0 i=1
The matrix 4 has to be inverted to find &(y) This can be rewritten as
]
&)= 3 Fn) 3 3 > G; G; G, S S, S; £(0) (A14)
n=0 i =1i,=1 =1 " !
Carrying out the matrix multiplication,
E(t,K)= 2 £(0,K") 2 F(n) 2 2 2 GG, G, (S S;, S Jkx (A15)
11—112-l i”:l
Using Eq. (B14) and
(S, Si, - S 2 2 > (S, ki, (Si))j, 4, (8; ), ks (A16)
j1=1 Jz_l Jn—1=
Eq. (A15) can be written as
E(t,K)= 2 £&O0,K') S Fn) 3y 3 -+ EGIIG,-2~ "G,
n=0 i=1i,=1 Q=1
X3 2 2 Ck i€yt G
==l Jp—171
chln_l‘K’-ﬂexp[ (K—j)A/T; ]exp[— —Jj2)A/T; ] CXP[_(jn—z—jn—l)A/Tin_ll
Xexp[ —(j, -1 —K)A/T; 1. (A17)

'l
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After further manipulation using the properties of C;' and changing the running index from K’ to m =K —K’, the

above equation finally reduces to

K m ©
Et,K)=3 EO0,K—m) S F(n) 3
m=1 =

n=1 i

Xexp(—m A/T; Jexp(—m,A/T, ) - - exp(—m,,_lA/T,-nﬂ)exp[—(m —-—m,— -

h

where

E(1,K)=§(1,K)—E&(0,K )cos(wyt ) . (A19)

Equation (A19) is a complete solution of Eq. (3.1).
APPENDIX B

An expression for the matrix elements of S/ is derived
in this appendix. We drop the subscript i in the following
J

(SM,,= 3
m;=1m

“ M8

1

Using Eq. (A3),

$= 3 3

o0

my=1 m,=1 m, =1
Let
o0 [=e] o0 n
P(r)= 3 3 > exp|—A Y m/T
my =1 m,=1 m, =1 i=1
n
X8 |r—s— 3 m (B4)
i=1
Then
(8", = [ “arp,(r) . (BS)
r—e
P (r) is evaluated by Laplace transforming it:
Fs(y)=fowdrPs(r)exp( —yr) . (B6)
The 8 function can be integrated over to give
_ 0 0 o n
Py)= 3 3 S exp|—A I m /T
m;=1m,=1 m, =1 i=1
n
Xexp|—=y s+ 3 m,
i=1
(B7)
This can be reexpressed as
oo A n
P.(y)=exp( —ys){ S exp|—m y+? (B8)
m=1
The infinite geometric series can be summed to give
Fs(y):exp[—y(s+n)]exp(——nA/T) (B9)

{1—exp[—(y+A/TH]}"

.o 2 GilGi
i=1

0
: mz_lsmlsm2 U Smnsr—s,ml+m2+ o+ m
n

>, exp[—Alm;+m,+ - -I-m,,)/T];S,_S’ml+m2+ e 4m

m—1 m—m —1 m—m;—---—m, _,—1
2...Gi" 2 2 2
m]==1 m2=1 m"_]=1
—m, DA/T, 1, (A18)

[
discussion. Using the definition of S given in Eq. (A8),

the matrix elements of S can be expressed as
SrS= 2_1sm|6r—s,ml * (Bl)
ml =
It can be shown that
e (B2)
. (B3)

[
Since y +A /T is greater than zero,

1
{l1—exp[—(y+A/T)]}"

=3 Clexp | —I y+—A-H , (B10)
=0 T
where
Cco=1,
(=n)(—n—1)---(—n—I+1) B1D
cp=(—1—21-1 o L .

Using this in Eq. (B9),
P(y)= 3 Clexp[—y(s+n+I)lexp[—A(n+I)/T] .
=

(B12)

Comparing Eqgs. (B4) and (B7), which are Laplace
transforms of one another, the Laplace transform of the
above equation is immediately seen to be

P(r)= i Clexp[—A(n+1)/T18(r—s—n—1). (B13)
=0

Using Eq. (B5) and restoring the index i,

Cr_ _,expl—A(r—s)/T;]1 ifr—s=n

= |0 otherwise . (B14)

(Sin)rs
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APPENDIX C

In this appendix, £(¢,K) is shown to approach a steady state when K — . An expression for the steady-state value

of the transverse displacement £(¢, oo ) is also derived.

Assuming that £(0, j)=d for all j and interchanging the summations over m and »n in Eq. (3.3), we get
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In this limit (K = o ), the above equation can be reduced
to a much simpler expression. After considerable manip-
ulation using standard results on multiplication of power
series, the final expression turns out to be

E(t,0)=d 3 F(n)Q»", (C3)
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Using Egs. (3.4) and (3.5) this reduces to
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The above equation can be further manipulated to give
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Eq. (C10) can be written as
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Using the standard power-series expansion for cosh(x)
and Eq. (C6), the final expression for £(¢, « ) is found to

be

&(t, o )=d cosh[(Q*—w?)"?t] . (C13)
Ifw(2)> Q2

&(t,0)=d cos[(wi— Q)] . (C14)

Thus the transverse displacement approaches a finite lim-
iting value (independent of K) as K becomes large. This
proves that a steady-state solution exists and its value is
given by either Eq. (C13) or (C14).

APPENDIX D

This appendix gives the derivation of a simplified solu-
tion of Eq. (3.1) when the first mode dominates. Denot-
ing the transverse displacement of the K'th bunch under
the influence of the first mode by &,(¢,K), Eq. (A17)
reduces in this case to
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This can be simplified using the sum relation
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This relation can be proved as follows. Start with the

identity [cf. Eq. (B10)]
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The left-hand side can be written as
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Therefore the left-hand side becomes
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Comparing it with the right-hand side of Eq. (D3),
i
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After some manipulation, this can be rewritten as
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This sum relation can be iterated to give Eq. (D2).

Using Eq. (D2), Eq. (D1) can be reduced to
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Changing the running index from K —K’ to k and using
Eq. (3.5), we get
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The fact that C;_, is zero for n > k has been used to ob-
tain the above expression.

Under the assumption £,(0,j)=d for all j, £,(¢,K) can
be shown to approach a steady-state value £,(¢, ), i.e., a
value independent of K. The easiest way to show this is
to go through the derivation given in Appendix C but
with only the first mode present. It is seen that the
derivation remains valid even in this case once Q? has
been replaced by

Q1=G, I exp(
j=1

—jA/T)) . (D10)

The steady-state value &,(¢, ) is given as (when w} > Q?)

E,(t,0)=d cos[(w3—Q2)"%t] . (D11)
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