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Effect of measurement noise on Granger causality
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Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is
important to understand the effect of such noise on estimating causal relations between such signals. A primary
tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal
using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect
of noise by considering a bivariate AR process of general order p. From this analysis, we analytically obtain
the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that
measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results
are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman
expectation maximization algorithm.
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I. INTRODUCTION

Many experiments yield multivariate time series measure-
ments of various phenomena. Given these multivariate time
series data, it is natural to examine causal relations within these
data. A popular method used to estimate such causal relations
is Granger causality [1–3]. Granger causality has been recently
applied to a variety of fields including neuroscience [4–20],
physics [21–23], and climate change [24–27]. In this method,
we assume that the recorded multichannel can be modeled as a
realization of a stationary vector autoregressive (AR) process
of order p [AR(p)]. We evaluate the causal relation between
two time series by examining if the prediction of one series
could be improved by incorporating the other. However, the
experimental signals are typically noisy. Statistical analysis
performed on such data may be adversely affected by the
presence of noise [28]. It is therefore very important to
investigate the effect of measurement noise on Granger
causality estimation.

A general mathematical treatment of the effect of noise on
Granger causality was given in [29]. The explicit analytical
dependence of this effect on various system parameters was
first derived in [30] for signals modeled by a bivariate first-
order AR [AR(1)] process. Furthermore, it was shown that the
adverse effect of noise on Granger causality can be mitigated
by using a denoising method based on Kalman filter theory
and the expectation maximization algorithm (called the KEM
algorithm, in short) [30,31]. This led to further investigations
on the effect of noise on Granger causality [33–36]. However,
analytical expressions for the effect of measurement noise
on Granger causality for time series modeled by AR(2) and
higher-order AR processes were not derived in the previous
work [30,31]. Since most experimental time series would need
to be modeled by such higher-order processes, it is important
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to extend the previous analysis to bivariate AR(p) processes
with measurement noise. Recently, Sommerlade et al. [32]
investigated analytically the effects of noise on estimating
Granger causality for an AR(2) process and considered a noise
mitigating algorithm similar to the one in [30,31].

In this paper, we make further progress by obtaining
analytical expressions that explicitly demonstrate how the
measurement noise affects Granger causality (as a function
of system parameters) by considering first an AR(2) process
and then an AR(p) process (with unidirectional driving).

The organization of this paper is as follows: In Sec. II,
we start by briefly summarizing the procedure that enables
the effects of added (measurement) noise on the estimation of
Granger causality to be investigated analytically. In Sec. III, we
then consider a bivariate second-order autoregressive [AR(2)]
process. Here, we consider two cases as follows:

Case 1: Measurement noise is added only to the driving
time series Y (t).

Case 2: Measurement noise is added to both time series
X(t) and Y (t).

Explicit expressions for the effect of noise on Granger
causality are derived for these two cases. In Sec. IV, similar
expressions for the effect of noise on Granger causality are
derived for a bivariate autoregressive process of order p

[AR(p) process] with unidirectional driving (again for the two
cases defined above). This analysis allows us to conclude that
spurious causality can arise when noise is added to the driving
time series. Furthermore, it is shown that true causality can be
suppressed by the presence of noise in either time series. In
Sec. V, we carry out a few numerical simulations validating
the above theoretical results. In Sec. VI, we show how the
noise can be removed using the KEM algorithm [30,31]. Our
conclusions are given in Sec. VII.

II. THEORETICAL FRAMEWORK

We briefly outline the theoretical framework [29,30,37,38]
required to compute Granger causality. Consider two time
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series X(t) and Y (t) modeled as a combined bivariate au-
toregressive process given by

p∑
k=0

[akX(t − k) + bkY (t − k)] = E1(t), (1)

p∑
k=0

[ckX(t − k) + dkY (t − k)] = E2(t). (2)

Here ak , bk , ck , and dk are the AR coefficients and Ei(t) are
the temporally uncorrelated residual errors.

We rewrite the above bivariate process as two univariate
processes [37] given by

P1(B)X(t) = ξ (t), P2(B)Y (t) = η(t), (3)

where B is the lag operator defined as BkX(t) = X(t − k)
and P1(B) and P2(B) are polynomials that could have infinite
order. The new noise terms ξ (t) and η(t) can now be correlated.
If γ12(k) denotes the covariance at lag k between these two
noises,

γ12(k) ≡ cov(ξ (t),η(t)) k = . . . ,−1,0,1, . . . , (4)

then, by Pierce and Haugh’s theorem [37], Y (t) causes X(t) in
the Granger sense if and only if

γ12(k) �= 0 for some k > 0. (5)

Similarly X(t) causes Y (t) if and only if γ12(k) �= 0 for some
k < 0.

Now, consider the time series X(c)(t) and Y (c)(t) contami-
nated with measurement noises ξ ′(t) and η′(t), respectively:

X(c)(t) = X(t) + ξ ′(t), (6)

Y (c)(t) = Y (t) + η′(t). (7)

Here ξ ′(t), η′(t) are uncorrelated Gaussian white noise pro-
cesses that are uncorrelated with X(t), Y (t), ξ (t), and η(t).
Applying P1(B) and P2(B) to X(c)(t) and Y (c)(t), respectively,
and following standard procedure [29,30,38,39] we get two
univariate AR processes for the noisy time series:

P −1
3 (B)P1(B)X(c)(t) = ξ (c)(t),

(8)
P −1

4 (B)P2(B)Y (c)(t) = η(c)(t).

Here ξ (c) and η(c) are now uncorrelated Gaussian white noise
processes. Applying the theorem of Pierce and Haugh we say
that the noisy signal Y (c)(t) causes X(c)(t) in the Granger sense
if and only if

γ
(c)
12 (k) ≡ cov(ξ (c)(t),η(c)(t − k)) �= 0, (9)

for some k > 0. Similarly X(c)(t) cause Y (c)(t) if and only if

γ
(c)
12 (k) �= 0, (10)

for some k < 0.
This formalism can be used to show, in general terms, that

spurious Granger causality can, in principle, be induced by the
measurement noise [29]. Consider the following covariance
generating functions (which are nothing but the z transforms

of the cross covariances):

�12(z) =
∞∑

k=−∞
γ12(k)zk,

(11)

�
(c)
12 (z) =

∞∑
k=−∞

γ
(c)
12 (k)zk.

These are related as [29]

�
(c)
12 (z) = P −1

3 (z)P −1
4 (z−1)�12(z). (12)

Given the presence of the additional term P −1
3 (z)P −1

4 (z−1)
introduced by measurement noise, it is possible that γ

(c)
12 (k) �=

0 for some negative k even if γ12(k) = 0 for all k < 0 (i.e.,
even if X does not cause Y ). Hence, measurement noise can
lead to spurious Granger causality. In the following sections,
we obtain analytic expressions that demonstrate this explicitly
and also obtain its dependence on system parameters.

III. A BIVARIATE AR(2) PROCESS

We now specialize the above results by considering a
second-order bivariate AR(2) process given by

X(t) = aX(t − 1) + bY (t − 1) + ξ (t),
(13)

Y (t) = d1Y (t − 1) + d2Y (t − 2) + η(t).

From the above equations, we see that Y drives X and X does
not drive Y in the Granger sense of causality. But measurement
noise substantially changes this situation.

Case 1: Only Y (t) has measurement noise

In this case,

Y (c)(t) = Y (t) + η′(t). (14)

We rewrite the bivariate process [Eq. (13)] as two univariate
processes. We proceed as follows. Equation (13) can be put in
the form

(1 − aB)X(t) = bY (t − 1) + ξ (t),

(1 − d1B − d2B
2)Y (t) = η(t). (15)

Let P2(B) = (1 − d1B − d2B
2). Applying P2(B) on both sides

of Eq. (14), we have

[1 − d1B − d2B
2]Y (c)(t) = [1 − d1B − d2B

2]Y (t)

+ [1 − d1B − d2B
2]η′(t).

But from Eq. (15), [1 − d1B − d2B
2]Y (t) = η(t). Thus, the

above expression can be rewritten as

[1 − d1B − d2B
2]Y (c)(t) = η(t) + [1 − d1B − d2B

2]η′(t).

(16)

Next we rewrite Y (c)(t) as a univariate process. Consider
the right hand side of Eq. (16). We need to find a white noise
process η(c)(t) such that

η(t) + [1 − d1B − d2B
2]η′(t) = (1 + d1

′B + d2
′B2)η(c)(t).

(17)
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Let

P4(B) = (1 + d1
′B + d2

′B2). (18)

To determine d1
′, d2

′, and σ 2
η(c) , we proceed as follows.

Taking variance on both sides of Eq. (17) we have

σ 2
η + [

1 + d2
1 + d2

2

]
σ 2

η′ = [1 + (d1
′)2 + (d2

′)2]σ 2
η(c) . (19)

Taking autocovariance at lag 1 on both sides of Eq. (17) we
have

−d1(1 − d2)σ 2
η′ = d1

′(1 + d2
′)σ 2

η(c) . (20)

Finally, taking autocovariance at lag 2 on both sides of Eq. (17)
we get

−d2σ
2
η′ = d2

′σ 2
η(c) . (21)

From the last equation, d2
′ = −d2

σ 2
η′

σ 2
η(c)

. As σ 2
η(c) > σ 2

η′ , it

follows that |d2
′| < |d2|. Also d2

′ and d2 are of opposite sign.
From Eqs. (19), (20), and (21), we determine d1

′, d2
′, and

σ 2
η(c) in terms of known quantities. Some specific solutions

for the above system of equations are given in Appendix A.

Since we are considering the case where only Y has
measurement noise, X is noise free. Hence, X(c)(t) = X(t)
and ξ (c)(t) = ξ (t). Consequently, P3(B) = 1. Substituting the
expressions for P3 and P4 [cf. Eq. (18)] in Eq. (12), we find
that the two generating functions are connected by the relation

�
(c)
12 (z) =

[
1 + d1

′

z
+ d2

′

z2

]−1

�12(z).

But,

�12(z) =
∞∑

k=0

γ12(k)zk (since γ12(k) = 0 for k < 0),

(22)

�
(c)
12 (z) =

∞∑
k=−∞

γ
(c)
12 (k)zk.

Therefore, we have

�
(c)
12 (z) =

{
1 − d1

′

z
+ 1

z2
[(d1

′)2 − d2
′] + 1

z3
[2d1

′d2
′ − (d1

′)3]

+ 1

z4
[(d1

′)2 − 3(d1
′)2d2

′] + · · ·
}

× [γ12(0) + γ12(1)z + γ12(2)z2 + · · · ].

Collecting the terms proportional to z−1,z0,z1, etc., we have

�
(c)
12 (z) = · · · + {}z−3 + {}z−2 + {−d1

′γ12(0) + [(d1
′)2 − d2

′]γ12(1) + [2d1
′d2

′ − (d1
′)3]γ12(2) + · · · }z−1

+{γ12(0) − d1
′γ12(1) + [(d1

′)2 − d2
′]γ12(2) + [2d1

′d2
′ − (d1

′)3]γ12(3) + · · · }z0

+{γ12(1) − d1
′γ12(2) + [(d1

′)2 − d2
′]γ12)(3) + · · · }z1 + {}z2 + {}z3 + · · · .

From this it follows that

γ
(c)
12 (−1) = −d1

′γ12(0) + [(d1
′)2 − d2

′]γ12(1) + [2d1
′d2

′ − (d1
′)3]γ12(2) + · · · ,

γ
(c)
12 (0) = γ12(0) − d1

′γ12(1) + [(d1
′)2 − d2

′]γ12(2) + [2d1
′d2

′ − (d1
′)3]γ12(3) + · · · ,

γ
(c)
12 (1) = γ12(1) − d1

′γ12(2) + [(d1
′)2 − d2

′]γ12(3) + · · · .

Here, we observe that γ
(c)
12 (k) for k < 0 is no longer zero

when d1
′ and/or d2

′ are nonzero (that is, when measurement
noise η′ is nonzero). This implies that X causes Y (c) in the
presence of noise giving rise to spurious causality. We note
that the spurious causality term γ

(c)
12 (−1) is proportional to d1

′

and d2
′. This is also true for other spurious terms γ

(c)
12 (k) for

k < −1. Hence, all spurious terms goes to zero if d1
′ → 0 and

d2
′ → 0 (i.e., if Y has no added noise).

Case 2: Both X(t) and Y (t) have measurement noise

In this case, we add a zero mean white noise processes
[ξ ′(t)] even to X(t):

X(c)(t) = X(t) + ξ ′(t). (23)

We first rewrite X(t) as a univariate process. Once this is
done, we finally rewrite X(c)(t) as a univariate process. We
proceed as follows. From Eq. (15), we have Y (t − 1) =

(1 − d1B − d2B
2)

−1
η(t − 1) and hence

(1 − aB)X(t) = b(1 − d1B − d2B
2)

−1
η(t − 1) + ξ (t).

(24)

In order to rewrite X(t) as a univariate process, we have to
find a white noise process ξ (w)(t) such that

b(1 − d1B − d2B
2)

−1
η(t − 1) + ξ (t)

= (1 − γ1B − γ2B
2)

−1
ξ (w)(t). (25)

To determine γ1, γ2, and σ 2
ξ (w) , we proceed as follows. Taking

variance on both sides of Eq. (25) gives

b2σ 2
η

[
1 + d2

1 + (
d2

1 + d2
)2 + (

d3
1 + 2d1d2

)2 + · · · ] + σ 2
ξ

= [
1 + γ 2

1 + (
γ 2

1 + γ2
)2 + (

γ 3
1 + 2γ1γ2

)2 + · · · ]σ 2
ξ (w) .

(26)
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Taking autocovariance at lag 1 on both sides of Eq. (25) gives

b2σ 2
η

[
d1 + d1

(
d2

1 + d2
) + (

d2
1 + d2

)(
d3

1 + 2d1d2
) + · · · ]

= [
γ1+γ1

(
γ 2

1 + γ2
) + (

γ 2
1 + γ2

)(
γ 3

1 + 2γ1γ2
) + · · · ]σ 2

ξ (w) .

(27)

Taking autocovariance at lag 2 on both sides of Eq. (25) gives

b2σ 2
η

[(
d2

1 + d2
) + d1

(
d3

1 + 2d1d2
) + · · · ]

= [(
γ 2

1 + γ2
) + γ1

(
γ 3

1 + 2γ1γ2
) + · · · ]σ 2

ξ (w) . (28)

The expressions for γ1, γ2, and σ 2
ξ (w) in terms of system

parameters are very lengthy. Some specific solutions are
as follows (obtained by retaining only four terms in the
approximation):

(i) If b = 0, d1 = 0, and d2 = 0, then γ1 = 0, γ2 = 0, and
σξ (w) = ±σξ .

(ii) If b = 1, d1 = 0, and d2 = 0, then γ1 = 0, γ2 = 0, and
σξ (w) = ±√

ση
2 + σξ

2.
We finally have

(1 − aB)X(t) = (1 − γ1B − γ2B
2)

−1
ξ (w)(t)

or

(1 − γ1B − γ2B
2)(1 − aB)X(t) = ξ (w)(t).

Thus, we have rewritten X(t) as a univariate process
with P1(B) = (1 − γ1B − γ2B

2)(1 − aB). Applying P1(B)
on both sides of Eq. (23), we get

P1(B)X(c)(t) = P1(B)X(t) + P1(B)ξ ′(t).

That is,

P1(B)X(c)(t) = ξ (w)(t) + P1(B)ξ ′(t).

Finally we are in a position to rewrite X(c)(t) as a univariate
process. In order to accomplish this, we have to find a new
white noise process ξ (c)(t) (of the noisy signal) such that

ξ (w)(t) + P1(B)ξ ′(t) = P3(B)ξ (c)(t),

where

P3(B) = (1 + a1
′B + a2

′B2 + a3
′B3). (29)

Substituting for P1 and P3 in the equation for ξ (w)(t), we get

ξ (w)(t) + [1 − (a + γ1B) + (γ1a − γ2)B2 + γ2aB3]ξ ′(t)

= (1 + a1
′B + a2

′B2 + a3
′B3)ξ (c)(t). (30)

To determine a1
′, a2

′, a3
′, and σ 2

ξ (c) , we proceed as follows.
Taking variance on both sides of Eq. (30) gives

σ 2
ξ (w) + [

1 + (a + γ1)2 + (γ1a − γ2)2 + γ 2
2 a2

]
σ 2

ξ ′

= [1 + (a1
′)2 + (a2

′)2 + (a3
′)2]σ 2

ξ (c) . (31)

Taking autocovariance at lag 1 on both sides of Eq. (30) gives

[−(a + γ1) − (a + γ1)(γ1a − γ2) + (γ1a − γ2)(γ2a)] σ 2
ξ ′

= [a1
′ + a1

′a2
′ + a2

′a3
′]σ 2

ξ (c) . (32)

Taking autocovariance at lag 2 on both sides of Eq. (30) gives

[(γ1a − γ2) − (a + γ1)γ2a] σ 2
ξ ′ = [a2

′ + a1
′a3

′]σ 2
ξ (c) . (33)

Finally, taking autocovariance at lag 3 on both sides of Eq. (30)
gives

γ2aσ 2
ξ ′ = a3

′σ 2
ξ (c) . (34)

The expressions for a1
′, a2

′, a3
′, and σ 2

ξ (c) are very lengthy.
Few specific solutions are as given in Appendix B. It is easy
to see that as σξ ′ → 0, a1

′, a2
′, and a3

′ → 0; as ση′ → 0, d1
′

and d2
′ → 0. In other words, all additional terms disappear in

the absence of measurement noise as expected.
From the above analysis, we see that X(c)(t) has been

rewritten in the standard form given in Eq. (8). Y (c)(t) was
already rewritten in the standard form in the previous section.
Substituting Eqs. (18) and (29) in Eq. (12), the generating
function of the noisy and pure signals are related by

�
(c)
12 (z) = (1 + a1

′z + a2
′z2 + a3

′z3)
−1

×
(

1 + d1
′

z
+ d2

′

z2

)−1

�12(z).

Using Eq. (22) and expanding the terms in powers of z, we
obtain

�
(c)
12 (z) = · · · + {}z−2 + {−d1

′γ12(0) + [(d1
′)2 − d2

′]γ12(1) + [2d1
′d2

′ − (d1
′)3]γ12(2) + · · ·

− a1
′[(d1

′)2 − d2
′]γ12(0) − a1

′[2d1
′d2

′ − (d1
′)3]γ12(1) + · · · + [−a2

′ + (a1
′)2][2d1

′d2
′ − (d1

′)3]γ12(0) + · · · }z−1

+{γ12(0) − d1
′γ12(1) + [(d1

′)2 − d2
′]γ12(2) + [2d1

′d2
′ − (d1

′)3]γ12(3) + · · · + a1
′d1

′γ12(0)

− a1
′[(d1

′)2 − d2
′]γ12(1) − a1

′[2d1
′d2

′ − (d1
′)3]γ12(2) + · · · + [−a2

′ + (a1
′)2][(d1

′)2 − d2
′]γ12(0) + · · · }z0

+{γ12(1) − d1
′γ12(2) + · · · − a1

′γ12(0) + a1
′d1

′γ12(1) + · · · + [−a2
′ + (a1

′)2][−d1
′]γ12(0) + · · · }z1

+{}z2 + {}z3 + {}z4 + {}z5 + {}z6 + · · · .

Now, collecting the terms proportional to z−1, z0, z1, etc., the expressions for cross covariances at lag −1,0,1 are given by

γ
(c)
12 (−1) = −d1

′γ12(0) + [(d1
′)2 − d2

′]γ12(1) + [2d1
′d2

′ − (d1
′)3]γ12(2) + · · ·

− a1
′[(d1

′)2 − d2
′]γ12(0) − a1

′[2d1
′d2

′ − (d1
′)3]γ12(1) + · · ·

+ [−a2
′ + (a1

′)2][2d1
′d2

′ − (d1
′)3]γ12(0) + · · · ,
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γ
(c)
12 (0) = γ12(0) − d1

′γ12(1) + [(d1
′)2 − d2

′]γ12(2) + [2d1
′d2

′ − (d1
′)3]γ12(3) + · · ·

+ a1
′d1

′γ12(0) − a1
′[(d1

′)2 − d2
′]γ12(1) − a1

′[2d1
′d2

′ − (d1
′)3]γ12(2) + · · ·

+ [−a2
′ + (a1

′)2][(d1
′)2 − d2

′]γ12(0) + · · · ,

γ
(c)
12 (1) = γ12(1) − d1

′γ12(2) − a1
′γ12(0) + a1

′d1
′γ12(1) − d1

′[−a2
′ + (a1

′)2]γ12(0) + · · · .

We note that γ
(c)
12 (−1), γ

(c)
12 (−2), . . . , are nonzero in the

presence of measurement noise leading to spurious causality.
Furthermore, the spurious causality terms γ

(c)
12 (−1), γ

(c)
12 (−2),

. . . , are all proportional to d1
′ and d2

′. Hence, they all go to
zero as d1

′ and d2
′ → zero (i.e., if Y has no measurement

noise). This happens even if a1
′, a2

′, and a3
′ are still nonzero

(i.e., even if X still has measurement noise). In other words,
it is the presence of measurement noise in the driving term
(Y ) that causes spurious Granger causality. The true causality
terms [γ12(k) for k > 0] are also modified by the presence of
noise. For example, γ12(1) is changed to γ12(1) − a1

′γ12(0) −
d1

′[−a2
′ + (a1

′)2]γ12(0). Hence, even the true causality gets
modified by the presence of noise.

The above theoretical results bring out clearly the adverse
effect that noise can have on correctly determining directional
influences. Numerical simulations demonstrating the effect of
noise on Granger causality for an AR(2) process were already
given in [30].

IV. A BIVARIATE AR( p) PROCESS

Consider a class of bivariate AR process of order p with
unidirectional driving given by

X(t) =
p∑

i=1

aiX(t − i) + blY (t − l) + ξ (t), (35)

Y (t) =
p∑

i=1

diY (t − i) + η(t), (36)

where 1 � l � p. From the above equations, we see that Y

drives X and X does not drive Y in the Granger sense. We now
consider the effect of measurement noise on Granger causality.

Case 1: Only Y (t) has measurement noise

We need to write Eqs. (35) and (36) as two univariate
processes. We proceed as follows:(

1 −
p∑

i=1

aiB
i

)
X(t) = blY (t − l) + ξ (t), (37)

(
1 −

p∑
i=1

diB
i

)
Y (t) = η(t). (38)

Let P2(B) = (1 − ∑p

i=1 diB
i). Applying P2(B) on both sides

of Eq. (14), we get(
1 −

p∑
i=1

diB
i

)
Y (c)(t) =

(
1 −

p∑
i=1

diB
i

)
Y (t)

+
(

1 −
p∑

i=1

diB
i

)
η′(t).

From Eq. (38), (1 − ∑p

i=1 diB
i)Y (t) = η(t). So, the above

equation becomes(
1 −

p∑
i=1

diB
i

)
Y (c)(t) = η(t) +

(
1 −

p∑
i=1

diB
i

)
η′(t).

(39)

Consider the right hand side of Eq. (39). We have to find a
white noise process η(c)(t) such that

η(t) +
(

1 −
p∑

i=1

diB
i

)
η′(t) =

(
1 +

p∑
i=1

di
′Bi

)
η(c)(t).

(40)

Let P4(B) = (1 + ∑p

i=1 di
′Bi). To determine d1

′, d2
′, d3

′, . . . ,
dp

′ and σ 2
η(c) , we proceed as follows. We find the variance,

autocovariance at lag 1, lag 2, . . . , lag p using Eq. (40).
From the resulting p + 1 equations, we can determine d1

′, d2
′,

d3
′, . . . , dp

′ and σ 2
η(c) in terms of known quantities. Since X is

noise free, we have X(c)(t) = X(t) and ξ (c)(t) = ξ (t). Hence,
P3(B) = 1. The two generating functions are connected by
Eq. (12). Thus, we have

�
(c)
12 (z) =

[
1 +

p∑
i=1

di
′

zi

]−1

�12(z). (41)

The expressions for �12(z) and �
(c)
12 (z) are as given in Eq. (22).

By using the above in Eq. (41) and collecting the terms
proportional to z−1, we get the expression for γ

(c)
12 (−1) as

γ
(c)
12 (−1) = −d1

′γ12(0) + [(d1
′)2 − d2

′]γ12(1)

+ [−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(2)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(3)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(4) + · · · .

Collecting the terms proportional to z0 on both sides, we get

γ
(c)
12 (0) = γ12(0) − d1

′γ12(1) + [(d1
′)2 − d2

′]γ12(2)

+ [−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(3)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(4)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(5) + · · · .

On collecting the terms proportional to z1 on both sides, we get

γ
(c)
12 (1) = γ12(1) − d1

′γ12(2) + [(d1
′)2 − d2

′]γ12(3)

+ [−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(4)

+[−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(5)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(6) + · · · .
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We again observe that γ
(c)
12 (k) for k < 0 are no longer zero.

This implies that X causes Y (c) in the presence of measurement
noise giving rise to spurious Granger causality. The term
γ

(c)
12 (−1) is proportional to d1

′, d2
′, . . . , dp

′. This is also true for
other spurious terms γ

(c)
12 (k) for k < −1. Hence, all spurious

terms go to zero if di
′ → 0 for 1 � i � p, that is, if the added

noise in Y goes to zero.

Case 2: Both X(t) and Y (t) have measurement noise

Let a zero mean white noise process ξ ′(t) be added even to
X(t) as shown in Eq. (23). We first rewrite X(t) as a univariate
process. We proceed as follows. From Eq. (38), we get

Y (t − l) =
[

1 −
p∑

i=1

diB
i

]−1

η(t − l).

Substituting the above in Eq. (37), we have,

(
1 −

p∑
i=1

aiB
i

)
X(t) = bl

[
1 −

p∑
i=1

diB
i

]−1

η(t − l) + ξ (t).

(42)

We first find a white noise process ξ (w)(t) such that

bl

[
1 −

p∑
i=1

diB
i

]−1

η(t − l) + ξ (t)

=
[

1 −
p∑

i=1

γiB
i

]−1

ξ (w)(t). (43)

In order to find γ1, γ2, . . . , γp and σ 2
ξ (w) , we find the variance,

covariance at lag 1, lag 2, . . . , lag p using Eq. (43). On solving
these p + 1 simultaneous equations, all γi’s and σ 2

ξ (w) can be
expressed in terms of system parameters but the corresponding

expressions are very lengthy. We get [from Eqs. (42) and (43)](
1 −

p∑
i=1

aiB
i

)
X(t) =

[
1 −

p∑
i=1

γiB
i

]−1

ξ (w)(t),

which can be rewritten as[
1 −

p∑
i=1

γiB
i

] [
1 −

p∑
i=1

aiB
i

]
X(t) = ξ (w)(t).

Thus, we have managed to rewrite X(t) as a univariate process
with

P1(B) =
(

1 −
p∑

i=1

γiB
i

) (
1 −

p∑
i=1

aiB
i

)
.

Now, applying P1(B) on both sides of Eq. (23), we have

P1(B)X(c)(t) = P1(B)X(t) + P1(B)ξ ′(t),

which gives

P1(B)X(c)(t) = ξ (w)(t) + P1(B)ξ ′(t).

Next we need to rewrite X(c)(t) in univariate form. That is,
we have to find a new white noise process ξ (c)(t) (of the noisy
signal) such that

ξ (w)(t) + P1(B)ξ ′(t) = P3(B)ξ (c)(t), (44)

where P3(B) = (1 + ∑p+1
i=1 ai

′Bi). In order to find a1
′, a2

′, . . . ,
ap+1

′ and σ 2
ξ (c) , we get a system of (p + 2) equations by finding

variance and covariances at lag 1, lag 2, . . . , lag (p + 1) using
Eq. (44) and solving the resulting system of equations. From
Eq. (12), the generating functions of the noisy and pure signals
are related by

�
(c)
12 (z) =

[
1 +

p+1∑
i=1

ai
′zi

]−1 [
1 +

p∑
i=1

di
′

zi

]−1

�12(z). (45)

By collecting the terms proportional to z−1, we find cross
covariance at lag −1 to be

γ
(c)
12 (−1) = {−d1

′γ12(0) + [(d1
′)2 − d2

′]γ12(1) + [−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(2)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(3) + [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(4) + · · · }

− a1
′{[(d1

′)2 − d2
′]γ12(0) + [−d3

′ + 2d1
′d2

′ − (d1
′)3]γ12(1)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2(d2

′)]γ12(2) + [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(3) + · · · }

+ [−a2
′ + (a1

′)2]{[−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(0) + [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2(d2

′)]γ12(1)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(2) + · · · }

+ [−a3
′ + 2a1

′a2
′ − (a1

′)3]{[−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(0)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(1) + · · · } + · · · .

By collecting the terms proportional to z0, we get the expression for cross covariance at lag 0 as

γ
(c)
12 (0) = {γ12(0) − d1

′γ12(1) + [(d1
′)2 − d2

′]γ12(2) + [−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(3)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(4) + [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(5) + · · · }

− a1
′{[(d1

′)2 − d2
′]γ12(1) + [−d3

′ + 2d1
′d2

′ − (d1
′)3]γ12(2)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2(d2

′)]γ12(3) + [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(4) + · · · }
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+ [−a2
′ + (a1

′)2]{[−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(1) + [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2(d2

′)]γ12(2)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(3) + · · · }

+ [−a3
′ + 2a1

′a2
′ − (a1

′)3]{[−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(1)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(2) + · · · } + · · · .

Finally, on collecting the terms proportional to z1 on both sides, we get the expression for cross covariance at lag 1 as

γ
(c)
12 (1) = {γ12(1) − d1

′γ12(2) + [(d1
′)2 − d2

′]γ12(3) + [−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(4)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2d2

′]γ12(5) + [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(6) + · · · }

− a1
′{[(d1

′)2 − d2
′]γ12(2) + [−d3

′ + 2d1
′d2

′ − (d1
′)3]γ12(3)

+ [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2(d2

′)]γ12(4) + [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(5) + · · · }

+ [−a2
′ + (a1

′)2]{[−d3
′ + 2d1

′d2
′ − (d1

′)3]γ12(2) + [−d4
′ + 2d1

′d3
′ + (d1

′)2 − 3(d1
′)2(d2

′)]γ12(3)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(4) + · · · } + [−a3

′ + 2a1
′a2

′ − (a1
′)3]{[−d4

′ + 2d1
′d3

′ + (d1
′)2 − 3(d1

′)2d2
′]γ12(2)

+ [−d5
′ + 2d1

′d4
′ − 3(d1

′)2d3
′]γ12(3) + · · · } + · · · .

We see that γ
(c)
12 (−1) is nonzero due to the terms d1

′,
d2

′, d3
′, . . . , dp

′. Hence, when these terms are nonzero in
the presence of measurement noise, spurious causality exists.
Furthermore, since γ

(c)
12 (k) for k > 0 differs from γ12(k) by

terms proportional to d1
′, d2

′, d3
′, . . . , dp

′, and a1
′, a2

′, a3
′, . . . ,

ap
′, even true causality is modified by the presence of noise in

both channels.

V. SIMULATION RESULTS FOR NOISY DATA

We simulated a bivariate AR(3) process given by

X(t) = aX(t − 1) + bY (t − 1) + ξ (t),

Y (t) = d1Y (t − 1) + d2Y (t − 2) + d3Y (t − 3) + η(t). (46)

The values of the parameters chosen were a = 1, b = 2,
d1 = 0.2, d2 = 0.3, d3 = 0.4, σξ = 0.2, and ση = 1.0. We
obtained two time series X and Y and then added Gaussian
measurement noise with σξ ′ = 0.4 and ση′ = 2.5 to X and Y ,
respectively. The data set consisted of 100 realizations, each of
length 250 ms (50 points) with the sampling period chosen as
50 ms. From this data set, Granger causality in the frequency
domain (also known as the Granger causality spectrum) was
estimated using the following expressions [40]:

IY→X(f ) = ln
SXX(f )

SXX(f ) − (
�YY − �2

XY

�XX

)|HXY (f )|2
, (47)

IX→Y (f ) = ln
SYY (f )

SYY (f ) − (
�XX − �2

YX

�YY

)|HYX(f )|2
, (48)

where S is the spectral density matrix, H is the transfer
matrix, and � is the noise covariance matrix. Further details
can be found in [40]. Granger causality spectra IX→Y (f ) and
IY→X(f ) are plotted in Fig. 1. The true causality spectra are
represented by solid lines while the computed causality spectra
for the noisy data are represented by dashed lines. We observe
both the presence of spurious causality and the suppression of
true causality due to measurement noise.

Likewise, we simulated a bivariate AR(4) process given by

X(t) = aX(t − 1) + bY (t − 1) + ξ (t),

Y (t) = d1Y (t − 1) + d2Y (t − 2) + d3Y (t − 3)

+ d4Y (t − 4) + η(t). (49)

The values of the parameters chosen were a = 1, b = 1.5,
d1 = 0.1, d2 = 0.2, d3 = 0.3, and d4 = 0.4. The values of the
standard deviation of the process noise (σξ , ση) and added
Gaussian measurement noise (σξ ′ , ση′ ) were the same as for
the AR(3) process. Granger causality spectra IX→Y (f ) and
IY→X(f ) are plotted in Fig. 2. Again, similar results are
observed.
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FIG. 1. Granger causality spectra for a bivariate AR(3) process:
(a) causality from X → Y and (b) causality from Y → X. The true
causality spectra are represented by solid lines, while the spectra for
noisy data are represented by dashed lines.
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FIG. 2. Granger causality spectra for a bivariate AR(4) process:
(a) causality from X → Y and (b) causality from Y → X. The true
causality spectra are represented by solid lines, while the spectra for
noisy data are represented by dashed lines.

VI. DENOISING USING KEM ALGORITHM

The Kalman smoother in conjunction with Expectation-
Maximization algorithm (also called the KEM algo-
rithm [30,31]) was used to denoise noisy data. Further details
of this algorithm can be found in [30,31].

The noisy data generated in the previous section for AR(3)
and AR(4) processes were denoised by the KEM algorithm and
Granger causality was again computed. The corresponding
results are shown in Figs. 3 and 4 for AR(3) and AR(4)
processes, respectively. We see in both cases that spurious
causality is eliminated and the true causality is recovered to
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FIG. 3. Granger causality spectra for the bivariate AR(3) process
in Fig. 1: (a) causality from X → Y and (b) causality from Y → X.
The true causality spectra are represented by solid lines, while the
spectra for data denoised by the KEM algorithm are represented by
dashed lines.
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FIG. 4. Granger causality spectra for the bivariate AR(4) process
in Fig. 2: (a) causality from X → Y and (b) causality from Y → X.
The true causality spectra are represented by solid lines, while the
spectra for data denoised by the KEM algorithm are represented by
dashed lines.

a great extent by the use of the KEM denoising algorithm.
However, there are also artifacts like a peak at 40 Hz that was
not originally present in the true causality.

VII. CONCLUSIONS

We obtained analytical expressions that explicitly demon-
strate the effect of measurement noise and system parameters
on Granger causality estimation by considering two cases for
a bivariate autoregressive process of order 2 [AR(2) process].
We showed that spurious causality can arise when noise is
added to the driving time series (case 1) and true causality
can be suppressed by the presence of noise in either time
series (case 2). Likewise, we analytically showed similar
results for a bivariate autoregressive process of order p [AR(p)
process]. We demonstrated the above adverse effects of
noise by numerically simulating AR(3) and AR(4) processes.
Finally, using the denoising KEM algorithm we eliminated the
spurious causality and recovered the true causal direction (to
a substantial extent) in the above examples.
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APPENDIX A

A few specific solutions for the system of equa-
tions (19), (20), and (21) are as follows:

(i) When d1 = 0,d2 = 0, then d1
′ = 0,d2

′ = 0 and ση(c) =
±

√
ση

2 + ση′ 2.
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(ii) When d1 = 1,d2 = 1, we obtained the following solu-
tions:

(a) d1
′ = 0,

d2
′ = −ση

2 + 3ση′ 2 ± √
ση

4 + 6ση
2ση′ 2 + 5ση′ 4

2ση′ 2
,

ση(c) = ∓
√

ση
2 + 3ση′ 2 ∓ √

ση
4 + 6ση

2ση′ 2 + 5ση′ 4

√
2

.

(b) d1
′ = ∓

√
ση

2+ση′ 2

ση′ , d2
′ = −1, ση(c) = ση′ .

APPENDIX B

A few specific solutions for the system of equations (31), (32), (33), and (34) are as follows:

(i) If a = 0, γ1 = 0, and γ2 = 0 (this is true when d1 = 0, d2 = 0, and b = 0 or 1) then, a′
1 = 0, a′

2 = 0, a′
3 = 0, and

σξ (c) = ±√
σξ ′ 2 + σξ (w) 2.

(ii) If a = 1, γ1 = 0, and γ2 = 0 then we get four solutions as illustrated below.

First solution: a1
′ = −{ 2σξ ′ 2+σ

ξ (w)
2[σ

ξ (w) +
√

4σξ ′ 2+σ
ξ (w)

2]

2σξ ′ 2 }, a2
′ = 0, a3

′ = 0, and σξ (c) = 1
2 [σξ (w) − √

4σξ ′ 2 + σξ (w) 2].

Second solution: a1
′ = −{ 2σξ ′ 2+σ

ξ (w)
2[σ

ξ (w) +
√

4σξ ′ 2+σ
ξ (w)

2]

2σξ ′ 2 }, a2
′ =0, a3

′ =0, and σξ (c) = 1
2 [−σξ (w) + √

4σξ ′ 2 + σξ (w) 2].

Third solution: a1
′ = −{ 2σξ ′ 2+σ

ξ (w)
2−σ

ξ (w)
√

4σξ ′ 2+σ
ξ (w)

2

2σξ ′ 2 }, a2
′ = 0, a3

′ = 0, and σξ (c) = 1
2 [−σξ (w) − √

4σξ ′ 2 + σξ (w) 2].

Fourth solution: a1
′ = −{ 2σξ ′ 2+σ

ξ (w)
2−σ

ξ (w)
√

4σξ ′ 2+σ
ξ (w)

2

2σξ ′ 2 }, a2
′ = 0, a3

′ = 0, and σξ (c) = 1
2 [σξ (w) + √

4σξ ′ 2 + σξ (w) 2].
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