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Effect of measurement noise on Granger causality
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Most of the signals recorded in experiments are inevitably contaminated by measurement noise. Hence, it is
important to understand the effect of such noise on estimating causal relations between such signals. A primary
tool for estimating causality is Granger causality. Granger causality can be computed by modeling the signal
using a bivariate autoregressive (AR) process. In this paper, we greatly extend the previous analysis of the effect
of noise by considering a bivariate AR process of general order p. From this analysis, we analytically obtain
the dependence of Granger causality on various noise-dependent system parameters. In particular, we show that

measurement noise can lead to spurious Granger causality and can suppress true Granger causality. These results
are verified numerically. Finally, we show how true causality can be recovered numerically using the Kalman

expectation maximization algorithm.
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I. INTRODUCTION

Many experiments yield multivariate time series measure-
ments of various phenomena. Given these multivariate time
series data, it is natural to examine causal relations within these
data. A popular method used to estimate such causal relations
is Granger causality [ 1-3]. Granger causality has been recently
applied to a variety of fields including neuroscience [4-20],
physics [21-23], and climate change [24-27]. In this method,
we assume that the recorded multichannel can be modeled as a
realization of a stationary vector autoregressive (AR) process
of order p [AR(p)]. We evaluate the causal relation between
two time series by examining if the prediction of one series
could be improved by incorporating the other. However, the
experimental signals are typically noisy. Statistical analysis
performed on such data may be adversely affected by the
presence of noise [28]. It is therefore very important to
investigate the effect of measurement noise on Granger
causality estimation.

A general mathematical treatment of the effect of noise on
Granger causality was given in [29]. The explicit analytical
dependence of this effect on various system parameters was
first derived in [30] for signals modeled by a bivariate first-
order AR [AR(1)] process. Furthermore, it was shown that the
adverse effect of noise on Granger causality can be mitigated
by using a denoising method based on Kalman filter theory
and the expectation maximization algorithm (called the KEM
algorithm, in short) [30,31]. This led to further investigations
on the effect of noise on Granger causality [33—-36]. However,
analytical expressions for the effect of measurement noise
on Granger causality for time series modeled by AR(2) and
higher-order AR processes were not derived in the previous
work [30,31]. Since most experimental time series would need
to be modeled by such higher-order processes, it is important
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to extend the previous analysis to bivariate AR(p) processes
with measurement noise. Recently, Sommerlade et al. [32]
investigated analytically the effects of noise on estimating
Granger causality for an AR(2) process and considered a noise
mitigating algorithm similar to the one in [30,31].

In this paper, we make further progress by obtaining
analytical expressions that explicitly demonstrate how the
measurement noise affects Granger causality (as a function
of system parameters) by considering first an AR(2) process
and then an AR(p) process (with unidirectional driving).

The organization of this paper is as follows: In Sec. II,
we start by briefly summarizing the procedure that enables
the effects of added (measurement) noise on the estimation of
Granger causality to be investigated analytically. In Sec. I1I, we
then consider a bivariate second-order autoregressive [AR(2)]
process. Here, we consider two cases as follows:

Case 1: Measurement noise is added only to the driving
time series Y (¢).

Case 2: Measurement noise is added to both time series
X(t)and Y (2).

Explicit expressions for the effect of noise on Granger
causality are derived for these two cases. In Sec. IV, similar
expressions for the effect of noise on Granger causality are
derived for a bivariate autoregressive process of order p
[AR(p) process] with unidirectional driving (again for the two
cases defined above). This analysis allows us to conclude that
spurious causality can arise when noise is added to the driving
time series. Furthermore, it is shown that true causality can be
suppressed by the presence of noise in either time series. In
Sec. V, we carry out a few numerical simulations validating
the above theoretical results. In Sec. VI, we show how the
noise can be removed using the KEM algorithm [30,31]. Our
conclusions are given in Sec. VIIL.

II. THEORETICAL FRAMEWORK

We briefly outline the theoretical framework [29,30,37,38]
required to compute Granger causality. Consider two time
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series X(¢) and Y(¢) modeled as a combined bivariate au-
toregressive process given by

p
D Xt — k) + b Yt — ] = E\@), ()
k=0
P
D L X(t — k) + diY (t — )] = Ex(t). )
k=0

Here ay, by, ci, and d; are the AR coefficients and E;(¢) are
the temporally uncorrelated residual errors.

We rewrite the above bivariate process as two univariate
processes [37] given by

Pi(B)X(t) = (1), P(B)Y(t) = n(1), 3)

where B is the lag operator defined as B¥X(t) = X(t — k)
and P;(B) and P,(B) are polynomials that could have infinite
order. The new noise terms & (¢) and 1(¢) can now be correlated.
If y12(k) denotes the covariance at lag k between these two
noises,

yi2(k) = cov(§(1),n(1))

then, by Pierce and Haugh’s theorem [37], Y (¢) causes X(¢) in
the Granger sense if and only if

yi2(k) #0

Similarly X(¢) causes Y (¢) if and only if y;,(k) # O for some
k <0.

Now, consider the time series X(©(¢) and Y©(¢) contami-
nated with measurement noises £’(¢) and n'(¢), respectively:

k=...,-1,0,1,..., (4

for some k > 0. 5)

Xty = X(t) + &£'(1), (6)

YOu) = Y(t)+ /(). (7)

Here £'(t), n/(¢) are uncorrelated Gaussian white noise pro-
cesses that are uncorrelated with X(z), Y (¢), £(¢), and 7n(?).
Applying P (B) and P,(B) to X)(¢) and Y©)(t), respectively,
and following standard procedure [29,30,38,39] we get two
univariate AR processes for the noisy time series:

Py (BYP(BYXO(t) = £“9p), .
P ' (BYPy(BYOt) = n). ®

Here £© and 7(© are now uncorrelated Gaussian white noise
processes. Applying the theorem of Pierce and Haugh we say
that the noisy signal Y (©)(¢) causes X‘°)(¢) in the Granger sense
if and only if

yis (k) = covE ().t — k) # 0, ©)
for some k > 0. Similarly X (¢) cause Y)(¢) if and only if
y15 (k) # 0, (10)

for some k < 0.

This formalism can be used to show, in general terms, that
spurious Granger causality can, in principle, be induced by the
measurement noise [29]. Consider the following covariance
generating functions (which are nothing but the z transforms
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of the cross covariances):

[a(z) = Z yia(k)z*,
k=—o00

(11)
o0
Y@= Y rskz.
k=—00
These are related as [29]
Y@ = Py @ P (2 HNa(). (12)

Given the presence of the additional term P;l(z)P[l(Z_l)

introduced by measurement noise, it is possible that yl(g)(k) #*
0 for some negative k even if yjp(k) =0 for all £k <O (i.e.,
even if X does not cause Y). Hence, measurement noise can
lead to spurious Granger causality. In the following sections,
we obtain analytic expressions that demonstrate this explicitly
and also obtain its dependence on system parameters.

III. A BIVARIATE AR(2) PROCESS

We now specialize the above results by considering a
second-order bivariate AR(2) process given by

X(t)=aX(t — D+ bY(t — 1) +&@),
Yt)=d Yt — 1)+ drY(t —2)+ n(1).

(13)

From the above equations, we see that Y drives X and X does
notdrive Y in the Granger sense of causality. But measurement
noise substantially changes this situation.

Case 1: Only Y (¢) has measurement noise
In this case,
YO =Y@0)+n1'@). (14)

We rewrite the bivariate process [Eq. (13)] as two univariate
processes. We proceed as follows. Equation (13) can be put in
the form

(1—aB)X(@t)=bY(t —1)+£(@),
(1 —d\B — d,BHY (1) = n(1). (15)

Let Py(B) = (1 — d B — d, B?). Applying P»(B) onboth sides
of Eq. (14), we have

[1—dB—dB21Y®4) =[1—d;B—drB*1Y (1)
+[1 —d\B —dyB’1n(1).

But from Eq. (15), [1 — d\B — d, B?]Y(¢) = n(t). Thus, the
above expression can be rewritten as

[1—d\B—dB> 1Y) = n(t) + [1 —d\ B — d> B> (1).
(16)

Next we rewrite Y(©(¢) as a univariate process. Consider
the right hand side of Eq. (16). We need to find a white noise
process () such that

)+ [1 —diB — d>yB*19'(t) = (1 + di' B + dy' B>)n'“¢).
(17)
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Let
Py(B) = (1+d\'B +d)B?). (18)
To determine d,’, d5’, and 03“), we proceed as follows.
Taking variance on both sides of Eq. (17) we have
o2+ [1+d} + d3]ol = [1+ (di) + @V log.  (19)

Taking autocovariance at lag 1 on both sides of Eq. (17) we
have

—di(1 = dy)oy, = dy/(1 + d)o. (20)
Finally, taking autocovariance at lag 2 on both sides of Eq. (17)
we get

—dyo, =d)oy. (21)

2
From the last equation, d) = —dzfz—”’. As a:((.) > ai/, it
7€)
follows that |dy'| < |d,|. Also dy’ and d, are of opposite sign.
From Egs. (19), (20), and (21), we determine d;’, d,’, and
anz(ﬁ,) in terms of known quantities. Some specific solutions

for the above system of equations are given in Appendix A.

|
Collecting the terms proportional to 771 79 71 etc., we have
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Since we are considering the case where only Y has
measurement noise, X is noise free. Hence, X©(r) = X(¢)
and £©)(t) = £(t). Consequently, P3(B) = 1. Substituting the
expressions for P; and P, [cf. Eq. (18)] in Eq. (12), we find
that the two generating functions are connected by the relation

() dl/ d2 -
ry@=|1+ —+—1| TI'n@.
z 72

But,

o
Fia(2) = ) vk (since yia(k) = 0 for k < 0),
k=0
(22)
ro@ =Y vzt
k=—00
Therefore, we have

C d ! 1 / / 1 / /
r'z) = {1 — 7‘ + 5l Y —d)1+ Z—3[2d1’d2 —(d/)’]

1
+5l@d) = 3@y 1+ }

X [71200) + yia(Dz + ()2 + -+ 1.

FO@) =4+ 0z + 0272 4+ (= y1200) + [(d)')? = doIyin(1) + [2d)'dy — (di Y1y @) + - -}z
+ (11200) — di/y12(1) + [(d1)? — &2 1y12(2) + [2di'dy' — (di' Y 1y12(3) + - - - }2°
+{y() —d'y2) + [(di)? — B+ )2 + 02+ + -

From this it follows that

Y(=1) = —d'y12(0) + [(d)'? — doTyin(1) + [2dy'dy — (di' YTy @) + -+ -,
P5N0) = y12(0) — di'yin(1) + [(di')? — da/ Iy1n(2) + [2dy'dy’ — (d)1yin(3) + - -,
PO = yia(1) — di'yia(2) + (') — doTy1nB) + -+ - .

Here, we observe that yl(?(k) for k < 0 is no longer zero
when d;’ and/or d,’ are nonzero (that is, when measurement
noise 1’ is nonzero). This implies that X causes Y@ in the
presence of noise giving rise to spurious causality. We note

that the spurious causality term yl(g)(— 1) is proportional to d;’

and d,’. This is also true for other spurious terms yl(;)(k) for
k < —1. Hence, all spurious terms goes to zero if d;" — 0 and
d’ — 0 (i.e., if Y has no added noise).

Case 2: Both X(¢) and Y (¢) have measurement noise
In this case, we add a zero mean white noise processes
[£'(1)] even to X(1):
Xty = X(1) + £ (). (23)
We first rewrite X(¢f) as a univariate process. Once this is

done, we finally rewrite X°(¢) as a univariate process. We
proceed as follows. From Eq. (15), we have Y(t — 1) =

[
(1 —d;B — dyB%) 'n(t — 1) and hence
(1 —aB)X(t) = b(1 —d\B — dyB*) 't — 1) + £(1).
(24)

In order to rewrite X (¢) as a univariate process, we have to
find a white noise process &™)(¢) such that

b(1 —dyB —dyBY) 't — 1)+ £(1)
= —nB—nB> EMq). (25)

To determine y, y», and 052(,,,), we proceed as follows. Taking
variance on both sides of Eq. (25) gives

Bo2[1 +d2 + (d2 + o)’ + (& + 2didb)* + -] + o2

=[1+y2+ (2 +1)" + (0 +2nm)’ + - Jolu.
(26)
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Taking autocovariance at lag 1 on both sides of Eq. (25) gives

Do+ d (dF + ) + (& + o) (0] +2d1e) + ]

=[n+n(i +n)+ (1 + )W +2nr2) + - ok

(27)

Taking autocovariance at lag 2 on both sides of Eq. (25) gives
b’ol[(df + do) + di(d} + 2didy) + - - ]

=[07 +9) (7 +2np) + - Jogu. (28)

The expressions for y;, y», and crsz(u,) in terms of system
parameters are very lengthy. Some specific solutions are
as follows (obtained by retaining only four terms in the
approximation):

)Ifb=0,d, =0,and d, =0, then y; =0, y», =0, and
Ogw) = :l:O’E.

) Ifb=1,di=0,andd, =0, then y; =0, y» =0, and
oz = /0, + 052

We finally have

(1 —aB)X®) = (1 — 1B — 1, B> '™ 1)
or
(1 — B — y,BH(1 —aB)X(t) = £™(1).

Thus, we have rewritten X(f) as a univariate process
with Py(B) = (1 — y1B — ¥, B>)(1 — aB). Applying P;(B)
on both sides of Eq. (23), we get

Pi(B)X')t) = Pi(B)X(t) + Pi(B)E'(¢).
That is,
Pi(B)X(t) = E™(t) + Pi(B)E(1).

Finally we are in a position to rewrite X(“)(¢) as a univariate
process. In order to accomplish this, we have to find a new
white noise process £(“)(¢) (of the noisy signal) such that

() + Pi(B)E'(t) = Py(B)E“(1),
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Substituting for P; and P in the equation for £™(¢), we get

£V + 1 —(a+y1B)+ (yia — )B” + yaB’1E' (1)
=+ a'B + a)'B* + a3’ BH)e(1). (30)

To determine a;’, a,’, as’, and 052((.), we proceed as follows.
Taking variance on both sides of Eq. (30) gives

ow + [1+ @+ )+ (na — ) +va’]of
= [14 (@) + @) + (@100 (31)
Taking autocovariance at lag 1 on both sides of Eq. (30) gives
[—(a+y1) — @@+ y)(na —y) + (na — y)(nalo;
=la) +ai’ar + az/a3/]o§(f). (32)
Taking autocovariance at lag 2 on both sides of Eq. (30) gives
[(y1a = y2) — (@ + y)raal o = [a) +al'as'lof,.  (33)

Finally, taking autocovariance at lag 3 on both sides of Eq. (30)
gives

12007 = a3'0 . (34)

The expressions for ai’, a’, as’, and 052(0) are very lengthy.
Few specific solutions are as given in Appendix B. It is easy
to see that as o — 0, ay’, ap’, and a3’ — 0; as 0,y — 0, d}’
and d,” — 0. In other words, all additional terms disappear in
the absence of measurement noise as expected.

From the above analysis, we see that X(©(¢) has been
rewritten in the standard form given in Eq. (8). Y©(r) was
already rewritten in the standard form in the previous section.
Substituting Eqgs. (18) and (29) in Eq. (12), the generating
function of the noisy and pure signals are related by

r9@=0+a'z+ a2 +a/'z) "

d '\
x(14+—+—= I'2(2).
Z Z

where Using Eq. (22) and expanding the terms in powers of z, we
Py(B) = (1 +a;'B + a2’ B> + a5’ B®). (29)  obtain
J
L@ =+ 0272+ {=dv0) + [(d)) = & Tyn(D) + [2d)'dy’ — (d1') Iy () + - -

—ai'[(d)') = do/Iy12(0) — ' [2ddy — (VY lyia(D) + - - + [—a2 + (@Y 12d1dy’ — (d1/Y Iya(0) + - -}z
+ {y1200) — di'yio(1) + [(d\')* = daIy12(2) + [2d)'dy — (dV') 1y12(3) + - - - + a1'dy'112(0)

—ai'[(d\) = dy/Iy(D) — a)'[2d)'dy) = (d\Vly@) + - + [—a2 + (@Y 1[(d1)? — &Iy (0) + - - }2°

+ i) —di/'v@) + - —a'y0) + a/'dyio(1) + - - - + [—a2' + (@) 1[—d) Ty120) + - - - }2!

+ 2+ 2+ 0+ 2+ 8+

Now, collecting the terms proportional to 77!, z°, z!, etc., the expressions for cross covariances at lag —1,0,1 are given by

)’1(5)(—1) = —di'y120) + [(d\)* — &' 1yin(1) + [2d)'dy’ — (d/ ) 1y12(2) + - - -
—ai'[(d)? — & 1y12(0) — a)'[2d)'dy’ — (dy' Y 1y1a (1) + - - -
+[—a) + (a)2d)'dy — (di')1y12(0) + - -+,
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Y50) = y12(0) — di yia(D) + [(dr')? — da' Tyi2(2) + [2d1'dy — (') Ty12(3) + - - -
+ai'd'y120) — ai'[(d')* — do Iyia(1) — ai'[2dy ' dy — (di )1y (2) + - --
+[—ar + (a)(d) — &' Ty 0) + - -+,

Y5 (1) = yia(1) — di'yia(2) — a'y12(0) + ar'dy ' yin(1) — di' [—a2" + (@Y Ty12(0) + - - - .

We note that yl(;)(—l), yl(g)(—Z), ..., are nonzero in the

presence of measurement noise leading to spurious causality.
Furthermore, the spurious causality terms yl(g)(— 1), yl(g)(—Z),
..., are all proportional to di" and d,’. Hence, they all go to
zero as di’ and d,’ — zero (i.e., if Y has no measurement
noise). This happens even if a;’, a;’, and a3’ are still nonzero
(i.e., even if X still has measurement noise). In other words,
it is the presence of measurement noise in the driving term
(Y) that causes spurious Granger causality. The true causality
terms [y12(k) for k > 0] are also modified by the presence of
noise. For example, y1»(1) is changed to y1,(1) — a;’y12(0) —
d\'[—ay’ + (a1")*1y12(0). Hence, even the true causality gets
modified by the presence of noise.

The above theoretical results bring out clearly the adverse
effect that noise can have on correctly determining directional
influences. Numerical simulations demonstrating the effect of
noise on Granger causality for an AR(2) process were already
given in [30].

IV. A BIVARIATE AR(p) PROCESS

Consider a class of bivariate AR process of order p with
unidirectional driving given by

p
X0 =Y aXt—i)+bYt—D+E0, (35

i=1

P
Y(t) =) di¥(t—i)+n), (36)

i=1

where 1 < I < p. From the above equations, we see that ¥
drives X and X does not drive Y in the Granger sense. We now
consider the effect of measurement noise on Granger causality.

Case 1: Only Y (¢) has measurement noise

We need to write Eqgs. (35) and (36) as two univariate
processes. We proceed as follows:

P
(1 —Za,-B’) X@®)=bYt—-D+E@), 37
i=1

P
(1 - Zd,B") Y(t) = n(t). (38)
i=1

Let P,(B) = (1 —
of Eq. (14), we get

P P
(1 - ZdiB’) YO@t) = (1 - Zd,B’) Y(t)
i=1 i=1
p .
+ (1 — Zd,-B’) ().
i=1

"_ d;B'). Applying Py(B) on both sides

(

From Eq. (38), (1 —
equation becomes

p P
(1 - ZdiBi) YO@) = n@t) + (1 - Zd,-B") 7' (t).
i=1

P diBHY(t) = n(1). So, the above

i=1

(39)

Consider the right hand side of Eq. (39). We have to find a
white noise process 7)(¢) such that

p 14
n(t) + (1 - ZdiBi) n'(t) = (1 + Zd/B’) n).
i=1 i=1
(40)

Let P4(B) = (1 + Y7, d/'B"). Todetermine dy’, d>’, dv/, . . .,
dp/ and crnz(t.), we proceed as follows. We find the variance,
autocovariance at lag 1, lag 2,..., lag p using Eq. (40).
From the resulting p + 1 equations, we can determine d,’, d/,
ds',...,d, and crnz(t.) in terms of known quantities. Since X is
noise free, we have X©(¢) = X(z) and £©(r) = £(¢). Hence,
P;(B) = 1. The two generating functions are connected by
Eq. (12). Thus, we have

-1
P /
c di
rS:) = {1 +Zﬂ T12(2). (41)
i=1
The expressions for I'1,(z) and Fgcz)(z) are as given in Eq. (22).

By using the above in Eq. (41) and collecting the terms
proportional to z~!, we get the expression for yl(g)(— 1) as
Y3 (=1 = —di'y2(0) + (')’ = d'Iy12(1)
+l=dy' +2d)/dy) — (&Y lya(2)
+[=dd' +2d)'ds + (di')? = 3(d Y’ Ty12(3)
+[—ds' +2d)'dy = 3(dy')dy @) + - .

Collecting the terms proportional to z° on both sides, we get

7/1(5)(0) = y12(0) — di yi2(1) + [(d))* — d2 1y12(2)
+[—ds' +2d)'dy — (di')1y1(3)
+[—di' +2d)dy' + (d\')* = 3(d1)V’d 1y12(4)
+[—ds' +2dy'dy — 3(d\)d5' 1y12(5) + - - - .

On collecting the terms proportional to z' on both sides, we get

(1) = yio(D) — di'y2(2) + [(d)? = &' Tyia(3)
+[—ds' +2di'dy) — (d\)1y12(4)
+[—dy' +2d\'d5' + (di)* — 3(d)Y’d2' 112(5)
+[—ds' +2d,'dy — 3(d\)*d3'1y12(6) + - - - .
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We again observe that yl(;)(k) for k < 0 are no longer zero.

This implies that X causes Y (© in the presence of measurement
noise giving rise to spurious Granger causality. The term
yl(g)(—l) is proportional tod,’, d>’, ..., d,’. This is also true for
other spurious terms yl(g)(k) for k < —1. Hence, all spurious
terms go to zero if d;’ — O for 1 < i < p, that is, if the added
noise in Y goes to zero.

Case 2: Both X(¢) and Y (¢) have measurement noise

Let a zero mean white noise process &’(#) be added even to
X(t) as shown in Eq. (23). We first rewrite X (¢) as a univariate
process. We proceed as follows. From Eq. (38), we get

p -1
Yt —1) = [1 - Zd,-B’} n(t — ).

i=1

Substituting the above in Eq. (37), we have,

p 4 -
(1 - ZaiBf) X)) =b [1 - ZdiB’} 1 — D +E0).
i=1

i=1

(42)

We first find a white noise process £(¢) such that

P -1
by [1 - Zd,-B‘} (e — 1)+ &)
i=1
p -1
- [1—2%3!’] ). (43)
i=1

In order to find y1, y», ..., ¥, and 052(",,, we find the variance,
covariance atlag 1,1ag 2, . .., lag p using Eq. (43). On solving
these p + 1 simultaneous equations, all y;’s and 052(,“ can be
expressed in terms of system parameters but the corresponding

J
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expressions are very lengthy. We get [from Egs. (42) and (43)]

P P -
(1 - ZaiB’) X@t) = [1 -3 yiB"] §0),
i=1

i=1

which can be rewritten as

p P
[1 -3 yiBi:| [1 - ZaiBi:| X(t) = E™(p).
i=1 i=1

Thus, we have managed to rewrite X (¢) as a univariate process
with

4 4
Pi(B) = (1 - Zy,-B") <1 - Za,-B’) )
i=1 i=1
Now, applying P;(B) on both sides of Eq. (23), we have
P(B)X“(t) = Pi(B)X (1) + Pi(B)E' (1),
which gives
Pi(B)X(t) = " (t) + Py(B)E(1).

Next we need to rewrite X©(¢) in univariate form. That is,
we have to find a new white noise process £(“)(¢) (of the noisy
signal) such that

W) + PUBE (1) = P3(B)EC (), (44)

where P;(B) = (1 + Zf:ll a;’B").Inordertofinda;’,ay/, ...,
ap+1’ and agzm, we geta system of (p + 2) equations by finding
variance and covariances at lag 1,1ag 2, ..., lag (p + 1) using
Eq. (44) and solving the resulting system of equations. From
Eq. (12), the generating functions of the noisy and pure signals

are related by

p+1 -1 p ’ -1
. 4 d;
') = |:1 + Zai’z’i| |:1 + Z Z_’i| [2(2). (45)
i=1 i=1

By collecting the terms proportional to z~—', we find cross

covariance at lag —1 to be

Y5 (=1) = {=di'y12(0) + [(d\)* — & 1yio(D) + [—d5' + 2di'dy — (di Y 1y12(2)
+[—di' +2dyds' + (d\')* = 3(di)da 1y12(3) + [—ds' + 2dy'dy’ — 3(dy)ds Tyin(4) + -+ -}
—a/'{[(d\)* — d1y12(0) + [—d5' +2d,'dy’ — (d') y1a(1)
+[—di' +2dy'ds' + (d\')* = 3(d)(@)y12(2) + [—ds' + 2dy'dy) — 3(d\'Vd3 1y123) + - - }
+[—a + (@' U—ds +2di'dy — (d)1y12(0) + [—dy’ +2dy'd5 + (d)')* — 3(dyY*(d2)]yia(1)

+[—ds' +2dy'ds’ — 3(di)?d3'1y12(2) + - - -}

+[—as' +2a)'ay’ — (a) Y W[—ds' +2d)'d5’ + (di')* — 3(di")2d>'1y12(0)
+[—ds' +2di'dy — 3(di'Yd5' Tyn(1) + -} + - - .

By collecting the terms proportional to z°, we get the expression for cross covariance at lag 0 as

YS0) = {y12(0) — di 'y (1) + [(d1) — da' Iy12(2) + [—ds + 2dy'dy’ — (di' Y’ 1y12(3)
+[—dy +2d)/'dy + (d)')* — 3(d))*da 1y1a(@) + [—ds' + 2dy'dy’ — 3(dy')*d5'1y1a(5) + - - -}
—a'{l(d1y’ — & lyin()) + [—d5" + 2dy'dy’ — (dy'Y’ 1y12(2)
+[—di' +2dyds" + (d\')* = 3(di ) (d)y12(3) + [—ds' + 2dy'dy' — 3(dy' ) d3'ly1n(4) + -}
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ar + (@'Y N[—ds' +2dy'dy) — (d\'YIynn(1) + [—dy’ + 2dyd5" + (di)* — 3(d')*(d2))]y12(2)
ds' +2d\'dy — 3(d\Y’d3 1y12(3) + -+ - }

a3’ +2ar'ay) — (@)Y U—dy' +2dy'ds’ + (di')* — 3(dy')2d> Ty1n(1)

ds' +2dy'dy’ = 3(d\'Yds 1y + -} + - .

Finally, on collecting the terms proportional to z! on both sides, we get the expression for cross covariance at lag 1 as
Y5 (D) = {yi() — di'yia2) + [(diV — &y (3) + [—ds' +2dy'dy’ — (dy') 1y12(4)
+[—dy +2dy'd + (d))* — 3(d\)’d 1y12(5) + [—ds' + 2dy'dy’ — 3(d))*d5' 1y12(6) + - -}
—a'{l(d1'V — &) Iy12(2) + [—ds" + 2dy'dy’ — (d') 1y12(3)
+[—dy +2dy'd) + (d\)* = 3d\V(d)]yin@) + [—ds' + 2d)'dy’ — 3(d)'Vds 1y (5) + -+ }
+ [~ + (@'Y Nl—ds' + 2di'd) — (@) 1y12(2) + [—ds' + 2dy'd5 + (dy')* — 3(dy)Y(d2))]y12(3)
+[—ds' +2dy'dy — 3(d)’dy Ty(@) + -} + [—as’ + 2ar'ay) — (@Y W[—ds' +2d)'ds' + (di)* — 3(di)d 1y12(2)

+[—ds' +2dy'dy — 3(dy')’d5' Ty1n(3) + -} + - .

We see that yl(;)(—l) is nonzero due to the terms d’,

dy, di', ..., d,’. Hence, when these terms are nonzero in
the presence of measurement noise, spurious causality exists.
Furthermore, since yl(g)(k) for k > 0 differs from y(k) by
terms proportionaltod,’,d»’, ds’, ..., d,’,anda’,ay’ a3, . . .,
a,’, even true causality is modified by the presence of noise in
both channels.

V. SIMULATION RESULTS FOR NOISY DATA

We simulated a bivariate AR(3) process given by

Xt)=aX(t —1)+bY(t —1)+&(2),
YO) =diY(t = 1)+ oY (t —2) +d3Y(t = 3) +n(t). (46)

The values of the parameters chosen were a =1, b =2,
d =02, d, =03, d3=04, 0 =02, and 0, =1.0. We
obtained two time series X and Y and then added Gaussian
measurement noise with oy = 0.4 and o,y =2.5t0 X and Y,
respectively. The data set consisted of 100 realizations, each of
length 250 ms (50 points) with the sampling period chosen as
50 ms. From this data set, Granger causality in the frequency
domain (also known as the Granger causality spectrum) was
estimated using the following expressions [40]:

S
Iy-x(f)=In i) O
Sxx(f) — (Zyy — E_}):;)|HXY(f)|2
Ixy(f)=1In Srvlf) (48)

Syy(f) — (Exx — 2%) | Hyx ()2

where S is the spectral density matrix, H is the transfer
matrix, and X is the noise covariance matrix. Further details
can be found in [40]. Granger causality spectra Ix_,y(f) and
Iy_ x(f) are plotted in Fig. 1. The true causality spectra are
represented by solid lines while the computed causality spectra
for the noisy data are represented by dashed lines. We observe
both the presence of spurious causality and the suppression of
true causality due to measurement noise.

Likewise, we simulated a bivariate AR(4) process given by

X(t)=aX@t -1 +bY(r—1)+E&@),
YO)=di Yt — 1)+ Yt —2)+d3Y(t —3)
+dsY (1 —4) + (). (49)

The values of the parameters chosen were a =1, b = 1.5,
dy =0.1,d, =0.2,d; = 0.3, and dy = 0.4. The values of the
standard deviation of the process noise (o¢, 0,) and added
Gaussian measurement noise (og/, o,y) were the same as for
the AR(3) process. Granger causality spectra Ix_,y(f) and
Iy x(f) are plotted in Fig. 2. Again, similar results are
observed.

X-—>Y
1 T
= = = Before denoising
= -
£08n — Exact
g 06"
T Y
o ]
gOAI \\
g 02§ N
(5] ~~-__
0 R
0 20 40 60 80 100
Y--—>X
5 T
> = = = Before denoising
S 4 — Exact 1
3
= 3
[3)
52
s
1
el Rl R
0 20 40 60 80 100

Frequency (Hz)

FIG. 1. Granger causality spectra for a bivariate AR(3) process:
(a) causality from X — Y and (b) causality from ¥ — X. The true
causality spectra are represented by solid lines, while the spectra for
noisy data are represented by dashed lines.
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FIG. 2. Granger causality spectra for a bivariate AR(4) process:
(a) causality from X — Y and (b) causality from ¥ — X. The true
causality spectra are represented by solid lines, while the spectra for
noisy data are represented by dashed lines.

VI. DENOISING USING KEM ALGORITHM

The Kalman smoother in conjunction with Expectation-
Maximization algorithm (also called the KEM  algo-
rithm [30,31]) was used to denoise noisy data. Further details
of this algorithm can be found in [30,31].

The noisy data generated in the previous section for AR(3)
and AR(4) processes were denoised by the KEM algorithm and
Granger causality was again computed. The corresponding
results are shown in Figs. 3 and 4 for AR(3) and AR(4)
processes, respectively. We see in both cases that spurious
causality is eliminated and the true causality is recovered to

X-=>Y
1 T T T T
= = = After denoising
> L 8
= 0.8 Exact
[}
5 061 4
©
o
5 041 1
o
g 02 1
[0 O' O E M S M o o o o o - - - - =
0 20 40 60 80 100
Y--—>X
5 T T v -
> = = = After denoising |
s 4r Exact i
]
33t 1
© N -
S 2F s Phe ~ 1
c ~ - ~
S 41 Sam=- ™~ ]
0] Seal
0 L L L e -y
0 20 40 60 80 100

Frequency (Hz)

FIG. 3. Granger causality spectra for the bivariate AR(3) process
in Fig. 1: (a) causality from X — Y and (b) causality from ¥ — X.
The true causality spectra are represented by solid lines, while the
spectra for data denoised by the KEM algorithm are represented by
dashed lines.
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X-—>Y
3 T T T

T
o5l = = = After denoising | |
: m— Exact

oL 4

1k 4

Granger Causality
(6]
T

0 10 20 30 40 50 60 70 80 90 100

Y -—>X
T T T T
= = = After denoising
26} m— Exact i
i
T
O 4 R =
[ 4 Y
o . .
E2J P ~ 1
S . PR d o
Sem=m==" ~.-—-_--—-"'--
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L 4
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FIG. 4. Granger causality spectra for the bivariate AR(4) process
in Fig. 2: (a) causality from X — Y and (b) causality from ¥ — X.
The true causality spectra are represented by solid lines, while the
spectra for data denoised by the KEM algorithm are represented by
dashed lines.

a great extent by the use of the KEM denoising algorithm.
However, there are also artifacts like a peak at 40 Hz that was
not originally present in the true causality.

VII. CONCLUSIONS

We obtained analytical expressions that explicitly demon-
strate the effect of measurement noise and system parameters
on Granger causality estimation by considering two cases for
a bivariate autoregressive process of order 2 [AR(2) process].
We showed that spurious causality can arise when noise is
added to the driving time series (case 1) and true causality
can be suppressed by the presence of noise in either time
series (case 2). Likewise, we analytically showed similar
results for a bivariate autoregressive process of order p [AR(p)
process]. We demonstrated the above adverse effects of
noise by numerically simulating AR(3) and AR(4) processes.
Finally, using the denoising KEM algorithm we eliminated the
spurious causality and recovered the true causal direction (to
a substantial extent) in the above examples.
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APPENDIX A

A few specific solutions for the system of equa-
tions (19), (20), and (21) are as follows:

(i) When d; = 0,d, =0, then di’ = 0,d,’ = 0 and 0,0 =
+Vo,? + o,
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(i) When d; = 1,d, = 1, we obtained the following solu-
tions:
(@d,' =0,

0y’ + 30y’ £ o, + 60,20, + S0,
2 9

dy =

20,y

J

PHYSICAL REVIEW E 90, 062127 (2014)

\/a,,z + 30,2 F /o,* + 60,202 + 50,*
V2

Oy = F

(b) dy’ = ;F—V“"z*""’z, dy'

GU/

L, o040 = 0y.

APPENDIX B

A few specific solutions for the system of equations (31), (32),
i) Ifa=0, yy =0, and y, = 0 (this is true when d; = 0,

O—é:(n’) ==+ 05,2 =+ O'g(w)z.

(33), and (34) are as follows:
d, =0, and b =0 or 1) then, a} =0, ay, =0, a}, =0, and

(i) Ifa =1, y; =0, and y, = 0 then we get four solutions as illustrated below.

First solution: a;’ = —{

20§/2+0$(w) 2 [Ug(w) +./ 40§/2+0$(w) 2]

202

Second solution: a;’ = —{

204240, w) [0, w) + 4/ 405 2+ 0w 2]

}, 612/ = 0, a3’ = 0, and Og) = %[Ug(w) - ‘/40'5/2 + O'g(ur)z].

2032

},ay’=0, a3’ =0, and oz = %[—Gsm) + \/40e? + oz ?].

Third solution: ;" = —{ 20,2

Fourth solution: a;” = —{

204240, (w) >~ (w) /402 +0,w)?

20240, (w) > =0 (w) £/ 406 T+ 0 (w) 2
£ : £ }, az/ = O, a3/ = 0, and Ogle) = %[—Og(w) — ,/40’5/2 + O'g(w)z].

2(7512

L, ay =0,a3 =0, and oz =

%[GE(W) + ,/40512 + Oé(w)z].
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