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Granger causality and cross recurrence plots in rheochaos
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Our stress relaxation measurements on wormlike micelles using a Rheo-SALS (rheology + small angle light
scattering) apparatus allow simultaneous measurements of the stress and the scattered depolarized intensity.
The latter is sensitive to orientational ordering of the micelles. To determine the presence of causal influences
between the stress and the depolarized intensity time series, we have used the technique of linear and nonlinear
Granger causality. We find there exists a feedback mechanism between the two time series and that the
orientational order has a stronger causal effect on the stress than vice versa. We have also studied the phase
space dynamics of the stress and the depolarized intensity time series using the recently developed technique
of cross recurrence plots (CRPs). The presence of diagonal line structures in the CRPs unambiguously proves
that the two time series share similar phase space dynamics.
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I. INTRODUCTION

Wormlike micelles under shear flow are turning out to be
classic examples of chaotic nonlinear dynamical systems.
Wormlike micelles are long, flexible cylindrical objects
formed by the self-assembly of surfactant monomers. The
individual worms entangle above a critical concentration to
form viscoelastic gels. Wormlike micelles relax stress
through two mechanisms: Reptation, analogous to polymers,
and by scission and recombination [1]. Due to the latter pro-
cess of relaxing stress, wormlike micelles show extreme
shear-thinning behavior and this shows up as a flat plateau in
the flow curve (stress vs shear rate). Cates et al. were the first
to predict this kind of flow behavior and they attribute this to
a mechanical instability of the shear banding type [2]. In
shear banding systems, the system splits into coexisting
bands that support the same stress but have different average
shear rates. The high shear rate band is lower in viscosity and
is the nematic phase, while the low shear band has a higher
viscosity and is the isotropic phase. Stress relaxation mea-
surements in the plateau region of the flow curve for vis-
coelastic gels of surfactant cetyltimethyammonium tosylate
(CTAT) showed chaotic dynamics [3]. In spite of the short
data trains analyzed (=5000 data points), owing to the low
dimensional nature of the attractors, the phase space dynam-
ics could be quantified in terms of Lyapunov exponents and
fractal correlation dimensions. This phenomenon, termed
rheochaos, has now been observed in many other systems
[4-7] and recently the route to rheochaos has also been ob-
served. Ganapathy and Sood have shown that the route to
rheochaos is via type-II intermittency in stress relaxation
measurements [8] for wormlike micellar gels of surfactant
CTAT in the presence of salt sodium chloride (NaCl). Depo-
larized small angle light scattering measurements done
simultaneously with flow experiments showed that the
depolarized scattered intensity, sensitive to orientational
order fluctuations, showed similar dynamics as that of the
stress/shear rate [8].

In the experiments reported so far [5,6], spatial inhomo-
geneity always accompanies rheochaos. Spatial inhomogene-
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ity has been captured in many recent theoretical models of
rheochaos [9-12]. The theoretical model relevant to the work
described in this paper, proposed by Chakrabarti et al. [12],
is a spatial extension of the homogeneous model first pro-
posed by Hess et al. [13]. This model treats the system as an
orientable fluid and considers the spatiotemporal evolution of
the symmetric traceless nematic order parameter [12]. The
equations of the motion of the stress are not fundamental but
are derived from the underlying dynamics of the alignment
tensor or the local orientational order parameter. An impor-
tant assumption here is that the orientational order parameter
equations are studied in the passive advection approxima-
tion, i.e., the effect of the stress field, arising from orienta-
tional ordering, on the flow profile is ignored. Although this
model ignores features specific to wormlike micelles like
breaking and recombination and shear induced elongation or
breaking of the micelles, it captures the essential orientable
nature of the worms under flow. This model also predicts the
route to rheochaos to be via spatiotemporal intermittency
[12].

Given this strong theoretical backing, it would indeed be
useful to check if there exists any cause and effect relation-
ship between the time series of stress and the depolarized
scattered intensity that were measured experimentally for the
CTAT + NaCl system [8]. If the passive advection approxi-
mation used in the theoretical model [12] described above is
indeed justified, one should expect to find that the orienta-
tional order has a stronger causal influence on the stress than
vice versa. We use the technique first developed by Granger
to study linear causal effects [14] and a recent extension of it
for nonlinear time series [15] to determine if there exists any
causality effects in our data. In this paper we show that there
exists a Granger feedback mechanism between the two time
series and that the depolarized intensity or nematic ordering
has a stronger influence on the stress than vice versa. Sec-
ondly, since standard nonlinear time series analysis proce-
dures fail to quantify the dynamics of the chaotic region in
intermittent data due to insufficient data points, we have used
the method of cross recurrence plots (CRPs). We have ana-
lyzed a data train that shows type-II intermittency and we
find that the stress and orientational order (depolarized inten-
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sity) share similar phase space behavior in the laminar and
chaotic regions.

II. THEORY
A. Linear Granger causality

Consider an experiment in which two time series X(z) and
Y(7) have been simultaneously measured. If the prediction of
X(7) at the current time can be improved by incorporating
past information from Y(z), then Y(r) causes X(z). This idea
of causality was formalized by Granger with reference to
linear regression models of stochastic processes [14] and has
numerous applications in economics [16]. The study of cau-
sality has also been applied to medicine [17] and nonlinear
dynamical systems [18]. Quantitatively speaking, Y(¢) has a
causal influence on X(r), if the variance of the prediction
errors of X(¢) decreases on including information from Y(z).
The basis for Granger causality lies in linear prediction
theory. Let X(z) be a stationary process. It can be expressed
using an autoregressive model where the current value of
X() depends on m past values

m

X(0)= 2 aX(t i) + exl0). (1)
i=1

Here €(7) is the error in prediction whose magnitude can be
evaluated by its variance var(ex(7)) and «;’s are the regres-
sion coefficients. If we now include information from an-
other time series, Y(f), that has also been simultaneously
measured, then the prediction of the current value of X(z)
based on its own past and the past values of Y(z) is

X(=2 aX(t-i)+ 2 bY(t—)+egy(r).  (2)
i=1 i=1

Here €y(7) is the prediction error in X(#) given information
from Y(¢r) and a;, b; are the regression coefficients. If var
(exjy(1))<var(ex(1)), then Y(z) has a causal influence on X(z).
Similarly, for Y(z)

Y(1) = 2 Y (1—i) + el0), 3)
i=1

Y(1)=2 eY(r—i)+ 2 dX(t—i) + ex(0).  (4)
i=1 i=1

If var(ey|x(r)) <var(ey(1)), X(¢) has a causal influence on Y(z).
If var(eyx(1))<var(ey(1)) and var(eyy(1))<var(ex(1)), then
there exists a feedback mechanism between X(7) and Y ().

B. Extended Granger causality

Granger causality was developed for linear processes and
a direct application on nonlinear systems might not be ap-
propriate. Various theoretical models have been put forward
to extend Granger causality for nonlinear systems. We briefly
describe below the steps involved in a recent model by Chen
et al. [15].
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Consider two time series X(¢) and Y(¢). Their joint dynam-

ics can be reconstructed using the following delay vector:
[19,20]

z(r) = [x(0)",y ()], (5)
where

x(0) = (X(0,X(t =), ... . X[t~ (m; = D7D,

yO =@0.Y(t~7), ... Y[t = (my- D7),

m, m, are the embedding dimensions for the two time series
determined from the method of false nearest neighbors, 7, 7
are the delays determined from the first minimum of the
mutual information function, and the superscript 7 stands for
transpose. To investigate causal influences the flow of time is
important and we set T|=T,=T.

In the reconstructed joint phase space of z(r), consider a
small local neighborhood of size e. The dynamics of this
local neighborhood can be described within a linear approxi-
mation and a linear autoregressive model can be used to
predict the dynamics within the neighborhood. The errors in
prediction are given by €y|y() and €yy(t). The reconstruction
and the fitting procedure are now performed on the indi-
vidual time series X(z) and Y(z) in the same local neighbor-
hood and the errors ex(¢) and ey(¢) are determined. The error
ratios var(ey|x(t))/var(ey(r)) and var(eyy(r))/var(ex(t)) are
computed. Since for a nonlinear system, causal inferences
cannot be made by studying a single local neighborhood, the
entire process described above is repeated for various regions
on the attractor and the average of the error ratios are com-
puted. The extended Granger causality index (EGCI) is de-
fined as Ay_ y=(1—var(eyy(1))/var(ex(t))), where (-) stands
for the average. The EGCI is now computed as a function of
the neighborhood size e. For linear systems this index will
remain roughly constant as € decreases, whereas for nonlin-
ear systems, in the small e limit, the EGCI reveals the true
nature of the causal influence.

C. Cross recurrence plots

A major drawback of standard nonlinear time series
analysis routines is the requirement of a long time series.
One of the techniques developed to overcome this limitation
is the method of recurrence plots (RPs) [21-23]. RPs are a
tool used to visualize phase space trajectories and as the
name suggests RPs represent the recurrence of trajectories in
phase space, a basic feature of nonlinear dynamical systems.
The first step towards generating RPs is to completely unfold
the attractor. Using the Takens’ embedding theorem, the
phase space trajectory, x(¢), can be reconstructed by time
delayed vectors of the time series X(z),

x(t) =x;= (X(1),X(t = 7)), ..., X[t —=(m=1)7]).  (6)

Here m and 7 are the embedding dimension as described in
the previous section. The recurrence plot is defined as

R;;=0(¢ - ||);z—x;||) (7)

Here ¢ is a suitably defined cutoff distance, |-|| is the Eu-
clidean norm, and ® is the Heaviside function. If X; falls
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within distance ¢; of x;, then the two trajectories are close by
in phase space and R; ;=1, else R; ;=0. The 1’s and 0’s are
color coded and represented as a plot.

A recent extension of RPs to bivariate time series is the
method of cross recurrence plots (CRPs) [24-26]. Here both
the time series are simultaneously delay embedded in the
same phase space and a test for closeness of the two trajec-
tories is carried out. The CRP is defined as

CR;,; = 0(e;—|lx;— y,|). )

RPs yield a wealth of visual information. Trajectories that
share similar local dynamics show up as diagonals. Static
regions in the trajectory are seen as vertical or horizontal
structures. In order to be more quantitative, Zilbut and Web-
ber have proposed the following recurrence measures
[22,23]. (1) %Recurrence: This is defined as the % of recur-
rence points falling within a given radius. (2) %Determin-
ism: This is defined as the number of recurrence points form-
ing diagonal line structures. The more %determinism, the
more predictable is the signal. Stochastic signals have no
predictability, whereas chaotic signals have short-term pre-
dictability. (3) MaxLine: This is the length of the longest
diagonal. This is inversely related to the maximum Lyapunov
exponent which measures the rate at which phase space tra-
jectories diverge. (4) Entropy: This is the Shannon informa-
tion entropy and is a measure of randomness of the signal. It
has units of bits/bin. A periodic signal has zero entropy since
all the diagonals are of the same length. A random process
has a finite nonzero Shannon entropy. (5) Trend: This is a
measure of the stationarity of the time series. (6) %Laminar-
ity: This is a measure of the % of recurrence points forming
vertical or horizontal line structures. (7) Trapping time: This
is a measure of the average length of the vertical or horizon-
tal line structures. The last two measures were proposed by
Marwan et al. [27].

III. EXPERIMENTAL METHODS

The data analyzed in this paper were obtained from our
earlier stress relaxation experiments on the wormlike micel-
lar system of CTAT 2 wt. % +100 mM NaCl described in
detail in [8]. Under controlled shear rate conditions this sys-
tem shows the type-II intermittency route to rheochaos. We
briefly describe here the method that was used in our earlier
work for generating the bivariate time series of stress and
depolarized intensity. The experiments were performed on a
MCR 300 stress controlled rheometer with SALS attach-
ments at a temperature of 26.5°C. The experiments were
carried out in a cylindrical Couette geometry with top and
bottom windows made of quartz glass (inner cylinder diam-
eter 32 mm, height 16.5 mm, and gap 2 mm). A vertically
polarized (V) laser beam (A=658 nm and spot size 1 mm)
enters the gap between the cylinders along the vorticity (V
Xv) direction, where v is the velocity field. An analyzer
below the Couette geometry allows us to select either the
vertically or the horizontally polarized-depolarized scattered
light (referred to as VH) from the sample without disturbing
the measurements. A condenser beneath the analyzer collects
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FIG. 1. Bivariate time series. (a) Stress time series. (b) Depo-
larized intensity (VH) time series obtained at a shear rate of 25 s,

the scattered light dominantly from a plane 6 mm above the
bottom plate and forms the image on a screen in the (v, Vv)
plane. An 8-bit color CCD camera (Lumenera 075C, 640
X 480 pixels, maximum frame rate of 60 fps) at a frame rate
of 1 frame/750 ms imaged the screen. About 3000 images
were grabbed for each polarization while stress relaxation
measurements were simultaneously going on. The intensity
at various wave vectors from the noise filtered image was
measured and a time series was generated by repeating the
process over each image. The data analyzed in this paper are
at a fixed wave vector, ¢=0.75 ,um‘l.

IV. RESULTS

Figures 1(a) and 1(b) show the partial time series of the
stress and the VH intensity at a fixed shear rate of 25 s~!
respectively. The time series shows intermittent behavior
characterized by the presence of laminar and chaotic regions.
The reason for analyzing this particular data set is twofold:
(1) It would be worthwhile to check whether the two time
series share similar phase space dynamics in the laminar and
chaotic regions and (2) the chaotic region of the time series
cannot be analyzed using normal nonlinear time series analy-
sis procedures due to the relatively short length of the cha-
otic regions. The laminar and chaotic regions of the time
series are denoted as region I and region II and are analyzed
individually.

We first analyze region I of the time series shown in Figs.
1(a) and 1(b) for linear Granger causality using the proce-
dure described in the theory section [14]. The stress and the
VH intensity time series are denoted as X(¢) and Y(z), respec-
tively. A linear autoregressive model fitting for each of the
time series [Egs. (1)—(3)] for increasing model order 1 <m
<200 is done and the variance of the prediction errors of
ex(7) and ey(r) are calculated. We now incorporate informa-
tion from Y(z) in X(¢) and vice versa [Egs. (2) and (4)] and
determine the variance of the prediction errors of €yy(t) and
€yx(t) for 1 <m<200. The variance of the prediction errors
for the mono and bivariate cases drops sharply for 1<m
<30 and saturates for higher values of m. This behavior is
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FIG. 2. (a) Ratio of the variance of errors for Y driving X and
(b) ratio of the variance of errors of X driving Y plotted against the
regression model order m. Here X stand for the stress and Y for the
VH intensity. The inset to (a) shows the Akaike information criteria
(AIC) plotted against the regression model order.

typical of linear regressive models and suggests that for the
experimental time series analyzed here m = 30. Figures 2(a)
and 2(b) show the error ratios var(eyy(t))/var(ex(t)) and var
(€eyx(1))/var(ey(t)) plotted against the regression model order
m. Over the range of m analyzed, the error ratios are <1
implying that X(r) and Y(¢) are better predicted when infor-
mation from Y(¢) and X(¢) is incorporated in the regression
equations. The error ratios are at a minimum for m=33. To
understand the origin of the minimum in the ratio of the
variances, we have evaluated the Akaike Information Criteria
(AIC) [28] for various model orders [inset to Fig. 2(a)]. The
optimal model order estimated from the AIC yields a regres-
sion model order m = 34. This suggests that there is maximal
driving between the two time series (Fig. 1) for this value of
m and leads to a minimum in the ratio of the variances (Fig.
2). For this value of m the time series is predicted using the
various regression coefficients that were computed from Eqs.
(1)—(4). Figure 3 shows the predicted (continuous lines) and
the raw (dashed lines) time series of the stress [region I of
Fig. 1(a)] overlayed on top of each other. The predicted time
series compares reasonably well with the raw data when in-
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FIG. 3. (Color online) (a) Predicted time series of stress (con-
tinuous lines) obtained without using information from VH inten-
sity overlayed on raw time series (dashed lines). (b) Predicted time
series of stress (continuous lines) obtained with using VH intensity
information overlayed on raw time series (dashed lines). Regression
model order m=33.
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FIG. 4. (Color online) (a) Predicted time series of VH intensity
(continuous lines) obtained without using information from stress
overlayed on raw time series (dashed lines). (b) Predicted time se-
ries of VH intensity (continuous lines) obtained with using stress
information overlayed on raw time series (dashed lines). Regression
model order m=33.

formation from the VH intensity time series is used [Fig.
3(b)] than without it [Fig. 3(a)]. Similarly, Fig. 4 shows the
predicted (continuous lines) and the raw (dashed lines) time
series of the VH intensity [region I of Fig. 1(b)] overlayed on
top of each other. Once again, there is reasonable overlap
between the predicted and raw time series when information
from the stress time series is incorporated [Fig. 4(b)]. This
suggests that there exists a feedback mechanism between the
stress and the VH intensity in the laminar region of the time
series. We have carried out the linear causality analysis for
the chaotic region of the time series also. We find that the
variance of the prediction errors do not saturate even for
large m (m>400) implying that a linear regression model is
inappropriate to model the chaotic regions of the time series.

In order to determine the influence of nonlinear correla-
tions in the time series on causality, we have carried out

0.3 T T T T T T T T
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0.0 v T T T B T ® ¥
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FIG. 5. (Color online) EGCI plotted against the box size €. Y
driving X (stars). X driving Y (circles). X stands for the stress and Y
for the VH intensity.
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FIG. 6. CRP of stress and VH intensity in the laminar region.

extended Granger causality tests [15]. We describe below the
results of this analysis. Following the procedure described in
the theory section, we first unfold the attractor of the joint
dynamics and the attractors for the individual time series in a
higher dimensional phase space using the delay-embedding
technique. The time delay of the two time series in the lami-
nar region (region I) was found to be 7=7 and was estimated
from the first minimum of the mutual information function.
The embedding dimension was calculated using the method
of false nearest neighbors and was found to be m=3. The
above two quantities were estimated using the TISEAN soft-
ware [29]. For 7=7, the EGCI could not be estimated due to
a lack of neighbors; however, 7=1 was found to be sufficient
to obtain causal relations [30]. The error ratios var
(ey|x(1))/var(ey(t)) and var(ex|y(r))/var(ex(r)) were computed
for twenty different neighborhoods on the attractor and were
then averaged to compute the EGCI defined earlier. The size
of the neighborhood € was reduced and the above procedure
was repeated. Figure 5 shows the EGCI plotted as a function
of the box size e. We find Ay_ x=0.25, a measure of the
influence of VH intensity on the stress, to be much larger
than the influence of stress on the VH intensity given by
Ay_,y=0.02. We are also unable to go to very small € due to
a lack of neighbors within the neighborhood. We are unable
to carry out this test in the chaotic region of the time series

TABLE 1. The various recurrence quantification measures for
the laminar and chaotic CRPs.

Recurrence measure Laminar region Chaotic region

9Recurrence 2.2% 1.7%
% Determinism 73.5% 51.2%
Maxline 10 21
Entropy 1.5 1.4
Trend 0.2 0.6
9ol_aminar 95.1% 94.5%
Trap time 3.6 3.9
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FIG. 7. CRP of stress and VH intensity in the chaotic region.

due to the following reason: An underlying assumption in the
above procedure is that there are sufficient data points within
a local neighborhood to perform a linear regression analysis
[15]. For a high delay-embedding dimension m=7, as in our
case, an extremely long time series is required to carry out
the extended Granger Causality test.

We will now turn our attention to CRPs. CRPs were gen-
erated and quantified using the software developed by Zilbut
and Webber [31]. The stress and the VH intensity time series
were normalized to have a zero mean and unit variance. The
delay and the embedding dimension for the laminar and cha-
otic regions of the two time series were given in the previous
section and these were used in the generation of CRPs. The
radius of the neighborhood e (fixed radius, Euclidean norm)
for the laminar and chaotic regions were 0.38 and 0.61, re-
spectively. These were chosen based on the criteria that the
%Recurrence should be kept small since large € might cover
the entire attractor and all points will be found recurrent.
Figures 6 and 7 show the CRPs of the VH intensity and
stress in the laminar and chaotic regions, respectively. In
spite of the low %Recurrence =~3% (Table I) implying a
small €, diagonal line structures can be seen. These imply
that in the laminar and chaotic regions the attractors corre-
sponding to the two time series inhabit the same regions of
phase space. Not surprisingly, the %Determinism is larger in
the laminar compared to the chaotic region. The various
measures defined above for quantifying CRPs are shown in
Table 1.

V. CONCLUSIONS

To summarize, we have shown conclusively that there ex-
ists a Granger feedback mechanism between the stress and
the VH intensity time series. The extended Granger causality
test, apt for nonlinear dynamical systems, shows that VH
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intensity time series sensitive to orientational order fluctua-
tions has a stronger influence on stress compared to the re-
verse. Most importantly, the extended Granger causality test
puts the passive advection approximation used in the theo-
retical model [12] for studying the time evolution of the
orientational order parameter on a firmer footing. Using
CRPs we have also shown that the phase space dynamics of
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the bivariate time series are similar in the laminar and the
chaotic regions.
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