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Notations

• Cd : The d-dimensional complex Euclidean space;

• D,T : The open unit disc in the complex plane and the unit circle of
the complex plane;

• C[z1, z2, ..., zd ]: The ring of polynomials in d variables with complex
coefficients;

• A(D2): The algebra of continuous functions on D2 which are
holomorphic in D2;

• bD2: the Silov boundary of D2 which is T2;

• ν(A): the numerical radius of a square matrix A;

• σT (T1,T2, . . . ,Td) : The Taylor joint spectrum of a commuting
d − tuple of operators (T1,T2, . . . ,Td).
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Definition (Algebraic Variety)

A subset W ⊂ Cd is called an (algebraic) variety if

W = {(z1, z2, ..., zd) ∈ Cd : ξα(z1, z2, ..., zd) = 0 for all α ∈ Λ}

where Λ is an index set and ξα are in C[z1, z2, ..., zd ].

Definition (Distinguished Boundary)

The distinguished boundary bD2 is defined to be the smallest closed
subset C of D2 such that every function in A(D2), attains its maximum
modulus on C . It turns out that bD2 = T2.

Definition (Distinguished variety)

A variety W is called a distinguished variety with respect to D2 if

W ∩ D2 6= ∅ and W ∩ ∂D2 = W ∩ bD2.
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Matrix rational inner functions

A matrix valued holomorphic function Ψ on D is said to be rational inner

if there is a block unitary matrix U =

[
A B
C D

]
such that

Ψ(z) = A + zB(I − zD)−1C .

Obviously, there is a matrix polynomial F and scalar polynomial q such
that Ψ(z) = F (z)/q(z) and there is no factor of q that divides every
entry of F . The poles of Ψ, i.e., the zeros of q, are away from D.

If WΨ is the algebraic variety

WΨ := {(z1, z2) ∈ C2 : det(F (z1)− z2q(z1)I ) = 0},

then D2 ∩WΨ = {(z1, z2) ∈ D2 : det(Ψ(z1)− z2I ) = 0}.
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The Agler-McCarthy-Knese Theorem

Theorem

Let Ψ and WΨ be as above. Then the following are equivalent:

(i) WΨ is a distinguished variety with respect to D2;

(ii) ν(Ψ(z)) < 1 for all z in D;

Conversely, if W is any distinguished variety with respect to D2, then
there is a matrix-valued rational inner function Ψ on D such that

W ∩ D2 =WΨ ∩ D2.

The proof of the converse part consists of manufacturing a pair of
commuting pure isometries on a Hilbert space of functions supported on
W ∩ T2. This pair is then modelled as (Mz ,MΨ) in the Sz.-Nagy–Foias
style.
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The polynomial ξΨ

Let α be a zero of q. If there is a β such that (α, β) ∈ WΨ, then
detF (α) = 0. This means that (α, z2) is a zero of the polynomial
det(F (z1)− z2q(z1)I ) for every z2. Thus, there is an mα ≥ 1 such that
det(F (z1)− z2q(z1)I ) is divisible by (z1−α)mα . Take the largest such mα

for every α that is a zero of q. Then, there is a polynomial ξΨ such that

det(F (z1)− z2q(z1)I ) =
∏

α∈Z(q)

(z1 − α)mαξΨ(z1, z2) (1)

with the understanding that mα could be 0 for some α (precisely those α
for which there is no β satisfying (α, β) ∈ WΨ).

After an example, we shall restate the Agler–McCarthy–Knese theorem in
a way that allows a description of the whole variety instead of just its
portion in D2, under a natural condition. We use the notations E for the
complement of D in C.
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An example

To illustrate the idea above, consider the 2× 2 rational inner function

Ψ(z) =

(
z−a

1−az 0

0 z−b
1−bz

)

where a and b are from the unit disc.

Then,

F (z) =

(
(1− bz)(z − a) 0

0 (1− az)(z − b)

)
,

q(z) = (1− az)(1− bz) and

det(F (z1)− z2q(z1)I ) =

(1− az1)(1− bz1)
[
(z1 − a)− z2(1− az1)

][
(z1 − b)− z2(1− bz1)

]
.
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An improved Agler-McCarthy-Knese Theorem

Theorem

Let Ψ and WΨ be as above. Then the following are equivalent:

(i) WΨ is a distinguished variety with respect to D2;

(ii) ν(Ψ(z)) < 1 for all z in D;

(iii) Z (ξΨ) ⊂ D2 ∪ T2 ∪ E2;

(iv) Z (ξΨ) is a distinguished variety.

Conversely, if W is any distinguished variety with respect to D2, then
there is a matrix-valued rational inner function Ψ on D such that

W ∩ D2 =WΨ ∩ D2 = Z (ξΨ) ∩ D2.

Moreover, W = Z (ξΨ) if and only if both W and Z (ξΨ) are contained in
D2 ∪ T2 ∪ E2.
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The Berger Coburn Lebow Theorem

Consider a projection P and a unitary U on a Hilbert space F . Define
two B(F)-valued functions

Φ(z) = P⊥U + zPU and Ψ(z) = U∗P + zU∗P⊥.

Consider the commuting pair of multiplication operators (MΦ,MΨ) on
the vector valued Hardy space H2(F).

Easy to see that these are commuting isometries.

If we consider any Hilbert space L and any commuting unitary operator
W1 and W2 on L, then (MΦ ⊕W1,MΨ ⊕W2) on H2(F)⊕ L is also a
pair of commuting isometries.

The Berger–Coburn–Lebow theorem says that any pair of commuting
isometries is of this form.
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Theorem (Berger–Coburn–Lebow)

Let (V1,V2) be a commuting pair of isometries acting on H. Then the
space H breaks into a direct sum of reducing subspaces H = Hu ⊕H⊥u
such that

1 V1|Hu and V2|Hu are unitary operators,

2 there exist a Hilbert space F , a unitary U and a projection P on F
such that the pair (V1|H⊥

u
,V2|H⊥

u
) is jointly unitarily equivalent to

the commuting pair of multiplication operators (MΦ,MΨ) on the
vector valued Hardy space H2(F) where Φ and Ψ are the
operator-valued functions

Φ(z) = P⊥U + zPU and Ψ(z) = U∗P + zU∗P⊥.

Moreover, if V = V1V2, then

Hu = {x ∈ H | x = V nyn for all n > 0}.

Tirthankar Bhattacharyya Distinguished Varieties



Definitions

Definition

A triple χ = (F ,P,U) where F is a Hilbert space, P is a projection and
U is a unitary operator on F will be called a model triple. If, moreover,
F is finite, then we call it a finite model triple.

Let Φ(z) = P⊥U + zPU and Ψ(z) = U∗P + zU∗P⊥.

Definition

For an orthogonal projection P and a unitary U acting on a finite
dimensional Hilbert space F , consider the set

WP,U := {(z1, z2) ∈ C2 : (z1, z2) ∈ σT (P⊥U+z1z2PU,U
∗P+z1z2U

∗P⊥)}.

Definition

A variety W is said to be symmetric if for any z1 6= 0 and z2 6= 0, we have

(z1, z2) ∈ W if and only if (
1

z1
,

1

z2
) ∈ W. (2)
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Theorem (A new description of a distinguished variety)

Given a finite model triple χ = (F ,P,U), the set WP,U is a symmetric
algebraic variety in C2 for which the following are equivalent:

(i) WP,U is a distinguished variety with respect to D2;

(ii) For all z in the open unit disc D,

ν(U∗(P + zP⊥)) < 1 and ν((P⊥ + zP)U) < 1; (3)

(iii) WP,U ⊂ D2 ∪ T2 ∪ E2.

Moreover, WP,U can be written as

WP,U =
⋃
z∈C

σT (P⊥U + zPU,U∗P + zU∗P⊥). (4)
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Theorem continued...

Theorem

Conversely, if W is any distinguished variety with respect to D2, then
there exist an orthogonal projection P and a unitary U acting on a finite
dimensional Hilbert space F such that

W ∩ D2 =WP,U ∩ D2.

Moreover, W =WP,U if and only if both W and WP,U are contained in
D2 ∪ T2 ∪ E2.
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Some childlike examples

Let H be a Hilbert space. Consider H⊕H and let P be the projection
onto H⊕ 0. Consider the non-trivial unitary obtained from the Z2-action
on H⊕H, i.e., U(x ⊕ y) = y ⊕ x .

Then, the numerical radius condition is satisfied. The resulting
distinguished variety is {(z , z) : z ∈ C}.

The unitary ıU, where U is the unitary above also satisfies the numerical
radius condition and the resulting distinguished variety is
{(z ,−z) : z ∈ C}.

Now, we go for a somewhat non-trivial variety.
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Neil parabola

A model triple (F ,P,U) for the Neil parabola {(z1, z2) ∈ D2 : z3
1 = z2

2}
is given by

F = C5, P = PC2⊕{0C3} and U = Eσ,

where Eσ is the permutation matrix induced by the permutation
σ = (13452) in S5, i.e., .

U =


0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0


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Neil parabola continued...

Indeed, a simple matrix computation gives us the following

Φ(z1z2) =


0 z1z2 0 0 0
0 0 0 0 z1z2

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 , Ψ(z1z2) =


0 0 z1z2 0 0
1 0 0 0 0
0 0 0 z1z2 0
0 0 0 0 z1z2

0 1 0 0 0

 .
A not very lengthy calculation yields that the set

ΩP,U = {(z1, z2) ∈ D2 : (z1, z2) ∈ σT (P⊥U + z1z2PU,U
∗P + z1z2U

∗P⊥)}

is the same as the Neil parabola.
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Neil parabola continued...

More generally, one can check by a somewhat tedious computation that a
model triple for the distinguished variety

Vn,m = {(z1, z2) ∈ D2 : zn1 = zm2 }; n,m ≥ 1 (5)

is given by

F = Cm+n, P = PCm⊕{0Cn}, U∗ =

[
A B
C D

]
,

where B is the m × n matrix with 1 at the (1, 1) entry and zero
elsewhere, C is the n ×m matrix with 1 at the (n,m) entry and zero
elsewhere, D is the n × n upper triangular matrix with 1 in the super
diagonal entries and zero elsewhere, and A is the m ×m matrix given as

A =

[
0 0

Im−1 0

]
.
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The canonicity

What is special about the linear pencils P⊥U + zPU and U∗P + zU∗P⊥?
One could start with any two matrix-valued rational inner functions Φ
and Ψ on D such that

(i) the maps z 7→ ν(Φ(z)) and z 7→ ν(Ψ(z)) are non-constant on D;

(ii) for each z ∈ D, the pair of matrices (Φ(z),Ψ(z)) is commuting; and

(iii) Φ(z)Ψ(z) = z for all z ∈ D.

Then WΦ,Ψ := {(z1, z2) ∈ C2 : (z1, z2) ∈ σT (Φ(z1z2),Ψ(z1z2))}
is a distinguished variety with respect to C2. The proof is along the same
line as the proof of the forward direction of Theorem 4.

It is a consequence of the Berger–Coburn–Lebow Theorem that any such
pair of functions is jointly unitarily equivalent to
(P⊥U + zPU,U∗P + zU∗P⊥) for some model triple (F ,P,U).
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Definition (Symmetrized bidisc)

The symmetrized bidisc G, closed symmetrized bidisc Γ and distinguished
boundary of the symmetrized bidisc bΓ are defined in the following way:

G = {(z1 + z2, z1z2) : |z1| < 1, |z2| < 1}

Γ = {(z1 + z2, z1z2) : |z1| ≤ 1, |z2| ≤ 1}

bΓ = {(z1 + z2, z1z2) : |z1| = 1, |z2| = 1}

Definition (Distinguished variety in G)

A variety V in G is just W ∩G for an algebraic variety W in C2. It is
called a distinguished variety if

W ∩ ∂G = W ∩ bG
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Theorem ( Pal-Shalit)

Let F be a square matrix with w(F ) < 1. Let WF be the subset of G
defined by

WF = {(s, p) ∈ G : det(F + pF ∗ − sI ) = 0}.

Then WF is a distinguished variety. Conversely, every distinguished
variety in G has the form {(s, p) ∈ G : det(F + pF ∗ − sI ) = 0}, for some
matrix F with w(F ) ≤ 1.

Reference; S. Pal and O. M. Shalit, Spectral sets and distinguished
varieties in the symmetrized bidisc, J. Funct. Anal. 266 (2014),
5779-5800
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A refinement of Pal-Shalit Theorem

Theorem

Let F = PU + U∗P⊥ for some unitary U and projection P. Suppose
w(F ) < 1. Let VF be the subset of G defined by

VF = {(s, p) ∈ G : det(F + pF ∗ − sI ) = 0}.

Then VF is a distinguished variety. Conversely, given a distinguished
variety V in G, there is a unitary U and projection P such that V has the
form {(s, p) ∈ G : det(F + pF ∗ − sI ) = 0}, where F = PU + U∗P⊥.

This theorem is an application of our main theorem and the spectral
mapping theorem.

Tirthankar Bhattacharyya Distinguished Varieties



A refinement of Pal-Shalit Theorem

Theorem

Let F = PU + U∗P⊥ for some unitary U and projection P. Suppose
w(F ) < 1. Let VF be the subset of G defined by

VF = {(s, p) ∈ G : det(F + pF ∗ − sI ) = 0}.

Then VF is a distinguished variety. Conversely, given a distinguished
variety V in G, there is a unitary U and projection P such that V has the
form {(s, p) ∈ G : det(F + pF ∗ − sI ) = 0}, where F = PU + U∗P⊥.

This theorem is an application of our main theorem and the spectral
mapping theorem.

Tirthankar Bhattacharyya Distinguished Varieties



Why is this result a refinement? It is a refinement because while every
operator of the form PU + U∗P⊥ has numerical radius no larger than 1,
the converse is not true, i.e., there are F with w(F ) ≤ 1 but F can not
written in the form PU + U∗P⊥.

For a non-real complex number α in the open unit disc D and a Hilbert
space H of any dimension, it is straightforward to see that αI , which has
numerical radius less than 1, cannot be written as PU + U∗P⊥ for any
projection P and any unitary U coming from B(H). In case α is real, the
dimension needs to be even to write αI = PU + U∗P⊥. The lemma in
the next slide gives a larger class of examples.
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Lemma

Let A ∈ M2(C) be such that the two eigenvalues λ1 and λ2 satisfy

|λ1| 6= |λ2|. (6)

Then A can not be written as PU + U∗P⊥ for any projection P and
unitary U.
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A realization formula

Theorem (A new realization formula)

A model triple χ = (F ,P,U) gives rise to a contractive analytic function
Ψχ : D→ B(RanP) defined by

Ψχ(z) = P(IF − zU∗P⊥)−1U∗P|Ran P . (7)

Conversely, if H is a Hilbert space and Ψ : D→ B(H) is a contractive
analytic function, then there exists a model triple χ = (F ,P,U) such
that F ⊃ H, P is the orthogonal projection of F onto H and Ψ = Ψχ.
Moreover, when H is finite dimensional and Ψ is rational inner, then the
model triple above can be chosen to be finite.
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AM description vs. BCL description

If χ = (F ,P,U) is a finite model triple, then Ψχ is clearly a rational
matrix-valued inner function. Our new description of a distinguished
variety of the bidisc is tied up with that of Agler and McCarthy as follows.

Theorem (The passage between two descriptions)

Let V be a distinguished variety. If χ = (F ,P,U) is a finite model triple
corresponding to V (i.e., V = ΩP,U), then V = ΩΨχ

.
Conversely, let Ψ be a rational matrix-valued inner function which
satisfies V = ΩΨ. Let χ be a finite model triple associated to Ψ obtained
from the theorem in the previous slide. Then V = ΩP,U .
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A canonical model triple

Two contractive analytic functions (Ψ1, E1) and (Ψ2, E2) are said to be
unitarily equivalent if there is a unitary operator τ : E1 → E2 such that
τΨ1(z) = Ψ2(z)τ for all z ∈ D.

Consider the two categories

B := {(F ,P,U) : P is a projection and U is a unitary on F}

with the morphisms between two elements (F1,P1,U1) and (F2,P2,U2)
defined as a linear operator τ : F1 → F2 that satisfies

τ(P1,U1) = (P2,U2)τ ; (8)

and
C = {(Ψ, E) : Ψ : D→ B(E) is analytic and contractive}

with the morphisms between two elements (Ψ1, E1) and (Ψ2, E2) defined
as a linear operator τ : E1 → E2 that satisfies

τΨ1(z) = Ψ2(z)τ for all z ∈ D. (9)
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A canonical model triple

Corresponding to an object χ = (F ,P,U) in B, we have an object
ΨP,U : D→ B(RanP) given by is the function

ΨP,U(z) = P(IF − zU∗P⊥)−1U∗P|Ran P .

Let χ1 = (F1,P1,U1) and χ2 = (F2,P2,U2) be two objects in B and let
τ be a morphism between them. It is easy to see that τ takes the
following operator matrix form

τ =

[
τ∗ 0
0 τ∗∗

]
:

[
RanP1

RanP⊥1

]
→
[

RanP2

RanP⊥2

]
.

The linear transformation τ∗ : RanP1 → RanP2 induced by τ is easily
seen to have the property

τ∗ΨP1,U1 (z) = ΨP2,U2 (z)τ∗ for all z ∈ D.

Thus τ∗ is a morphism between the objects (ΨP1,U1 ,RanP1) and
(ΨP2,U2 ,RanP2). These morphisms will be referred to as the induced
morphisms.
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A canonical model triple

Theorem

The map f : B→ C defined as

f : ((F ,P,U), τ) 7→ (ΨP,U , τ∗)

has the functorial properties, i.e.,

(i) if ι : (F ,P,U)→ (F ,P,U) is the identity morphism, then the
induced morphism ι∗ : (ΨP,U ,RanP)→ (ΨP,U ,RanP) is the
identity morphism; and

(ii) if τ : χ1 → χ2 and τ ′ : χ2 → χ3 are two morphisms in B, then

(τ ′ ◦ τ)∗ = τ ′∗ ◦ τ∗.

Moreover, if χ1 and χ2 are unitarily equivalent via a unitary similarity τ ,
then so are ΨP1,U1 and ΨP2,U2 via the induced unitary τ∗.
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A canonical model triple

It is natural to expect a converse of the ‘moreover’ part in the above
result. However, unlike the forward direction, this model triple is not
uniquely determined by the contractive analytic function. For example,
one can check that both the unitaries 0 0 1

1 0 0
0 1 0

 ,
 0 1 0

0 0 1
1 0 0

 :

[
C
C2

]
→
[
C
C2

]

serve as a unitary colligation for the contractive function z 7→ z2.
Consequently, the function z 7→ z2 has two distinct model triples. There
is, nevertheless, a canonical choice of a model triple for a contractive
analytic function.
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A canonical model triple

For an object (Ψ, E) in C, consider the associated de Branges–Rovnyak
reproducing kernel

KΨ(z ,w) =
IE −Ψ(z)Ψ(w)∗

1− zw̄
. (10)

Let H be a Hilbert space and g : D→ B(H, E) be a function such that

KΨ(z ,w) = g(z)g(w)∗. (11)

This is the Kolmogorov decomposition of the kernel KΨ.
The function g : D→ B(HΨ, E) satisfying the Kolmogorov
decomposition (11) will be called a Kolmogorov function for Ψ.
Using the definition (10) of KΨ and after a rearrangement of the terms
one arrives at

〈e, f 〉E+〈w̄g(w)∗e, z̄g(z)∗f 〉H = 〈Ψ(w)∗e,Ψ(z)∗f 〉E+〈g(w)∗e, g(z)∗f 〉H

for every z ,w ∈ D and e, f ∈ E .
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A canonical model triple

This readily implies that the map

u : span

{[
IE

z̄g(z)∗

]
f : z ∈ D and f ∈ E

}
→

span

{[
Ψ(z)∗

g(z)∗

]
f : z ∈ D and f ∈ E

}
defined densely by

u :
N∑
j=1

[
IE

z̄jg(zj)
∗

]
fj 7→

N∑
j=1

[
Ψ(zj)

∗

g(zj)
∗

]
fj (12)

is a unitary.

We wish to extend this partially defined unitary to whole of E ⊕H, which
we can do if the orthocomplements of the domain and codomain of u in
E ⊕H have the same dimension; if not, we can add an infinite
dimensional Hilbert space say, R to H so that u has a unitary extension
to E ⊕H ⊕R.
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A canonical model triple

There is a minimal choice of the auxiliary Hilbert space H, viz.,

HΨ := span{g(z)∗e : z ∈ D and e ∈ E},

and that this is actually isomorphic to the defect space of M∗Ψ.

Indeed, from the Kolmogorov decomposition (11) of KΨ, we see that

〈(IH2(E) −MΨM
∗
Ψ)Swe,Sz f 〉H2(E) = 〈g(w)∗e, g(z)∗f 〉HΨ

,

where S is the Szegö kernel for D. This in particular implies that the map
densely defined as

(IH2(E) −MΨM
∗
Ψ)

1
2

N∑
j=1

Swj ej 7→
N∑
j=1

g(wj)
∗ej

is a unitary.
For a contractive analytic function (Ψ, E), denote by F† the minimal
space containing E ⊕HΨ to which the partially defined unitary u as in
(12) can be extended. Let U† be a unitary operator on F† that extends u
and P† be the orthogonal projection of F† onto E .
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where S is the Szegö kernel for D. This in particular implies that the map
densely defined as

(IH2(E) −MΨM
∗
Ψ)

1
2

N∑
j=1

Swj ej 7→
N∑
j=1

g(wj)
∗ej

is a unitary.
For a contractive analytic function (Ψ, E), denote by F† the minimal
space containing E ⊕HΨ to which the partially defined unitary u as in
(12) can be extended. Let U† be a unitary operator on F† that extends u
and P† be the orthogonal projection of F† onto E .

Tirthankar Bhattacharyya Distinguished Varieties



A canonical model triple

Definition

A model triple (F†,P†,U†) obtained from a contractive analytic function
(Ψ, E) as above will be referred to as a canonical model triple for (Ψ, E).

Theorem

If two contractive analytic functions (Ψ1, E1) and (Ψ2, E2) are unitarily
equivalent, then their canonical model triples are also unitarily equivalent.
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