UM 102 - Exercise Set 3

Tirthankar Bhattacharyya

January 2014
[1] Consider the Bernoulli equation:

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \quad, n \neq 1 \tag{1}
\end{equation*}
$$

Use appropriate change of variable to convert the equation into a first order linear equation, and use it to solve the following:
(a) $y^{\prime \prime}+a y=2 x y^{2}$
(b) $x^{2} y^{\prime}-y^{3}=x y$
[2]Consider the ODE $\frac{d x}{d t}+a x=r(t)$ where a is a positive constant and $\lim _{t \rightarrow \infty} r(t)=0$.
Show that $\lim _{t \rightarrow \infty} x(t)=0$.
[3]Let the Wronskian be defined for two functions u_{1} and u_{2} as follows: $W(x)=u_{1}(x) u_{2}^{\prime}(x)-u_{2}(x) u_{1}^{\prime}(x)$ on an interval I.
Then:
(a)Let the Wronskian be 0 on an interval I. Then show that the ratio $\frac{u_{2}}{u_{1}}$ is a constant on the interval I. Hence, if $\frac{u_{2}}{u_{1}}$ is not constant on an interval I then we must have that W is non-zero for atleast one point in I.
(b)Calculate the derivative of the Wronskian.
(c)Now consider u_{1} and u_{2} are two solutions of the equation $y^{\prime \prime}+a y+b=0$, where a and b are constants. Then show that the Wronskian satisfies the equation $W^{\prime}+a W=0$.Thus, we have $W(x)=W(0) e^{-a x}$. Furthermore,let u_{1} be
not identically 0 on an interval. Then show that $W(0)=0$ iff $\frac{u_{2}}{u_{1}}$ is a constant.
(d)Consider u_{1} and u_{2} as above and further assume that $\frac{u_{2}}{u_{1}}$ is non-constant. Then let $y=f(x)$ be another solution of the differentail equation $y^{\prime \prime}+a y+b=0$. Then show that there exist constants c_{1} and c_{2} such that:

$$
\begin{align*}
& c_{1} u_{1}(0)+c_{2} u_{2}(0)=f(0) \tag{2}\\
& c_{1} u_{1}^{\prime}(0)+c_{2} u_{2}^{\prime}(0)=f^{\prime}(0) \tag{3}
\end{align*}
$$

Now prove that every solution of the differential equation satisfies $f(x)=c_{1} u_{1}+$ $c_{2} u_{2}$ for appropriate constants c_{1} and c_{2}

