UM 102 - Exercise Set 5

Tirthankar Bhattacharyya

February 2014

1. Consider a scalar field on \mathbb{R}^{n} given by $f(\mathbf{x})=\mathbf{a} \cdot \mathbf{x}$, where \mathbf{a} is a fixed vector.Compute $f^{\prime}(\mathbf{x} ; \mathbf{y})$ for arbitrary \mathbf{x} and \mathbf{y}.
2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Compute the derivative $f^{\prime}(\mathbf{x} ; \mathbf{y})$ for scalar function $f(\mathbf{x})=\mathbf{x} \cdot T(\mathbf{x})$.
3. Compute the first-order partial derivatives of the following functions defined on \mathbb{R}^{2} :
(a) $f(x, y)=x^{2}+y^{2} \sin (x . y)$
(b) $f(x, y)=\sqrt{x^{2}+y^{2}}$
(c) $f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}$
(d) $f(x, y)=\frac{x+y}{x-y} \quad, x \neq y$
4. Check for the functions described, whether the mixed partials are equal, i.e, whether $D_{1}\left(D_{2} f\right)=D_{2}\left(D_{1} f\right)$:
(a) All the functions described in [3] above.
(b) $f(x, y)=x^{4}+y^{4}-4 x^{2} y^{2}$
(c) $f(x, y)=\log \left(x^{2}+y^{2}\right)$
(d) $f(x, y)=\frac{\cos \left(x^{2}\right)}{y}$
5. (a) Consider an n-ball $B(\mathbf{a})$. Let $f^{\prime}(\mathbf{x} ; \mathbf{y})=0$ for every \mathbf{x} in $B(\mathbf{a})$, and every y.Show that f is constant on $B(\mathbf{a})$.
[HINT: Use the mean value theorem].
(b) Does the conclusion still hold if the condition above is only true for a fixed \mathbf{y} ?
6. A set S in \mathbb{R}^{n} is said to be convex if for $\mathbf{a}, \mathbf{b} \in S$, and for $0 \leq t \leq 1$, we have $t \mathbf{a}+(1-t) \mathbf{b} \in S$,i.e, the line joining \mathbf{a} and \mathbf{b} lies in S.
(a)Show that every n-ball $B(\mathbf{a})$ is convex.
(b) Let $f^{\prime}(\mathbf{x} ; \mathbf{y})=0$ for every \mathbf{x} in S, and every \mathbf{y}, where S is an open convex set. Show that f is constant on S.
7. Find the gradient of the following functions:
(a) $f(x, y)=x^{2}+y^{2} \sin (x . y)$
(b) $f(x, y)=e^{x} \cos (y)$
(c) $f(x, y, z)=x^{2}-y^{2}+2 z^{2}$
(d) $f(x, y, z)=\log \left(x^{2}+2 y^{2}-3 z^{2}\right)$
8. Consider the function $f(x, y)=3 x^{2}+y^{2}$ defined on the set $S=\{(x, y)$: $\left.x^{2}+y^{2}=1\right\}$. Find the points in S and the directions for which the directional derivative is maximum.
9. Find values of the constants a, b, and c such that the directional derivative of $f(x, y, z)=a \cdot x \cdot y^{2}+b \cdot y \cdot z+c \cdot z^{2} \cdot x^{3}$ at the point $(1,2,-1)$ has a maximum value of 64 in a direction parallel to the z -axis.
10. Let f and g denote scalar fields that are differentiable on an open set S . Derive the following properties of the gradient:
(a) $\operatorname{grad} \mathrm{f}=0$ if f is constant on S .
(b) $\operatorname{grad}(f+g)=\operatorname{grad}(f)+\operatorname{grad}(g)$.
(c) $\operatorname{grad}(\mathrm{cf})=\mathrm{c} \operatorname{grad}(\mathrm{f})$, if c is a constant.
(d) $\operatorname{grad}(f g)=f \operatorname{grad}(g)+g . \operatorname{grad}(f)$.
11. In \mathbb{R}^{3} let $\mathbf{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} \mathbf{i}+\mathrm{y} \mathbf{j}+\mathrm{zk}$, and let $\mathrm{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\|\mathbf{r}(x, y, z)\|$.
(a) Show that $\nabla r(x, y, z)$ is a unit vector in the direction of $\mathbf{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
(b) Show that $\nabla\left(r^{n}\right)=n r^{n}{ }^{2} \mathbf{r}$, if n is a positive integer.
(c) Find a scalar field f such that $\nabla f=\mathrm{r}$.
12. Let $B(\mathbf{a})$ be n-ball. Show that if x is point of minimum in $B(\mathbf{a})$, then $\nabla f(x)=0$.
13. Do the conclusions of [6] still hold if the condition: " $f^{\prime}(\mathbf{x} ; \mathbf{y})=0$ " is replaced with the condition:" $\operatorname{grad}(f)(x)=0$, for every x "?
14. Consider the following transformation $(x, y) \rightarrow(r, \theta)$, where $x=r \cos (\theta)$ and $y=r \sin (\theta)$.
(a) Find the Jacobean of this tranformation. Use this to find D_{r}, and D_{θ} in terms of D_{x} and D_{y}.
(b) Using the above, what do the following equations give in polar coordinates:

$$
\begin{gather*}
D_{x} u=D_{y} v \tag{1}\\
D_{y} u=-D_{x} v \tag{2}
\end{gather*}
$$

