

UM 102 - Exercise Set 5

Tirthankar Bhattacharyya

February 2014

1. Consider a scalar field on \mathbb{R}^n given by $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$, where \mathbf{a} is a fixed vector. Compute $f'(\mathbf{x}; \mathbf{y})$ for arbitrary \mathbf{x} and \mathbf{y} .
2. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation. Compute the derivative $f'(\mathbf{x}; \mathbf{y})$ for scalar function $f(\mathbf{x}) = \mathbf{x} \cdot T(\mathbf{x})$.
3. Compute the first-order partial derivatives of the following functions defined on \mathbb{R}^2 :
 - (a) $f(x, y) = x^2 + y^2 \sin(x \cdot y)$
 - (b) $f(x, y) = \sqrt{x^2 + y^2}$
 - (c) $f(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$
 - (d) $f(x, y) = \frac{x+y}{x-y}, x \neq y$
4. Check for the functions described, whether the mixed partials are equal, i.e, whether $D_1(D_2 f) = D_2(D_1 f)$:
 - (a) All the functions described in [3] above.
 - (b) $f(x, y) = x^4 + y^4 - 4x^2y^2$
 - (c) $f(x, y) = \log(x^2 + y^2)$
 - (d) $f(x, y) = \frac{\cos(x^2)}{y}$
5. (a) Consider an n -ball $B(\mathbf{a})$. Let $f'(\mathbf{x}; \mathbf{y}) = 0$ for every \mathbf{x} in $B(\mathbf{a})$, and every \mathbf{y} . Show that f is constant on $B(\mathbf{a})$.
[HINT: Use the mean value theorem].
(b) Does the conclusion still hold if the condition above is only true for a fixed \mathbf{y} ?
6. A set S in \mathbb{R}^n is said to be convex if for $\mathbf{a}, \mathbf{b} \in S$, and for $0 \leq t \leq 1$, we have $t\mathbf{a} + (1-t)\mathbf{b} \in S$, i.e, the line joining \mathbf{a} and \mathbf{b} lies in S .
 - (a) Show that every n -ball $B(\mathbf{a})$ is convex.
 - (b) Let $f'(\mathbf{x}; \mathbf{y}) = 0$ for every \mathbf{x} in S , and every \mathbf{y} , where S is an open convex set. Show that f is constant on S .

7. Find the gradient of the following functions:

- $f(x, y) = x^2 + y^2 \sin(x.y)$
- $f(x, y) = e^x \cos(y)$
- $f(x, y, z) = x^2 - y^2 + 2z^2$
- $f(x, y, z) = \log(x^2 + 2y^2 - 3z^2)$

8. Consider the function $f(x, y) = 3x^2 + y^2$ defined on the set $S = \{(x, y) : x^2 + y^2 = 1\}$. Find the points in S and the directions for which the directional derivative is maximum.

9. Find values of the constants a, b , and c such that the directional derivative of $f(x, y, z) = a.x.y^2 + b.y.z + c.z^2.x^3$ at the point $(1, 2, -1)$ has a maximum value of 64 in a direction parallel to the z -axis.

10. Let f and g denote scalar fields that are differentiable on an open set S . Derive the following properties of the gradient:

- $\text{grad } f = 0$ if f is constant on S .
- $\text{grad } (f + g) = \text{grad}(f) + \text{grad}(g)$.
- $\text{grad } (cf) = c \text{ grad } (f)$, if c is a constant.
- $\text{grad } (fg) = f \text{ grad}(g) + g.\text{grad}(f)$.

11. In \mathbb{R}^3 let $\mathbf{r}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and let $r(x, y, z) = \|\mathbf{r}(x, y, z)\|$.

- Show that $\nabla r(x, y, z)$ is a unit vector in the direction of $\mathbf{r}(x, y, z)$.
- Show that $\nabla(r^n) = nr^{n-2}\mathbf{r}$, if n is a positive integer.
- Find a scalar field f such that $\nabla f = \mathbf{r}$.

12. Let $B(\mathbf{a})$ be n -ball. Show that if x is point of minimum in $B(\mathbf{a})$, then $\nabla f(x) = 0$.

13. Do the conclusions of [6] still hold if the condition: " $f'(\mathbf{x}; \mathbf{y}) = 0$ " is replaced with the condition: " $\text{grad}(f)(\mathbf{x}) = 0$, for every \mathbf{x} "?

14. Consider the following transformation $(x, y) \rightarrow (r, \theta)$, where $x = r\cos(\theta)$ and $y = r\sin(\theta)$.

- Find the Jacobean of this transformation. Use this to find D_r , and D_θ in terms of D_x and D_y .
- Using the above, what do the following equations give in polar coordinates:

$$D_x u = D_y v \quad (1)$$

$$D_y u = -D_x v \quad (2)$$