UM-102 Calculus and Linear Algebra Problem Set-2
 Tirthankar Bhattacharyya

(1) Apply the Gauss-Jordan elimination process to both of the following systems. If a solution exists, determine the general solution.
(i) $3 x+2 y+z=1,5 x+3 y+3 z=2, x+y-z=1$ and
(ii) $3 x+2 y+z=1,5 x+3 y+3 z=2,7 x+4 y+5 z=3, x+y-z=0$.
(2) Prove that the system $x+y+2 z=2,2 x-y+3 z=2,5 x-y+a z=6$, has a unique solution if $a \neq 8$. Find all solutions when $a=8$.
(3) Compute the determinant of each of the following matrices by transforming each of them to an upper triangular matrix.
(i) $\left[\begin{array}{cccc}1 & -1 & 1 & 1 \\ 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1\end{array}\right]$, (ii) $\left[\begin{array}{cccc}1 & t & t^{2} & t^{3} \\ t & 1 & t & t^{2} \\ t^{2} & t & 1 & t \\ t^{3} & t^{2} & t & 1\end{array}\right]$, (iii) $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ a & b & c & d \\ a^{2} & b^{2} & c^{2} & d^{2} \\ a^{3} & b^{3} & c^{3} & d^{3}\end{array}\right]$.
(4) Let $A=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$, where a_{1}, a_{2}, a_{3} are rows of the matrix A. Find $\operatorname{det}\left[\begin{array}{l}a_{1}+a_{2} \\ a_{2}+a_{3} \\ a_{3}+a_{1}\end{array}\right]$.
(5) For each of the following statements about square matrices, give a proof or exhibit a counter example.
(i) $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$
(ii) $\operatorname{det}\left\{(A+B)^{2}\right\}=\{\operatorname{det}(A+B)\}^{2}$
(iii) $\operatorname{det}\left\{(A+B)^{2}\right\}=\operatorname{det}\left(A^{2}+2 A B+B^{2}\right)$
(iv) $\operatorname{det}\left\{(A+B)^{2}\right\}=\operatorname{det}\left(A^{2}+B^{2}\right)$.
(6) Let $A=\left[a_{i j}\right]$ be a lower triangular matrix (all entries above the diagonal are zero, i.e. $a_{i j}=0$ for all $i<j$). Using the axiom of a determinant function and properties derived, show that $\operatorname{det} A=a_{11} a_{22} \cdots a_{n n}$. Note: Do not use the standard method of finding the determinant using the determinants of lower order.
(7) (a)Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a & b & c & d \\ e & f & g & h\end{array}\right]$. Prove that $\operatorname{det} A=\operatorname{det}\left[\begin{array}{ll}c & d \\ g & h\end{array}\right]$.
(b) State and prove a generalization of above problem for $n \times n$ matrices.
(8) (a) Let $A=\left[\begin{array}{llll}x & y & 0 & 0 \\ z & w & 0 & 0 \\ a & b & c & d \\ e & f & g & h\end{array}\right]$. Prove that $\operatorname{det} A=\operatorname{det}\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \operatorname{det}\left[\begin{array}{ll}c & d \\ g & h\end{array}\right]$.
(b) State and prove a generalization of above problem for $n \times n$ matrices of the form

$$
A=\left[\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right]
$$

where B, C, D denote square matrices and 0 denotes a matrix of zeros.
(9) Let $a_{i j}(x)$ be differentiable in (a, b). Define the matrix $A(x)=\left[a_{i j}(x)\right]$ for each $x \in(a, b)$. Let $A_{i}(x)$ be the matrix obtained from $A(x)$ by replacing the i-th row by the derivative of the i-th row. Then show that

$$
\frac{d}{d x}(\operatorname{det}(A(x)))=\sum_{i=1}^{n} \operatorname{det}\left(A_{i}(x)\right)
$$

(10) Deduce the following: Consider the Wronskian matrix

$$
W(x)==\left[\begin{array}{cccc}
w_{1}(x) & w_{2}(x) & \cdots & w_{n}(x) \\
w_{1}^{\prime}(x) & w_{2}^{\prime}(x) & \cdots & w_{n}^{\prime}(x) \\
\vdots & \vdots & & \vdots \\
w_{1}^{(n-1)}(x) & w_{2}^{(n-1)}(x) & \cdots & w_{n}^{(n-1)}(x)
\end{array}\right]=\left[\begin{array}{c}
w(x) \\
w^{\prime}(x) \\
\vdots \\
w^{(n-1)}(x)
\end{array}\right]
$$

where $w(x)=\left(w_{1}(x), w_{2}(x), \cdots, w_{n}(x)\right)$ etc. Show that

$$
\frac{d}{d x}(\operatorname{det}(W(x)))=\left[\begin{array}{c}
w(x) \\
w^{\prime}(x) \\
\vdots \\
w^{(n-2)}(x) \\
w^{n}(x)
\end{array}\right]
$$

(11) Determine whether the following sets of vectors are linearly dependent or independent.
(i) $A_{1}=(1,-1,0), A_{2}=(0,1,-1), A_{3}=(2,3,-1)$,
(ii) $A_{1}=(1,0,0,0,1), A_{2}=(1,1,0,0,0), A_{3}=(1,0,1,0,1), A_{4}=(1,1,0,1,1), A_{5}=$ $(0,1,0,1,0)$.

