ERRATUM TO 'NON-UNIFORMLY FLAT AFFINE ALGEBRAIC HYPERSURFACES’

ARINDAM MANDAL, VAMSI PRITHAM PINGALI, AND DROR VAROLIN

AbSTRACT. Correcting an erroneous result in [PV-2021], we prove that the affine algebraic hypersurfaces $\left\{x y^{2}=1\right\} \subset \mathbb{C}^{2}$ and $\left\{z=x y^{2}\right\} \subset \mathbb{C}^{3}$ are not interpolating for the Gaussian weight.

Let (X, g) be a Hermitian manifold, $\left(L, e^{-\varphi}\right) \rightarrow X$ a Hermitian holomorphic line bundle, and $Z \subset X$ a a complex analytic subvariety $Z \subset X$. One says that Z is an interpolation subvariety, or simply interpolating, for the above data if the restriction map

$$
\mathscr{R}_{Z}: H^{0}\left(X, \mathcal{O}_{X}(L)\right) \rightarrow H^{0}\left(Z, \mathcal{O}_{Z}(L)\right)
$$

induces a surjective map of the Bergman spaces

$$
\mathscr{R}_{Z}: \mathscr{B}_{n}(X, \varphi) \rightarrow \mathfrak{B}_{d}(Z, \varphi)
$$

(see [PV-2021] for the notation and more details). In the present note we consider only the case $X=\mathbb{C}^{2}$ or $X=\mathbb{C}^{3}$ with the Euclidean metric ω_{o}. Since in this case any line bundle is trivial, metrics have a well-defined logarithm, and we call the function $\varphi:=-\log e^{-\varphi}$ a weight function.

In [PV-2021, Theorems 2 and 3] the second and third authors (Pingali and Varolin) claimed that for any smooth weight function φ satisfying $0<m \omega_{o} \leq \sqrt{-1} \partial \bar{\partial} \varphi \leq M \omega_{0}$ the (non-uniformly flat) manifolds

$$
C_{2}=\left\{(x, y) \in \mathbb{C}^{2} \mid x y^{2}=1\right\} \subset \mathbb{C}^{2} \quad \text { and } \quad S=\left\{(x, y, z) \in \mathbb{C}^{3} \mid z=x y^{2}\right\} \subset \mathbb{C}^{3}
$$

are interpolating. The proof of the claim rests heavily on Lemma 3.2 which aims to generalize the QuimBo trick [BOC-1995]. Unfortunately, Lemma 3.2 is false. (However, for Theorems 1 and 4 we do not need Lemma 3.2. Instead, [L-1997, Lemma 6] in conjunction with elliptic regularity is enough.) In fact, we prove that the negations of Theorem 2 and Theorem 3 in [PV-2021] are true.

Theorem 1.1. The curve $C_{2} \subset \mathbb{C}^{2}$ is not interpolating with respect to the Gaussian weight $|\cdot|^{2}$.
An application of [PV-2021, Theorem 6.1] establishes the following result.
Corollary 1.2. The surface $S \subset \mathbb{C}^{3}$ is not interpolating with respect to the Gaussian weight $|\cdot|^{2}$.
Proof of Theorem 1.1. Let $f_{n} \in \mathcal{O}\left(C_{2}\right)$ be defined by $f_{n}(x, y)=y^{-(2 n+1)}$. Then

$$
\begin{equation*}
\left\|f_{n}\right\|^{2}=\int_{\mathbb{C}^{*}} \frac{e^{-\left(|y|^{-4}+|y|^{2}\right)}}{\left|y^{2 n+1}\right|^{2}}\left(1+\frac{4}{|y|^{6}}\right) d A(y)=\pi \int_{r=0}^{\infty} \frac{e^{-\left(r+r^{-2}\right)}}{r^{2 n+1}}\left(1+\frac{4}{r^{3}}\right) d r . \tag{1}
\end{equation*}
$$

For positive numbers s and t, integration-by-parts shows that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)}\left(1+\frac{4}{r^{3}}\right) d r=\left(1+\frac{2 s}{t}\right) \int_{0}^{\infty} e^{-\left(s r+t r^{-2}\right)} d r . \tag{2}
\end{equation*}
$$

Applying $\left(\frac{\partial}{\partial t}\right)^{n+1} \frac{\partial}{\partial s}$ to (2) and then setting $s=t=1$ yields

$$
\begin{align*}
& \int_{0}^{\infty} r^{-(2 n+1)} e^{-\left(r+r^{-2}\right)}\left(1+4 r^{-3}\right) d r \\
& \quad=\int_{0}^{\infty} r^{-2 n-1} e^{-\left(r+r^{-2}\right)} d r+2(n+1)!\int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r \tag{3}
\end{align*}
$$

Now, for $r>0, r^{-(2 n+2)} e^{-r^{-2}} \leq(n+1)^{n+1} e^{-(n+1)} \sim \frac{(n+1)!}{\sqrt{2 \pi(n+1)}}$ by Stirling's Formula, so

$$
\int_{0}^{\infty} r^{-2 n-1} e^{-\left(r+r^{-2}\right)} d r \leq \frac{2 \pi(n+1)!}{\sqrt{(n+1)}} \int_{0}^{\infty} r e^{-r} d r=\frac{2 \pi(n+1)!}{\sqrt{(n+1)}}
$$

for large enough n. Together with (1) and (3), one therefore has

$$
\begin{equation*}
\left\|f_{n}\right\|^{2} \leq 2 \pi(n+1)!\left(\frac{1}{\sqrt{n+1}}+\int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r\right)<\infty \tag{4}
\end{equation*}
$$

To achieve our contradiction, suppose C_{2} is interpolating. Then there exists $F_{n} \in \mathscr{B}_{2}$ such that

$$
\begin{equation*}
\left.F_{n}\right|_{C_{2}}=f_{n} \quad \text { and } \quad\left\|F_{n}\right\| \leq C\left\|f_{n}\right\| \tag{5}
\end{equation*}
$$

for some $C>0$ independent of n. Writing $F_{n}(x, y)=\sum_{i, j \geq 0} c_{i j} x^{i} y^{j}$, we have

$$
\begin{equation*}
y^{-(2 n+1)}=\sum_{i, j \geq 0} c_{i j} y^{-2 i} y^{j}=\sum_{i, j \geq 0} c_{i j} y^{-(2 i-j)}=\sum_{2 i-j=2 n+1} c_{i j} y^{-(2 i-j)} \tag{6}
\end{equation*}
$$

Setting $y=1$ shows that $\sum_{k \geq 1} c_{k+n, 2 k-1}=1$, and hence $\left|c_{m+n, 2 m-1}\right| \geq 2^{-(m+1)}$ for some $m \in \mathbb{N}$. Therefore

$$
\begin{equation*}
\left\|F_{n}\right\|^{2} \geq\left|c_{m+n, 2 m-1}\right|^{2}(m+n)!(2 m-1)!\geq \frac{(n+1)!}{2^{4}} \tag{7}
\end{equation*}
$$

From (4), (5) and (7) we conclude that for $n \gg 0$

$$
2^{-4} \leq C\left(\frac{1}{\sqrt{n+1}}+\int_{0}^{\infty}(r-1) e^{-\left(r+r^{-2}\right)} \sum_{k=0}^{n+1} \frac{r^{-2 k}}{k!} d r\right)=O\left(\frac{1}{\sqrt{n+1}}\right)
$$

This is the desired contradiction.
Acknowledgements. Pingali is partially supported by grant F.510/25/CAS-II/2018(SAP-I) from UGC (Govt. of India), and a MATRICS grant MTR/2020/000100 from SERB (Govt. of India).

REFERENCES

[BOC-1995] Berndtsson, B.; Ortega Cerdá, J., On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. 464 (1995), 109-128.
[L-1997] Lindholm, N., Sampling in weighted L^{p} spaces of entire functions in \mathbb{C}^{n} and estimates of the Bergman kernel. J. Funct. Anal. 182 (2001), no. 2, 390-426.
[PV-2021] Pingali, V.P., and Varolin, D. Nonuniformly flat affine algebraic hypersurfaces. Nagoya Math. J. 241 (2021): 1-43.

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
Email address: arindamm@iisc.ac.in
Department of Mathematics, Indian Institute of Science, Bangalore 560012, India Email address: vamsipingali@iisc.ac.in

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651, USA
Email address: dror@math. stonybrook.edu

