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HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS.*

By Jamms Errs, Jr. and J. H. SAMPSON.

Introduction. With any smooth mapping of one Riemannian manifold
into another it is possible to associate a variety of invariantly defined func-
tionals. Each such functional of course determines a class of extremal
mappings, in the sense of the calculus of variations, and those extremals, in
the very special cases thus far considered, play an important role in a number
of familiar differential-geometric theories.

The present paper is devoted to a rather general study of a functional F
of geometrical and physical interest, analogous to energy. Our central problem
is that of deforming a given mapping into an extremal of E. Following an
infinite-dimensional analogue of the Morse critical point theory, we construct
gradient lines of E (in a suitable function space); and F is a decreasing
function along those lines. With suitable metric and curvature assumptions
on the target manifold (assumptions which cannot be entirely circumvented,
in view of the examples of §§4E and 10D), we prove that the gradient lines
do in fact lead to extremals (see Theorem 11A).

If f: M— M is a smooth mapping of manifolds whose metrics are
gijdztdal resp. gog'dy®dyP, then the energy E(f) is defined by the integral

afe o8
=1 L gid
E(f) 2ng oxt 0:6’9 *1}

where the f* are local coordinates of the point f(z), *1 being the volume
element of M (assumed compact). Thus E(f) can be considered as a
generalization of the classical integral of Dirichlet. The Euler-Lagrange
equations for F are a system of non-linear partial differential equations of
elliptic type:

Y
A is the Laplace-Beltrami operator on M and the Ty,* are the Christoffel
symbols on M’. Although this system is suggestive of the simple equation
Au 4+ ¢(u) - grad®u =0 for one unknown, there is in general very little con-
nection between the two because of the phenomenon of curvature.
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110 JAMES EELLS, JR. AND J. H. SAMPSON.

1t has been necessary to go into the question of existence of solutions
in rather great detail, owing to the want of general results for non-linear
systems. Direct methods of the calculus of variations seem to lead to severe
difficulties, and that is one reason why we have preferred to approach the
problem through the gradient-line technique, which amounts to replacing
the equations above by a system of parabolic equations whose relation to the
elliptic system is analogous to that of Fourier’s equation to Laplace’s equation.
This approach is of independent interest, in any case. Our methods are
strongly potential-theoretic in nature. The local equations are first replaced
by global equations of essentially the same form, embedding M’ in a Euclidean
space. A stability theorem is established showing that a solution of the
resulting parabolic system does in fact produce a 1-parameter family of
mappings of M into M’. Fundamental solutions of Laplace’s equation and
the heat equation on (compact) manifolds are used to establish a priori
derivatives estimates and to construct solutions of the parabolic system, the
latter being translated into a system of non-linear integro-differential equa-
tions of the Volterra type, following the method used by Milgram and
Rosenbloom in a linear problem. Curvature enters in a manner not unlike
that exploited by Bochner in [4].

Special cases of our extremal mappings go back to the very beginning
of differential geometry. E.g. they include geodesics, harmonic functions,
and minimal submanifolds. For minimal surfaces they were first studied
locally by Bochner [2], in an explicitly Riemannian context. That work was
carried to completion by Morrey [19]. In a report prepared by J. H. Sampson
in February of 1954 at the Massachusetts Institute of Technology, the subject
was taken up from a somewhat different point of view, and other geometrical
applications were discussed. Since firm existence proofs were not then avail-
able, general publication of the results did not seem warranted. Shortly
thereafter, J. Nash and, independently, F. B. Fuller [10] advanced the same
definition as that on which this article is based, and Fuller described several
examples. The problem has also been considered by E. Rauch.

The contents of the present paper are presented in the following order:

Chapter I. The concepts of energy and tension.
1. The energy integral

The tension field

Invariant formulation

Examples

The composition of maps

St @



HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS. 111

Chapter II. Deformations of maps.
6. Deformations by the heat equation
7. Global equations
8. Derivative bounds for the elliptic case
9. Bounds for the parabolic case
10. Successive approximations
11. Harmonic mappings

Added in proof: The theory of the energy functional (and its harmonic
extremals) is the first-order case of a general theory of p-th order energy
(and its polyharmonic extremals). See J. Eells, Jr. and J. H. Sampson,
L’énergie et les déformations en géometrie différentielle, Colloque du CNRS
(Proceding of a conference held in Grenoble in July, 1963) for a general
formulation in fibre bundles.

Chapter I. The concepts of energy and tension.

1. The energy integral.

(A) Let M and M’ denote complete Riemannian manifolds of dimen-
sions n and m, respectively, and suppose further that M is closed (i.e., compact
and without boundary) and oriented. In the interests of simplicity we assume
that both manifolds and their Riemannian metrics are smooth (i.e., of class
C*); however, it is not difficult to make minor modification to include
differentiability class C°. We will let (z%,- - -,2) denote local coordinates
on M in a neighborhood of a point P (said to be centered at P it (0,- - -,0)
are its local coordinates), and (g% - - -,y™) local coordinates on M’. Thus
we can write the Reimannian metrics ¢ and ¢” in these local coordinates as

ds® = gy dxidal, ds'? = ¢’ apdy®dy®,

where we observe the summation convention ; generally, when using local tensor
calculus we follow the notations of Eisenhart [8]. We will denote covariant
derivatives without the usual commas; e.g.,

fle=0fe 00t fi = 0% /0widal — Ty f, ete.,

where I';* denote the Christoffel symbols.

With any smooth map f: M — M’ we assign a real number called its
energy, as follows : For each point P € M we let ¢, >p denote the inner product
on the space of 2-covariant tensors of the tangent space M (P) to M at P;
thus if (e?).sizn is a base for the cotangent space M'(P) of M(P) and
a=o,e'®@e¢f and o are 2-covariant tensors of M (P), then
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<@, &'y p = a9 peg 9%,
where gi*gy; =13;*. Since the metric tensor ¢’ of M’ is 2-covariant, it induces
through f a 2-covariant tensor field f*¢” on M, whence we can define the func-
tion P—> <g(P), (F*¢’)(P)>p on M. We will call e(f)P —3<g(P), (F*g)(P)>r
the energy density of f at P. Its dual differential n-form e(f) *1 can then
be integrated over M, and with an eye toward the physical concept of kinetic
energy (mv?/2) we define the energy of the map f by

(1) E(f) =fM e(f) = 1.

In a local coordinate representation we have

B(f) =4 [ guterfeelct(g) T dar A~ - A don

where fi* =0f*/dx?. Observe that if the local coordinates centered at P and
f(P) are both chosen to be locally Euclidean at their centers, then

e(HP=3 2 [F*(P) ]

so that e(f) is non-negative, and E (f) vanishes when and only when f is a
constant map.

(B) Although the present work is devoted primarily to the functional
E and its extremals, there will be the indications (e.g. the example §4E)
that we will want ultimately to consider other types of energy of maps. We
give here a general method of constructing these.

Starting with the manifold M and any smooth symmetric 2-covariant
tensor field @ on M, we fix a point P€ M and form the proper values of «
relative to the metric tensor g of M; i.e., the n real roots of the equation
det(gs(P)A—a;;(P)) =0. Apart from their order, these proper values are
intrinsically associated with « and P; thus we are led to forming their sym-
metric functions.

Definition. Let o be any symmetric real function of n variables. For any
symmetric 2-covariant tensor field « on M we let (@) : M — R be the function
such that o(a)P —the o-function of the proper values of «(P) relative to
qg(P). The o-integral of « is the number

I (a) = fMo'(oz)*l.

In particular, let o, denote the p-th elementary symmetric function.
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Then setting po=1, up—0,/ (Z)WG} have Newton’s inequalities pp-1ppss = (up)?,

with equality if and only if all proper values ); are equal ; furthermore, if all
A =0, then

() = [.‘1«2]1/22 [.‘1«3]1/32' = [Mn]lln: and

/o = po/p1 = * = pn/pma. These provide some sort of comparability of
the various o-integrals of . We have

o1(@) P =g (P)ay(P), on(a)P = det[ay(P)]/det[g,(P)],

and in general

Ji1° ° " Gn

op(a)P— (det[gy])- X | %]
Pl <ldp | Agp1t t  Agyn
ni® "G

Remark. These integrals provide many variational problems of differ-
ential geometric interest. For example, if we take for « the Ricci tensor of M,
then its proper values are the principal curvatures at a point, and o, () is
the scalar curvature function. If we take for o a second fundamental form
(for a given direction) of an immersion of M, then o,(a) is the Gauss-
Kronecker curvature function (for that direction).

For the present purposes we take «=jf*¢’ for some map f. Then
(F*9")ii=FfF P9 ap, and o1(f*g") =<g,*g’>; we are led to the

Definition. For any map f: M — M’ and any symmetric function ¢ of
n variables, the o-energy of f is the number

Eq(f) = f alfg)e1.

We observe that the energy of f is the (o1/2)-energy of f.
Let J;(P) denote the Jacobian of f at P; i.e., the image under f of the
unit n-vector of M (P) defining the given orientation of M ; thus

on(f*9") P —=<J1(P), 1 (P)>/det (g(P)),

where the inner product is that of the space of n-vectors of M’(f(P)). The
volume of f is the number

(®) T = loa(itg)Tier.

Note that V(f) =0 if n > m.

8
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Remark. If we consider g 4 Af*¢" = ds)? as a perturbation of the metric
of M for A= 0, then the corresponding volume element is

#1n = [det(gs; + Mi*fiPg ap) [Eda* N\ - - - N\ dam.

A simple calculation shows that

B(f) =27\ (Mre
where V(M) =fM #1,.

(C) We give here an interpretation of F(f) as a measurement of dis-
persion ; the calculations of this paragraph will not be used in any essential
way later.

Let (P, Q") denote the geodesic distance between the points P/, Q€ M’,
and suppose P,Q € M are points such that f(P) =P, f(Q) =¢@’". For a
fixed P we consider the function @ —2(P’,Q’); it is elementary that, for
@ sufficiently near P, that function is smooth.

Let Af = g*/f;; denote the Laplace-Beltrami operator on the function f.
We calculate the Laplacean of 72 qua function of . In coordinates centered
at P and P’ we have
0%r’?

Otz

W

PP, Q) = gt :
AQ (P}Q) g] awk

_.qijrij‘

A simple calculation gives

et oy oyt ot
8y°0yP oo 97 gy o7

AQT’Z == g“
Now

o 0 L
3s =0, s —20es(P) +0(7)

as ¢ — P, whence
A2 (P, Q') = e(f) P+ O(r').

For any smooth function « defined in a neighborhood of P let i(P) denote
the average value (e>0)

@e(P) — fB w1/ (B.),

where Be—={Q € M: f(P,Q) =e¢}.
We require Maxwell’s relation [16, p. 31. The formula is easily proved

by expanding % in a Taylor’s series at the center of a normal coordinate
system.] :
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1(P) =u(P) + 55 gy Su(P) + 0().
Applying this to w(Q) =+"2(P’, Q") and noting that w(P) =0 and
au(P) —lim A (P, @) — (),
we obtain

2e>
n -+

1f ¢ (P, @) is a smooth function which is zero for (P, Q) = ¢ and equals
1/V(Be) for r(P,Q) =e¢, then we obtain from our last equation

LGT'Z(PI, Q" )¥1g/V(Be) = 23(f)P_|_0(€s)-

r2 (P’ ) %1 — Re* 3
S S @ @n e om = 5 () + o).

Naturally certain uniformity conditions must be fulfilled by the error terms
for the validity of this formula, but since we make no essential use of the
result, we shall not insist on that point. The left member of the preceding
equation represents the mean square infinitesimal dispersion of the image
points on M produced by f, and that quantity is estimated by the energy of f.

2. The tension field.

(A) In this section we examine the extremals of E, interpreted as the
zeros of the Euler-Lagrange operator associated with E. For this purpose
we let =: J (M’) — M’ denote the tangent vector bundle. We let 9¢ (M, M’)
denote the totality of smooth maps from M to M ; then for every f€ % (M, M’)
the set of smooth maps u: M— J (M’) such that =ou—f forms a vector
space & (f) with algebraic operations defined pointwise; such a u is called a
vector field along f. We define an inner product in % (f) by

U, vy =fM<u(P), v (P)>ep) *1.

For any vector field v along f the directional derivative of F in the
direction v,

Vol (1) =5 1B () Jimos Where ,(P) = expyin) (10(P)),

is the endpoint of the geodesic segment in M’ starting at f (P) and deter-
mined in length and direction by the vector ¢v(P) € M’ (f(P)). We show
in (B) below that the Buler-Lagrange operator applied to a map f defines a

vector field +(f) along f which is the contravariant representative of the
differential of E at f;i.e.,
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Voli (f) =—<7(f), vps for all ve H(f).
Thus the maps f for which 7(f) =0 are (so to speak) the critical points of E.
(B) LemwmA. Let fi: M—> M’ be a smooth family of maps for t in
some time interval t, <t <ty Then
i st op a1, 0
(4) @l (F) =— ) [8F7 + g ag e Fof1g v 1
where A denotes the Laplace-Beltramti operator.

Proof. From the definition (1) we obtain for any ¢ € (%o, 1)

d g wg 0
FEG =3 go12fe I en - fuithp 2ol e,
The quantities

0fe ofif

are the components of a contravariant vector field & on M, whence by Green’s

divergence theorem
| gm1—o.
M
aft aglaﬁ 6ft:| #1 = 0.

fﬁ
f g“[ft“ gaﬂ_l_,ft'b 0xjatgaﬁ+ft"’ at 6yl/ a$]

Le.,

A routine calculation now gives (4).
For any smooth map f€ & (M, M) we set

(5) T()7V(P) = AfY(P) + g4 (P)Tap (f(P)) f*(P)fF(P).

It is clear that (f)7 is unaffected by any transformation of the local coordi-
nates on M near P, and for any such transformation of coordinates near f(P)
we see that r(f)7(P) transforms as a contravariant vector in M’ (f(P));
see §3 for an invariant formulation. Thus with every fe % (M, M’) we
have a variation = (f) € & (f).

Definition. We call 7(f) the tension field of the map f, and we say that
f 18 @ harmonic map if ~(f) =0. Thus (4) becomes

T2 =— | (), Ly

Suppose now that f is an extremal (with respect to small deformations)
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of F. If we apply (4) to suitably chosen local deformations (e.g., confined
to small geodesic balls on M), we obtain from a standard argument that the
Euler-Lagrange equation for the energy functional E is (f) =0. In local
coordinates that equation is elliptic.

Remark. It is a simple matter to modify these constructions to include
the case that M has a boundary; we should require in Lemma 2B that f; is a
constant function of ¢ on the boundary.

PropositioN. Every map f: M—> M’ of class C* which satisfies v(f) =0
18 smooth. If M and M’ are both analytic Riemannian manifolds, then every
such map 1is analytic.

The proof of the first assertion is easily obtained by inductive application
of [14, Theorem 3, p. 210]; analyticity follows directly from [22, p. 4].

(C) Our next step is to interpret the tension field +(f) in terms of
special coordinate systems on M and M.

For any P€ M we let expp: M (P)— M be that map which assigns to
each vector w € M (P) the end point of the geodesic segment emanating from
P and determined in length and direction by w; it is elementary that expp
is a smooth surjective map, carrying a neighborhood of 0€ M(P) diffeo-
morphically onto a neighborhood V of P in M. If we now choose an ortho-
normal frame in M (P), then we can use the inverse of expp to refer each
point @ € V to the components relative to that frame. These are called
normal coordinates in V centered at P, and they form a coordinate system
admissible for the differentiable structure of M.

In terms of P-centered normal coordinates we have

1) the metric tensor g;;(P) = $;, since the frame is orthonormal;

®) the Christoffel symbols I;#(P) = 0 for all 4, j, k; that is because the
equations of the geodesics through P are linear, whence T'*(P)uiu/ =0
for all vectors w € M(P) ; see Eisenhart [8, p. 54]. In particular, f;7(P)
= 0*fY(P) /0227, from which we obtain the

LeMMA. For any f€ ¥ (M, M) and point P € M let us fix normal coordi-
nate systems V and V' centered at P and P’ = f(P), respectively; in terms
of these we have

()P =E ).

Thus f is harmonic if and only if at each pair of points P, f(P) there are
such coordinates in which f satisfies the Euclidean-Laplace equation at P.

(I=y=m)
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Example. Suppose M’ is flat; i.e., its Riemannian curvature is zero at
every point. It is well known that then M’ admits a smooth coordinate
covering such that in each coordinate chart we have I'eg¥=0. Then
7(f)Y=Af7, and in such local coordinates the equation =(f) =0 1s linear.
In particular, if M’ is the Euclidean space R™, then a map f: M —R™ is
harmonic if and only if it is constant, by the maximum principle.

Ezample. 1f M and M’ are Lie groups with bi-invariant Riemann metrics,
and if f: M — M’ is a homomorphism, then f is harmonic. Tt suffices to
verify this at the identity of M ; taking canonical coordinates (which are
normal ; see Chevalley [5, p. 118]) at the neutral elements of M and M’, we
see that the representation of f is linear, whence 7(f) =0 by Lemma 2C.

Example. If M and M are Kdihler manifolds and f: M— M 1is a
holomorphic map, then f is harmonic relative to the associated real Riemann

structures on M and M’. Namely, we take local holomorphic coordinates
2 —=uaf +\—12" and w*=y*-+ V—1y"* (where dim M =2h, dim M’

—2Fk) centered at some points P € M, f(P) € M’. Because the w* are holo-
morphic functions of the 27 and because M is Kahler, they satisfy Laplace’s
equation Aw®*=0. Now A is a real operator, which we have Ay® — 0 — Ay**®
for 1= a=%k. Since M’ is Kihler, the w* can be chosen to be normal coordi-
nates, whence all IVag¥ =0 at f(P). Then =(f)P=0.

(D)Suppose f: M— M’ is a Riemannian immersion. Thus for each
Pe M the differential f,(P) of f at P maps M(P) isometrically into
MW (f(P));ie, g=r*¢. If & (1=o0=m—mn) is an orthonormal frame
in (some coordinate system) on M’ orthogonal to M, then

(6) bolis= (fi” + T'ag"[*f ) §'vréo”| = balii

are the components of the second fundamental form B(f) on M in M’ relative
to that frame (Eisenhart [8, §50]). The vector fleld & along the map f
defined by

(") E(P) =39 (P)bo1y (P (P)

for all P€ M is independent of choice of frame. It is traditionally called
the mean normal curvature field of the vmmersion. The following formula
is a well known interpretation:

E(P) = — S 8iv (6o (P)) o1 (P).

Note that the coefficient of each &5 is the first elementary symmetric function
of the proper values of b,| relative to g; that indicates how the following
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results (and those of § 4C) will generalize when we replace energy by o-energy.

A Riemannian immersion is said to be a minimal immersion if £=0 on
M. The minimal immersions are precisely those which are the extremals of
the volume functional V' (Eisenhart [8, p. 176]). Usually the notion of
minimal immersion is taken in a somewhat broader context, as a smooth map
which is an extremal of V. There are examples (even for M’ —R™ and
n=2) of analytic extremals of ¥ which are not strictly immersions, for their
Jacobians vanish at isolated points.

From (7) we conclude that

m-n

§= 2—1 G (fi” + T ag" i ) § vk o)

=j§_1n<7(f): €GI>‘§01'

But (fif¥ + ep"fif ) ' vfi? =0 (1=k=mn) in general (BEisenhart [8,
p. 160]); i.e., 7(f) (P) is perpendicular to M(P).

Prorostrion. Let f: M— M be a Riemannian immersion. Then
e(f) =n/R. The tension field +(f) coincides with the mean normal curvature
field on f. In particular, f is harmonic if and only if it is minimal.

Note that any isometry f: M — M is harmonic, and that any covering
map is harmonie.

Eemark. For any we€ M’(f(P)) perpendicular to M(P) we have
<r(f), up =trace (B(f)u).

(E) For any map f€ (M, M) we define F: M— M X M’ by F(P)
= (P,f(P)); then F is a smooth imbedding, but not isometric in the product
metric on M X M’. The following result is immediate:

ProrositioN.  For any fe N (M,M’) we have e(F)=n/2+ e(f).
Furthermore, f is harmonic if and only if F is harmonic.

3. Invariant formulation.

(A) In this section we express our problem in terms of differential
forms with values in a vector bundle. It turns out that in some sense the
harmonic theory of such forms gives us an infinitesimal solution to our
problem. We begin by summarizing the general theory; for details see
Spencer [27] or Bochner [4].
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1. Let W— M be a smooth vector bundle over M with fibre dimen-
gion m. If JW(M)— M denotes the bundle of p-covectors of M and if
W®JW (M) —> M is the tensor product bundle, then the smooth sections
of that latter bundle are called the smooth p-forms on M with values in W ;
their totality forms a vector space, which we denote by Az (M, W).

2. Suppose that W has a Riemannian structure; i.e., a given reduction
of its structural group to the orthogonal group in dimension m. If W— W*,
denotes the dual bundle of W, then we have a bundle isomorphism : W— W*,
Taken together with the canonical isomorphism *: JWI (M) — J21 (M)
induced from the given Riemannian structure on M, we have the natural map
YyQu: Av(M, W) — Avo(M,W*), In particular, the evaluation of W* on
W induces a bilinear pairing

#: Av(M, W) X Av(M, W) — A (M),

the vector space of real valued n-forms on M. Thus A?(M, W) has the
inner product

(®) e 2

3. Assume next that W has a connection which is compatible with its
Riemannian structure; i.e., the covariant differential of the tensor field
defining the orthogonal reduction of W is zero. We say that W is a Rieman-
nian-connected bundle. Then we have a linear map d: A»(M, W) — Av(M, W),
which can be described as follows: If U is a locally finite covering of M by
coordinate systems, then for each U € U the connection in W can be given by
a certain m X m matrix V= (6.UF) of 1-forms in U. Similarly any form
¢ € A?(M, W) defines an m-tuple ¢V = ($pg¥) of p-forms in U. If d denotes
the exterior differential operator in U, then we define d¢ by giving its repre-
sentation in each U by the formula (In this section (8A) we violate our
convention of lettering subscripts denote covariant differentiation. We adopt
here a special symbol for that concept.)

(d$)?U = dgV + 67 A\ ¢7
== (d¢1‘U -+ 6,8 N\ ¢BU: ) qumU ’l"omUB AN ¢.BU)'

4. We can now develop the theory of harmonic forms on M with values
in a Riemannian-connected bundle. We have the adjoint map §: A? (M, W)
— Ar*(M, W), characterized by the formula

Kdeb, > = <, .
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In particular, for any ¢ € A*(M, W) and any coordinate chart U we have
1-forms ¢a¥ (1= a=m), which can be expressed

¢a¥ = ¢a;U dad in the coordinates (z',- - -,z") in U.

If we write similarly
OaUﬂ = Taq/ﬁ dxli,
then

-~ Opa;V . .

(d¢)a” = (i~ + Taifds¥) dat N\ da,
(9)

(3¢)a¥ =—g (Viba;¥V + ToiPpp¥),
letting ¥V, denote covariant differentiation on M relative af. The Dirichlet
integral of ¢ € Ap(M, W) is 2D (¢) — (dep, dp> -+ <5¢, 8¢, and its associated
Laplace operator is A—— (ds -+ 8d). A form ¢ € A2(M, W) is harmonic
if Ap —0; that condition is equivalent to the pair d¢— 0= 5¢.

It is known that a Green’s form exists for the operator A, from which

it can be proved that there is a decomposition

(10) Av(M, W) = H>(M, W) @ [dA»*(M, W) + 540 (M, W)1,

where H?(M, W), the space of harmonic p-forms with values i W, is
orthogonal to the other two summands.

5. The curvature of the connection can be expressed in U by an m X m
matrix of R2-forms ®U = (®,5V) where ®U =dfU -9V A V. If V¥ denotes
the covariant differential of M, then we define the covariant differential ¥ on
b€ AP (M, W) by

VUSU = VU 46U A ¢V
Letting B denote R;*I, the diagonal m X m matrix each of whose diagonal
terms is the Ricci tensor field R* (we follow the sign convensions in Eisenhart
in defining Ry = R%;), we have for any ¢ € A*(M, W) the following expres-
sion for the components of the Laplacean of ¢ in U:

(—29)7 =— (V)H(V)up? + [ (89)F —EMn,
where ¢ denotes the transposition of matrices.

If ¢,y € A*(M, W), define the function ¢ ¢y =*(¢p #¢) on M; then in
U we have (usual Laplacean A of functions)
A(Re¢) =gV (—Ag7) — (VU)u(7)a? (VV) ¥ (¢7)*
— (@) — B (¢7)1av (7)1,
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where aU denotes the Riemannian structure of W in U. For each ¢ € A1(M, W)
define the function

(11) Q(¢) ='L(OY) — R ] ($7)na” (¢7)".

The matrix (of functions) of @ is
Qag"t = g"g [ (0ay"Oyg") 1j— g Brs].

We consider this as an nm X nm matrix in the subscripts («h), (B¢) ; as such,
it is symmetric: Qught = Qga’".

The integral over M of A(¢-¢/2) is always zero, by Green’s theorem.
Thus tf ¢ is harmonic we have

(12) fo@si—— [ (T (V)4 ()1 0.

(B) Given any f€ $ (M, M), let f*T (M’) — M be the induced vector
bundle; it is clearly Riemannian-connected. Let us interpret the preceding
development for that bundle.

First of all, the elements of A°(M,f*J (M’)) are canonically identified
with the vector fields along f (i.e., with the elements of the space & (f), in
the notation of §2A). Secondly, for any P € M the differential f,(P):
M(P)— M (f(P)) is a linear map, to be considered as an element of
M (f(P)) @ MR (P) ; otherwise said, the assignment P— f,(P) determines
a specific 1-form f, € A*(M,f*J (M")). Thirdly, we have

B =1 f fetfs

LewMA. For any f€ % (M, M) we have df,—O0; i.e., f, is orthogonal
to SA(M,f*F (M’)). Thus Afy —— ddf,.

Proof. Take a coordinate chart U on M, and write

(13) 0, U8 — TVogVf® dat.

Then (f.U)#=ffda’s, whence (1=a=m)
3 0) g0 dat N dad - Tagtff f dat A da?
(df « )7=W @t N\ da? 4 Tag fifif dat N\ da?,

which is zero, because both coefficients are symmetric in 1, j.

Similarly, the variation 8f, € A°(M,fJ (M’)) has coordinate represen-
tation

(3f4) 7 =— gi{ ViV Y + Tag?fff} =—(F)".
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ProrosiTION. For any f€ ¥ (M, M) its differential f, is a closed 1-form.
Its tension field v(f) = —8fy, the divergence of its differential. The map
f is harmonic if and only if its differential is a harmonic 1-form.

Definition. For any map f€ H (M, M) its fundamental form B(f) is the
covariant differential Vf, of its differential. Thus B(f) is the f*J (M’)-
valued 2-covariant tensor field on M whose coordinate representation is

Faf' = fif" + Tag?ff = [ 157
The tension field r(f) is just the trace of B(f); i.e., vV(f) = g*f ¥
(1=y=m). Itfollows from § 2D that if f is a Riemannian immersion, then
B(f) is the second fundamental form of M in M’. Analogously, let us say
that a map f€ ¥ (M, M") is totally geodesic if B(f) =0 on M; we will see

as a consequence of Corollary 5A below that totally geodesic maps map
geodesics into geodesics.

(C) Let us consider the function @ (f4); from the expression (@qg¥)*
= 9" R agyefi?fi® we compute (11), taking into account the skew symmetry
@ap?U = —®goU to obtain the

LemumA. For any smooth map f: M—> M’ we have
(14) Q(fs) =—Blapyef [ P19 %97 — BUf g up.
Its matriz (for arbitrary forms ¢ € A*(M, T (M’))) is
(15) Qapt! = — Rl apoofi"[Pg%git — B up.
If f is harmonic, then

(16) Ae(f) =B >+ @ (F+)-

We will refer to the matrix (15) as the Ricci transformation on the tensor
product bundle f*J (M) Q JHI(M). Observe that if f is a real-valued
function on M, then that Ricci transformation is just that given by the Ricci
tensor of M.

Remark. The above computations can of course be made without passing
through the medium of vector-bundle-valued differential forms. One starts
by applying the Ricci identities (Hisenhart [8, p. 80]) to the direct evaluation
of Ae(f), and then reads off the appropriate terms.

The next result follows the well known pattern of Bochner; in [2]
Bochner has also applied the method in a special case for maps.

TrEOREM. If f: M— M’ is a harmonic map, then
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. etam=o,

and equality holds when and only when f is totally geodesic. Furthermore,
if Q(f«) =0 on M, then f is totally geodesic and has constant energy
density e(f).

Proof. This follows at once from Stokes’ Theorem

J. se(prr—o,

applied to (16); for if Ae(f) =0, then Ae(f) =0 everywhere, whence e(f)
is a constant function.

Following the conventions of Eisenhart [8], we say that the Ricci
curvature of M is non-negative if at every point P € J the matrix (— RB;;(P))
is positive semi-definite.

CororrARY. Suppose that the Ricci curvature of M 1s non-negative
and that the Riemannian curvature of M’ is non-positive. Then a map
f: M— M’ is harmonic if and only if it is totally geodesic. Furthermore,

1) if there is at least one point of M at which its Ricci curvature is
positive, then every harmonic map f: M —> M’ is constant

R) if the Riemannian curvature of M’ is everywhere negative, then
every harmonic map f: M— M’ s either constant or maps M onto a closed
geodesic of M’

Proof. The theorem shows that
B apoof 1 P79 %g7 + RiIf Py ap=0.

If hypothesis 1) is satisfied at P € M, then f,(P) =0, whence the constant
e(f) =0; ie, f is a constant map. If hypothesis 2) is satisfied at
P’ —=f(P) €M and we take normal coordinates centered at P, then the
f«(P)-image of the tangent space M (P) has dimension =1. If it has
dimension 0 at any f(P), then again e(f) = 0; otherwise, the image f,(P)M(P)
has constant dimension 1. Because f is totally geodesic, the conclusion follows.

Ezample. 1f f: M— M’ is a harmonic immersion, then e(f) =n/2,
and | B(f) |2+ Q(fx) =0. This relation also follows from Gauss’s equations
(Eisenhart [8, p. 162])

m-n
Bijin— B agysfi®f iV fd = 2_1 (boliwbo|ji—bolubo|n)
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by multiplying by g*g¢/! and summing. We obtain

m-mw

Riigy + Rlagref o P flg g’ = | BN [*— Z po?,

where pg = g*bs|i; is the o-th component of the mean normal curvature of
the immersion (see (7)) ; each uy =0 if f is harmonic. For instance, if the
Riemannian curvature of M’ is mon-positive and if the scalar curvature
R=Riigy; of M is negative at some point, then there is mo harmonic
immersion of M in M.

4. Examples.

(A) The case dim M =1. Let us take for M the unit circle S%, coordi-
natized by the central angle §. For any f€ (S%, M’) we have

e(f) =%02;a ‘Zf 7'ap, Whence B(f) —3 fM g{.

The tension field is

2
%1,

2fy o JfB
()7 () = I e

which (when the parameter of f is proportional to arc length) is often called
the curvature (or acceleration) of f. We have <¢(f),cczl—];>=0, and (f) is

proportional to the geodesic curvature vector field along f. Then f is harmonic
of and only if f defines a closed geodesic on M’. 1t is well known that «f M’
18 compact, then in every homotopy class of maps S*— M’ there is a harmonic
map (and furthermore, one which minimizes the length in that homotopy
class.) On the other hand, without further restrictions on ¢’ there are com-
plete Riemannian manifolds M’ and non-trivial homotopy classes of maps
8*— M’ having no harmonic representatives; see §10 below.

(B) The case dim M =2. We established here certain relations showing
the close connection of our problem with the Plateau problem, in its potential
theoretic formulation (Morrey [19] and Bochner [2]) ; incidentally, we see
that in our energy theory the cases dim M =2 are favored.

Recall that a map h: M — M’ is conformal if there is a smooth function
6: M — R such that

hxg" =exp(R8)g.

Thus the differential %, preserves orthogonality and dilatates uniformly.
Clearly such a map is a smooth immersion, and has energy density e(h)
=nexp(20) /.
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ProrositioN. If dimM =n=2 and h: M — M is a conformal diffeo-
morphism, then for all f€ 3 (M, M) we have E(foh) =E(f). Moreover,
h is harmonic.

Proof. First of all, (f o h)® = f,*h.?, whence 2¢(f o ) = g¥h2hjf,*f L ap.
The conformaltity condition for % implies g#/h#h2= exp(R0)gr?, and sub-
stituting gives

Re(foh) —exp(20) g7, g ap=2 exp (0) e(f).
Secondly, we have
h* (+1) = [det (gpohi?hs®) /det (gi7) 13 #1
=exp(nf)*1,
so that if n =2 we have h* (e(f)*1) = e(foh)=1.
Finally, in suitable local coordinates on M we have

Tiff =T — (3/0: + 3/0; — g*g:0,),
and direct computation shows that

7(h)t= (R —mn)gih; . (1=i=n).

PropostrioN. If dim M =2, then for any f€ ¥ (M,M’) we have
V(f) = E(f). Equality holds when and only when f is conformal.

Proof. The first statement follows immediately from the inequalities (2).
Suppose f is conformal ; then for n — 2 we obtain

7)) = J () [gugn—gBdrde = [ e(f)—E(f).
Conversely, if V(f) = (f) we conclude that at every point of M
[ det (fxg")iy]2 =g (fxg') ;[ det (g4) I3
In isothermal coordinates on M we have
[(F#9")1a— (Fg7) 22]* =— {(F*g") 12}%,
whence (f#g")11— (f%9")22=0= (f*¢’)1,. Defining 6: ¥ — R by
exp (R0) = [det (fxg")y/det(gs) I3,
we obtain exp (29)gi; = (f*¢")4-

CoroLLARY. If a map fo: M—> M’ minimizes V and is conformal, then
fo minimizes E.
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For any f€ % (M, M) we have
E(f)=V({) =V =E().

Remark. If M is a Riemann surface, then its complex structure defines
a conformal equivalence class of Riemann structures. The energy of any map
f: M — M’ therefore depends only on the complex structure of M.

(C) Harmomic fibre maps. For any map f€ ¥ (M, M) and P€ M we
have the vector space My (P) = {u€ M(P): fu(P)u=0}; the vectors in
My (P) are called wertical. Let Mgm(P) denote its orthogonal complement
in M(P). Suppose that for all P € M the differential f,(P) maps Mu(P)
isometrically onto M’ (f(P)). Then f is a locally trivial surjective fibre map
(see Hermann [18]) ; in particular, f determines an almost product structure
on M (i.e., the structural group O, of J (M) admits a reduction to the product
group Op X Opm). We will call a map f: M — M’ a Riemannian fibration.

Remark. There are smooth fibrations f: M — M’ having no Lie structural
group; e. g., there are non-trivial compact smooth fibrations over the 3-sphere
8% (which cannot have a Lie structural group @, since #,(G) =0). Itis a
consequence of a theorem of Hermann [13] that the manifolds M, M’ admit
no Riemann structures compatible with f as above, for which the fibres are
totally geodesic.

Lemuma. If f: M— M is a Riemannian fibration, then for any P€ M
there are coordinate charts U and U’ centered at P and f(P) respectively,
m terms of which f#(P) =8 1=1=n,1=a=m). Furthermore, the first
m coordinates in U can be considered as normal coordinates in U’, and the last
n—m coordinates are local coordinates for the fibres.

Proof. Let (e;)1si=n be an orthonormal base for M (P) such that the first
m vectors span My (P), and the last m—m vectors span My (P). Then
fe(P)es=¢; (1=4¢=m) form an orthonormal base for M’(f(P)), and we
can construct the associated normal coordinates in some neighborhood U’.
According to Hermann [138] the unique horizontal lift to P of any geodesic
of M’ starting at f(P) is a geodesic of M ; one determined by ¢’; lifts to one
determined by ¢;, We now use the local product structure to define a coordi-
nate chart U in which the fibres have the desired property. Note that (unless
the fibres are totally geodesic) we cannot generally require that the coordinates
in U be normal.

ProrostrioN. Let f: M— M’ be a Riemannian fibration. Then e(f)
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—n/2. If for any P € M we let Fp denote the fibre through P and ip: Fp—> M
the inclusion map, then

7(£) (@) =—T+(@)7 (i) (@) for all Q€ Fp.
In particular, f is harmonic if and only if all fibres are minimal submanifolds.

Proof. In §2D we have seen that the tension field of any Riemannian
immersion is perpendicular to the submanifold. Thus for every @ € Fp we
have =(1p) (Q) € Mu(Q). If we use a split coordinate system as in the previous
lemma, we see that

fur(iz) (P)7 = S072 (i2)*(P).

The proposition follows by direct calculation.

Ezamples. All covering maps are harmonic; in particular, the identity
map is harmonic. which amounts to saying that Cartan’s vitesse is a harmonic
1-form. If Fr(M)—> M is the bundle of orthonormal r-frames of M, then
it is known (Lichnerowicz [15]) that with its natural Riemannian structure
on (M) the fibres are minimal, whence that fibre map is harmonic. Vector
bundle maps are harmonic. Every homogeneous Riemannian fibration is
harmonic, for the fibres are always totally geodesic, and therefore minimal.

(D) Maps into flat manifolds. Let us take for M’ the unit circle §*;
we will construct harmonic representatives in every homotopy class of maps
M—§. TFirst of all, it is well known that the set [M, S*] of these homotopy
classes forms an abelian group canonically isomorphic to the first integral
cohomology group H*(M). Secondly, every such cohomology class is
canonically represented by a harmonic 1-form on M.

Suppose M is connected, and fix a point P, € M. Given any such har-
monic I-form » on M and any smooth path yp from P, to a point P € M, we

define the number
f(P)= f o.
Yp

A different choice yp of yp may give a different number f(P), but

)iy = [ o

Yo~VP
is an integer since the periods of o are integral; consequently, o determines

a well defined map f,: M — S* by letting f,(P) be the residue class modulo 1
of f(P).
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Now since f,, is harmonic, every P € M has a neighborhood U in which
df = w; thus Af =38df 4+ ddf =8w=0 in U. It is easy to see that o—f,
establishes an isomorphism [M, 8*] = H*(M).

To define harmonic representatives of the homotopy classes of maps
M — T, the flat m-torus, we merely take m-fold products of harmonic maps
M — 8, using §5C below; the existence of these harmonic representatives
was first proved by F. B. Fuller [10]. More generally, any compact flat
manifold M’ is covered by T™, by a theorem of Bieberbach, and any homotopy
class of maps M — M’ which can be lifted to maps M — T™ has harmonic
representatives obtained by composition with the projection T™— M’.

If M and M’ are both flat, then the only harmonic maps M — M’ are
those which are locally linear, as can be seen from the maximum principle.

(E) Maps of Buclidean spheres. Let S»(r) denote the HEuclidean n-
sphere of radius r; write S»=8"(1). Then the homotopy classes of maps
of S» into itself are classified by their degrees. We consider now the problem
of constructing explicitly harmonic maps of a given degree k; it is a
simple matter to modify the following remarks to include the case of maps
8 (r) — S» (7).

If (a',- - -,2m') are Euclidean coordinates and 5: S*(r) — S*(+’) is a
map given by q(zt,- - -, z") = (z%’/r,- - -, 2% /r), then

e(n) =n/2(/r)*

We will henceforth refer points of S” to coordinates (6, ¢), where § denotes
colatitude (0=60=w), and ¢ a point on the equator S»* of S». Further-
more, corresponding to the integer % let ®: §**(r) — §»*(+’) be the (n—2)-
fold suspension of the map S*(r) — S*(+’) defined by ¢ —> (cos k¢, sin ke) ;
since the degree is invariant under suspension, ® has degree k. An elementary
calculation gives

2 —
(17) o(@) = EEI=R) e
We are interested in maps f: §»— S» of the form (4, $) — (®, @), where

® is a function of 4 alone, and ® is defined for r =7"=1. From (17) we see
that on S7*(sind) we have 2¢(f) = (¥ + n—2)sin?®/sin? §, whence

™ d®\? sin? ®
— 1 i 2 . == = n-1
2(f) Zfo fSH(sM) [(d0)+(k tn—2) S22 asia.

V(s T (d-®)2 sin?®
e j;sm 10[ o —|—(k2+n—2)——sin20]d0.
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In case n—1 the existence and properties of harmonic maps of degree &
is elementary.

We now consider the case n=2. We have gi1=1, gi2=—0=g0,
g2z =sin?6. The tension field of any map f is given by its components

. 1 [09)\? % \?
7(®) =A®—sin ® cos ® M(ﬁ) - (50—> ],

1 02 90 0% 00
T(<I>)=A‘I>+200t® [—sin"’ﬂ 0—¢* % %; E .
For the special maps under consideration we find that for a harmonic map f
7(®) — A® — d°®/d$? — 0, which means that the choice ® — k¢ is compatible
with our above selection. Substituting in the first equation we find

1 df. ae , 5in @ cos ®
T(®)=sﬁ—§@(sm6%) —Fk sin?g °

the only solution of +(®) =0 regular at the poles is
(19) ® — 2 arctan [c(tan §/2)**] with ¢ > 0.

Then d®/d§— =+ ksin ®/sin¥, from which we can conclude that E(f)
—4x | k|; note that it is independent of ¢. Finally, the integral formula
for the degree of a map shows that degree f— k. We observe that for
k=0 and all ¢ > 0 the map is constant; for k= =1 and ¢=1 the map is
the identity and the antipodal map, respectively.

Remark. Although the above construction does exhibit a harmonic map
in every homotopy class, it does not begin to exhaust their topological interest.
For instance, with the uniform topology on & (S%, 82), the component
Mo (8% 82) of those maps of degree 0 has infinite cyclic homology:

Hy (%0(8%,8%)) =i (Ho(S%, 8%)) =ms(8°) =7,

generated by the Hopf map. A harmonic representative of that generator
should have positive Morse index.

Consider now the case n=3. We do not know how to construct har-
monic maps of degree = 2. Incidentally, the suspensions of the above maps
(and their “compressed” suspensions below) are generally not harmonic.
We propose now to show that the functional E: & (8%, S*) - R does not
have an absolute minimum on the component ¥, (S", S*) for k=40 and n =3 ;
that this phenonmenon could be illustrated explicitly and simply by maps of
spheres was suggested to us by C. B. Morrey.

Let f,(0,¢) = (®,(8),®) be the map of S*— S» defined using (19)
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with exponent k=%40. Thus for small ¢ >0 the map f, compresses most of
S» into a small cell centered at the pole, and that compression takes place
along longitudes.
The energy integral (18) now takes the form
- 2 .
B(f,) — V (Sm1) (2k +n—2) f sinn-g- (sm@)o(o)

sin 6

For n = 3 we have

B() = V(Sn—l)(,‘a;ﬁ—{—n—%) ﬁfsw@o(e)d(’.

The following lemma shows that lim E(f,) =0; i.e., for n =38 there are
c->0

maps in (S, S*) of arbitrarily small energy. But for k40 there is no
map f€ ¥ (S, 87) with zero energy, for such an f is constant, and therefore
has degree 0.

LeMmA. fw sin?@®,(0)dd— 0 as c— 0.
0

Proof. For any ¢ >0 let p—x—¢/2. There is a number K such that
0= (tan8/2) =K for all 0 =9 =p. It follows that ®(0) =2 arctan(cK),
whence there is a number ¢, > 0 for which 0 =sin?®,(0) < ¢/2p if 0 < ¢ = ce.
Thus

J"’sinz’@c(o)da+f"sin2®c(e)do§ f”e/zpdaJr f"1 B=-
J O p 0 p

5. The composition of maps.
(A) The following computation is elementary.

Lemma. If f: M—> M and f': M'— M” are any smooth maps, then
their fundamental forms satisfy

(20) (o f) s =1 f's* 4+ I s08fifiP.

CoroLLARY. The composition of totally geodesic maps is totally geodesic.
The wnverse of a totally geodesic diffeomorphism is totally geodesic.

COROLLARY.
(21) r(f o 1) = (AF s+ gF st
If f is harmonic and ' totally geodesic, then f’of is harmonic.

In general, however, we do not expect the composition of harmonic maps
to be harmonic, as the following example shows:
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Ezample. Let T? be the flat 2-torus parametrized by the angles (6, ¢)
with 0 =6, ¢, < 2r. Let f': 72— S° be defined by

f(6,¢) = (cosb,sin 6, cos ¢, sin ¢)/\/2_,

considered as a point in R*. Then f defines a Riemannian imbedding of 1™
i S, which is a minimal but not a totally geodesic imbedding. To see that
f is harmonic we show that =(f) is perpendicular to S*(f’(P)) in R*, and
then appeal to Proposition 5B below. Namely, because T2 is flat we have

02f/a 2f/a
(=G + 5 —— (1=a=1)

whence =(f’) (P) is directed along the radius of S® at f(P). On the other
hand, T is not totally geodesic in S%, for the map f: S*— 1 defined by
f(0) =(6,0) is a geodesic of T%; it does not lie in any 2-plane through 0
in B* and is therefore not a geodesic of S®. In particular, f: S*— I and
f: T2— 8% are both harmonic maps, and their composition f'of is not.

(B) ProrostrioN. If f/: M —> M” is a Riemannien immersion, then
for any map f: M— M we have E(f) =E(f of). The tension field =(f)
is the projection on M’ of the tension field =(f' of).

Proof. The first statement follows from the equation

o(f'of) =39, o f*9"> = e(f).

The second statement is a consequence of (21); for if f is a Riemannian
immersion, then the right member is the decomposition of +(f of) into
horizontal and vertical components because (f’;ng?) is the second fundamental
form of f.

CoroLrLaRY. A map f: M— M’ s harmonic if and only if =(f of) is
perpendicular to M’ (f(P)) for all P€ M.

This generalizes the classical fact that a curve in M’ is a geodesic if and
only if its curvature vector in M” is always perpendicular to M’

(C) ProrostrioN. Let f/: M'—> M” be a Riemannian fibration with
totally geodesic fibres. Then for any map f: M— M’ we have

(o f) =F«(=(f))-

This is immediate, because we can in the present situation take split normal
coordinates in Lemma 4C.
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CoroLLARY. If M=M" and f: M— M is a section, then fof=1
18 harmonic, and therefore +(f) is always vertical.

Ezample. If we view a smooth r-form » on M’ as a section of the bundle
JI(M’) of r-covectors of M’, then the condition that » be harmonic in the
sense of de Rham-Hodge is generally different from the condition r(w) =0,
using (say) the Riemannian structure on ) (M) of Sasaki [25]. However,
these two concepts do coincide if M’ is flat.

Ezample. A map f: M— M’ X M” into a Riemannian product has a
canonical decomposition f(P) = (f'(P),f”(P)) for all P€ M. Then f is
harmonic if and only if both components f’, f” are harmonic. For instance,
seee Proposition 2E.

(D) Let us suppose that M’ is a Riemannian submanifold of M” and
that the imbedding is proper; i.e., such that the inverse image of any compact
subset of M” is compact in M’. Since M’ is complete, there is a positive
smooth function p: M’ — R such that for any P’ € M’ the set

(PreM”: (P, P") Zp(P))

is geodesically convex in M”; if M’ is compact, then of course we can suppose
that p is a positive constant. For each P’ € M’ let Dp: denote the closed ball
of dimension ¢— m (¢ = dim M") consisting of all geodesic segments of length
=p(P’) emanating from P’ and perpendicular to M’(P’). The following
result is well known and elementary.

LemmA. Let N=U {Dp: P€ M'}; then N s a neighborhood of M’
i M”, and the obvious map =: N — M’ defines a smooth fibre bundle over M’
whose structure group s Oq_m and whose fibres are closed balls.

Taking into account Proposition 5C we have the

PropostTioON. Let f': M — M” be a proper Riemannian imbedding and
x: N— M a normal tubular neighborhood. Then for any map f: M — N the
composition wof is harmonic if and only if =(f) is vertical.

Chapter II. Deformations of Maps.
6. Deformations by the heat equation.

(A) This chapter is devoted to the fundamental problem of deforming
a gwen map into a harmonic map; i.e., into a smooth map f: M— M’
satisfying the nonlinear elliptic equation
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(1) (f) =0.
We begin by discussing general methods of attack.

The interpretation given in §RA of the tension field r(f) as the contra-
variant representative of the differential of F at f suggests that we try to
invent gradient lines of E in a suitable function space of maps from M to M’,
and then to prove that these trajectories lead to critical points of E. We
propose the following method for realizing such an attempt, which we now
outline briefly. We do not pursue this method in the present paper, although
the qualitative results are essentially those of the following sections.

Let (M, M’) denote the function space of all maps from M to M’
whose partial derivatives (relative to fixed coordinate coverings) of orders
= r are square integrable. An inequality of Sobolev insures that if 27 > dim M
then the maps in 7 (M, M’) are continuous, and its topology is larger than
the uniform topology. It can be shown that the space ¥ (M, M’) admits an
infinite dimensional Riemannian manifold structure modeled on a separable
Hilbert space, and that &: &7 (M, M") —> R is a differentiable function. If
7 is its gradient field on Hr(M,M’); i.e., Vol (f) =—<="(f),v> for all
vectors v in the tangent space at f, then the ordinary differential equation

has a local solution which is unique; furthermore, E(f;) is a decreasing
function of . Under suitable curvature restrictions the solutions are globally
defined. If each trajectory f; is relatively compact, then it has a limit point
a harmonic map. Thus these trajectories define a canonical homotopy of the
initial map onto a harmonic map; moreover, such trajectories enjoy the 1-
parameter group property. We observe that the critical points of E are just
the zeros of all =7 (for any r» > dim M /?).

Now the function space H°(M,M’) is not a manifold, although with
every map f we have the Hilbert space $£°(f) of vector fields along f defined
in §2A. In particular, °(f) == (f) is in ¥°(f). In analogy with the above
outline we are led to consider the nonlinear parabolic equation

]
(2) Tt —r(f2) (h<t<t).
The study of this equation is our primary object in the following sections.
We will find that the properties of the trajectories of (2) include most of
those mentioned as belonging to the trajectories of +* (2r > dim M). (There
is one basic difference: The solutions of (2) are generally defined only for
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non-negative time, whereas the trajectories of + are always defined for an
open time interval around ¢==0.)

Remark. In the calculus of variations a standard method (Morrey [19])
of establishing the existence of a minimum of E for a given class of maps is
to take the space ¥*(M, M’) and to introduce on it a weak topology relative
to which 1) E is lower semi-continuous, and 2) there are sufficiently many
compact sets. That approach works well for dim M =1 or 2; however, the
example given in §4E shows that it will not work in general for n= 3.

(B) ProrositioN. If (t,P)—fi(P) is a map of (fo,t1) X M —> M
which s C* on the product manifold and C?* on M for each &, and if that
map satisfies (2), then it is C=.

We will refer to such an f; as a solution of (2).

This follows from Friedman [9, Th. 4 and 5] provided the second
derivatives f;* of the f* are Holder-continuous. But we can represent the
local functions f® by Green’s formula, using the fundamental solution of the
heat equation Au—du/9t=0 as in §§9-10 below. The required Holder-
continuity is then established by standard techniques from the properties of
the potentials involved (Pogorzelski [24], Dressel [7], Gevrey [11, No. 8]).

(C) Let fi: M — M’ satisfy (2) ; the subscript ¢ refers to the deforma-
tion parameter (we will always indicate explicitly differentiation with respect
to ¢t). Then from (4) of §2B we have

B [ ot Be1=— [ %'

If D/dt denotes covariant differentiation along paths in M’, then for each
P € M the curvature vector of the path ¢— f;(P) is given by D (0f:/0¢)/d¢.

PropoSITION. If fi: M — M’ satisfies (2), then the energy E(f;) is a
strictly decreasing function ; i.e., dE (fi)/dt <0 except for those values of &
for which = (f;) =0. Furthermore, its second derivative expresses the average
angle between the tension field and the curvature vectors of the deformation

paths:
ﬂgt(z@=_ 2, < (aft)’f(ft»*l

LemmA. Let fi: M—> M be an arbitrary deformation for t€ (fo,1ty).

If we let
f 0*f* o Oft" Of¢
090‘( ) a0t + Tt 9t ot
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dzgt(zft) =f Mg”< 0z (%Ct) ozt aft) >+l
— J g Raatictir T — [ 2 (%) rm.

This follows from a direct calculation of 9%¢(f;)/0¢* and an application of
Green’s divergence theorem.

Because the first integral of the right member is always non-negative,
we have on appeal to the above proposition the

then

TaroREM. If fi: M — M’ satisfies the heat equation (2), then

d?E (f3) D (ofs\ D (of
F g =fMg”<6Tﬂ— (57 > 0 ( >>*1

. of i ofy
o f M 9B aupofuifeif _% —('%“ *1.

(3)

In particular, if M’ has non-positive sectional curvature, then d2E (f;)/dt? = 0.
If t s a value for which equality holds, then +(f;) 4s a covariant constant;
1. 6.,

0% (a—ﬁg—))=o for all Pe M and (1=i=n).

CoroLLARY. If M’ has non-positive sectional curvature and if f; satisfies
() for all t=1,, then

Ld(tftl_) 0 as t—c0.

(D) We have seen in §5 that in supposing M’ contained in a larger
manifold M” we do not alter the energy of a map f: M — M’. That suggests
that we still have control of the energy and the tension of deformations of f
which take place in a normal tubular neighborhood N of M’ in M”.

If f: M’— M” denotes the imbedding, then the induced tangent vector
bundle is 1T (M) = J (M’) @ N (M”, M’), where the second summand is
the normal bundle of M’ in M”. Then N — M’ is Riemannian-connected in
the sense of §3A. There is a canonical vector field p: N — N covering the
projection map #: N— M’ defined by assigning to each @” € N the unique
vector p(Q”) € M”(x(Q”)) such that exprgn (p(Q”)) = Q.

Suppose now that f;: M—> N is a smooth deformation ({,=1¢<t,).
Then pof; is a vector field on the map = o f;, and using the harmonic integral
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theory of § 3 applied to the vector bundle 9 — M’, we can define its Laplacean
Apofs). Let

L(pof) =A(pofs —% (poft),

where D /9t is the covariant derivative in NV along the path o f.
We now establish the following stability property of deformations.

TarorEM. Let N be a normal tubular neighborhood of M’ in M”, and
suppose that fy: M—> N is a smooth deformation (t,=1<t.). If L(pofs)
is always horizontal in J (M) and if fi,: M— M’, then fi: M—> M’ for all
h=1t<t.

Proof. We apply Green’s theorem to u,v € A°(M, (zof;)*N):

f Cu, Avyxl =—f (du, dvyl.
M M

The hypotheses imply that (po foL(pof,)> =0 for all ¢, so that

- . D
0= IM <P°ft,A(P°ft)>*1—jM pofe 5y (pofe)) L.
Therefore

%%IM <P°ft>P0ft> #] = fM<p°ft,B(p°ft)>*1

—— | ldGefy 1 =0.

Le, JM] pofi12#1 is a non-negative, non-increasing function of ¢, and it

is zero for ¢t =1¢,. We conclude that pof;=0 for all £, = ¢ < ¢, which states
precisely that every f; maps M into M’.

7. Global equations.

(A) We now occupy ourselves with the problem of replacing equations
(1) and (R), which in terms of local coordinates on M and M’ are local
systems of equations, by some much more tractable global systems.

Remark. Assume for the moment that we have an isometric imbedding
w: M’ — R for some ¢, which we can always do by a theorem of Nash [21].
Then as in Proposition 5B we find that equation (2) is satisfied for a deforma-
tion f;: M — M’ when and only when the composition W; = w o f; satisfies the

condition that the vectors LWt=AWt—% are perpendicular to M’; see
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Lemma 7B below. When expressed in terms of the coordinates of R, that
condition gives rise to a global parabolic system of equations of the type (2).
On the other hand, the assumption of an isometric imbedding apparently
affords no real simplification in our theory, and we will not make it. We
proceed with an elementary imbedding convenient for our purposes.

Suppose that M’ is smoothly and properly imbedded in some Euclidean
space R? by a map w: M’ — Ra.

LemmA. Given such an imbedding of M’ in R9, it is always possible to
construct a smooth Riemannian metric ¢ = (§” ) 120,85q 0N @ tubular neigh-
borhood N of M’ so that N is Riemannian fibred.

Proof. Let N be any tubular neighborhood of M’ constructed using the
Buclidean structure of R¢; let w: N — M’ be the projection map. It suffices
to construct an appropriate smooth inner product in each space R?(P”) for
all P’ € M’, for we can translate that tangent space to any point " € N along
the straight line segment (mecessarily contained in N) from P’ —=(Q’)
to Q. We take ¢’ in M’(P’) and the induced Euclidean metric in the
(Euclidean) orthogonal complement of M’ (P’) in Re(P’), and take their sum
in Re(P’).

In terms of local coordinates (y*,- - -,y™) on M’ that metric can be
described as follows: Write w(P’) = (w*(P’),* * -, w2(P’)) ; then

L, dwe dw°
is the metric on M’ induced from the Euclidean metric. Let ¢,* be the unique
solution of
e dwe,_ ur
¢y 0y°‘ 6y5 v r’)yﬁ )

We have the duality 1\«31&1:1011a of =38,F, and the metric tensor is

8y°‘
2 owe owe

g gypte B TG et

g " 0o ==8ep—
Then
o 0w w®
9 av Gy 8 — 9 8

80 that g” does induce g’ on M’. For any vector v€ R¢(P’) satisfying

g
E a——— =0 (1=a=m) we have X v%,*=0 also, so that
a=1 a=1
dwd
70?2 — 0 and 9" vt = 2 (v)2.

aa
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Thus ¢g” has the desired properties.

(B) LeMMA. Let fi: M— M’ be any smooth deformation, and let
Wi M— N be the composition wo fy=Wy. Then v(fs) =0fi/0t if and only
if 7(Wy) —oW,/0t is perpendicular to M’ (f:(P)) for all P€ M.

Proof. The argument is essentially that of Proposition 5B; we choose
local coordinates on M’ and obtain

Ian(r (i — 12 )= L (Wi g IO

” Bwo owe
=" 5 (r(We)?— ==
In terms of the coordinates of R¢ the differential of the projection map
w: N— M’ has components m,® = 0x°/0w®. Its covariant differential in terms
of the metric g” is
527‘.0

W —r”abdﬂ'dc (1§a, b,Céq).

¢
Tah =

The map p: N — R? defined (as in §6D) by p(Q’) =@ —=(Q’) assigns to
each )’ € N a vector perpendicular to M’ (w(Q’)), and ps® -+ me® = 8,5,

Pabc + ap® + r,,abc =
For its restriction to M’ we obtain

0%x¢ 020

— Owﬂwb=*~——w“wb= ¢c 7 =
pad qwedwd P T PP GyapyB

where wo®==0w*/dy®. For each «, B the right member defines a vector per-
pendicular to M’; because the w.* span the tangent space to M’ in which
they lie, we obtain the

LemMMA. For any wectors u,v€ M’(Q’) the vector whose components
are pgput?® is perpendicular to M’ (Q’).

Lemwma. For any map We: M — N with image in M’ let & be the vector
with components
£ = LW —mapn"Wis W9,

where L =A—08/0t is the heat operator on M. Then & is tangent to M.
Proof. As in Proposition 5B we have

L(p(W:))=polL(W;)° 4 WysW; gt

ﬁw"awb
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(5)
0%x?
= potL(W;)°— ) Waa W pgti

But p(W;) =0, whence the left member vanishes. Since the second term in
the right member is a normal vector, we have
0°n®

P W) =0 g

Wt Wibgi.
It follows that

pot€e = (pgt e — peray®) Wi Wibgtd =0
c € 0wa6wb (] a v ]
for 1=d=g¢. Thus £ has normal component 0.

ProrostrioN. A map f: M— M satisfies (1) if and only if the com-
position W=wof satisfies

( 1 ) AWe = rabOWﬂijg”
wn terms of local coordinates on M.

A deformation fi: M— M’ (t, <t <t,) satisfies () if and only if
Wi=wof; satisfies

(2.) L(W;)e =Wyt Wibg (to<t<ty).

Proof. It suffices to establish the equivalence of (2) and (2). For
that we take any deformation f; and compute

oW
ot

(r(Ws)e— )9 cawn® = (L (W) 4+ T7 0 Wit Wi29%) g carw~?

= (L(W;)° —mas W3t W1i29%7) g7 vy,

by the second lemma. If W; satisfies (é), then ¢(W;) (P) — oW, (P) /8¢ is
perpendicular to M’(f;(P)), whence by the first lemma f; satisfies ().
Conversely, if f; satisfies (2) and we define ¢ as in the third lemma, then
our equation shows that £(P) is perpendicular to M’(fi(P)), whence it
must be 0.

(C) The following result is an application of Theorem 6D. In order
to have a proof avoiding the use of vector-bundle-valued harmonic forms, we
can start with (5) and substitute (2) to obtain

62 a " R
L (p (Wt) )c = —ng’ ((’)’LU—;(/;W + Pcdr abe) Wt'i,aWtjbgw:

using the projection relation pg°me? — w4 It follows that p¢- L(p(Ws))e =0,
so that
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0
St A () =155 3 (W)
Applying Green’s identity (as in Theorem 6D) we find that

d o
b f, 2 GMs=— [ (mmd (T,

and the conclusion follows:

TurorEM. Let W,: M — N be a smooth deformation satisfying (2) for
L=t <t,. If Wy maps M into M’, then so does every Wi(t, =1 < ty).

8. Derivative bounds for the elliptic case.

(A) TUnder suitable curvature and metric restrictions on M’ we shall
establish derivative estimates important for the solution of (1) and (2), or
equivalently, of (1) and (2). Our starting point is the following result,
essentially established in §3C.

LeMMA. Any solution f; of (2) has energy density e(f:) satisfying

Ae (ft)—ae(ft = | B(fe) |> — B’apyof ufusPfu fulgitgrt

— §'epfiftPBY,

where B(f:) is the fundamental form of fi and where Bagys and R are the
components of the Riemannian curvature tensor on M’ and of the contra-
variant Ricci tensor on M, respectively.

(6)

(B) For the elliptic systems (1), (1) we invoke Green’s formula for
the operator A on M. Let »(P,Q) denote the geodesic distance between
points P,  of M. Since M is compact (without boundary), there is a constant
a >0 such that »2(P, Q) is of class O for r2(P,Q) < 3a. Let ¢(A) be a
monotone €= function in 0 =X <o with ¢(A) =A in 0=A=a and ¢(A)
= constant for A>2a. Set p2(P,Q) =¢(r*(P,Q)); this is positive for
P=£ @ and is of class C*. The function

F(P,Q) —«-p(P, Q)™ =:2—:}Iogp(P,Q) for n—2)

is a parametrix for the operator A, where 1/k is (n—2®) times the surface of
the unit (n—1)-sphere. Green’s formula is

M wP) = [1(Q) 8aF (P,Q) —F(P,Q) 8u(Q)+lq,
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this holding for any function u(P) of class C? on M (see Giraud [12], Bidal-
de Rham [1]).

Consider now a solution of (1), and suppose that the Riemannian curva-
ture of M’ is non-positive. From (6), in which it is merely necessary to
suppress the term de(f;)/0¢, there follows at once

e(f) = —Re(f),

where R is a constant (independent of the solution in question). Since
F(P,Q) =0 (a and ¢ being suitably chosen for n=2), (7) applied to e(f)
yields

o(H) (P) = [ [8eF(P,Q) +E-F(P,)1e(f) ()*1o

By using the osculating Euclidean metric at a point of M one can show that
| AF (P, Q)| = const. X p(P, Q) ™?* Hence for some constant 4,

o(N) (P)=4 [ F(2,Q)e(f) @)+l

Tterating this ¥ —1 times we obtain

() (P) S 4% f Fu(P,Q)e(h) ()*Le.

where the Fj are defined inductively by F,=F and

FuP,Q) = [ Fur(P,2) F(2,0)%1, (k> 1).

If & > n/2, then Fy is bounded (see Giraud [12]), and we have the following

TaEoREM. If M’ has non-positive Riemannian curvature, then there is
a constant C such that e(f) < C- E(f) for any harmonic mapping f: M —> M’.

(C) Green’s function G(P,Q) for A can be written in the form
G(P,Q)=F(P,Q) 4+ F’'(P,Q), where F” is of class C* for P ¢ and has
a singularity of order lower than that of F for P=¢ (Giraud [1?], Bidal-
de Rham [1]). G(P,Q) is symmetric and of class C* for P %= ¢ and satisfies
ApG (P, Q) = AgG(P,Q) =V, where V is the volume of M. Green’s
formula (7), with G in place of F, is

(®) w(®) =7+ | u(@s—f 6(7,0) su(@)+a

Now let U be a compact coordinate neighborhood on M, U its interior,
and let P€ U have coordinates (zt,- - -,2%). Write
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Gi(P,Q) =0G(P,Q)/0at; Gyy(P,Q) —0°G(P, Q) /02027

Using normal coordinates on M one can show that there is a constant €' such
that
| Gi(P,Q)| =C-r(P, Q)™

(9) lGi,J(P:Q)léor(P>Q)_w
| 64(P,2) — G:(@,2)| = O+ (P, Q)%[r (P, 2) ™= - r(, 7) -]

for P, € U, a being an arbitrary but fixed number with 0 < & < 1.

If u is a solution of Au=7f on M for some function f, then from (8)
we have (for P€ U)

w(P) —— ﬁ.f Gi(P,Z)  [(Z)*1z.
Hence

|w(P) —u(Q)| = [ | 6:(P,2) — Q. 2)||£(2)| 15

for P,Q € U. TUsing the last inequality of (9) we obtain

(10) lut(P)——ui(Q)l'T(P>Q)'“§0’8}1}Plf|,
where

¢’ =0 sup fM [ (P, Z)-m-e 1 (Q, Z)-m-] 1y,

Suppose now that f is Holder-continuous with exponent ¢ and Holder modulus
Muo(f). Le, Ma(f) =sup |f(P)—F(Q)| r(P,Q)® Itis a classical result
M

of potential theory that the function

S 2.2) [1(P) —1(2) 1415 (P,Po€ )

has a derivative with respect to «7 at the point P,, given by

. 6uu2) - (1P — (D)1,

and by (9), this integral is majorized by
C-Mu(f) - fM 7 (Po, Z) ™ 1y,

On the other hand, the function ¢ (P) =f G(P,Z)*1z is a constant, since
M

Ab—0, and so f G(P,Z) - {(Py)#1;—0. We conclude that
M
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(11) | 2u/0zi027 | = C"- Ma(f) in U.

(This is an interior estimate of the type given by Hopf and Schauder (Hopf
[14], Schauder [26], Miranda [18]), but differs from them in that the
magnitude of u is not involved.)

(D) We apply these results to a harmonic mapping f: M — M’. Denote
the right member of (1) by Fe:

Fe =Tab6W@aijgM~

At this point we vmpose some boundedness conditions on the embedding of M’
in R, conditions which are automatically fulfilled if M’ is compact. Namely
we assume that

’ Tap® I é 00, ’ 0nab0/6wd [ é Oo on M/,

(12) Aqdse® = ds’? = Aqdsy?,

where Co, 4., A, denote positive constants and where ds,?> denotes the line
element induced on M’ by the usual metric in R.

Again let U be the interior of a compact coordinate neighborhood on M,
and let P, @ be points of U. From (12) and an elementary calculation
involving the Schwarz inequality for quadratic forms and the equality
¢(f)P =g aWeWigH,

| Fe(P) —Fe(Q)| (P, Q)
(13) =B [o-Bsup | Waa(P) —Wea(@)|7(P, @),

where B is a constant and é — é(f) —sup{e(f) (P): P€ M}. From (1) and

(10),
| Wit (P) — W (@) | -r(P, Q) = ’sup | 72,

and plainly | F| = const. X &, in virtue of (12). From the compactness
of M there follows the estimate
(14) Mo (Fe) =B (6 + &)

for the Holder-modulus of F°¢, B’ denoting a constant. Referring to (11),
we have the

TaEorREM. Suppose that M’ satisfies the embedding conditions (1%).
Let U(at,- - -,a") be the interior of a compact coordinate neighborhood on
M. Then there is a constant C such that

| 34 batied | = C(5(F) +2(H) in U, A=a=yg),
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for any harmonic mapping f: M —> M, where &(f) =sup{e(f) (P): P€ M}.

Bemark. We point out that second derivative estimates can be obtained
from linear theory in another way. Namely, if we write our equation (1)
in the form

AWe 4 AW =0, where A% — —7q;,0WiogH,

then we have a linear system with bounded coefficients (in compact coordinate
neighborhoods), by Theorem 8B. A Holder-modulus for the W;¢ will then
give us a Holder-modulus for the coefficients of the linear system, and we can
apply Theorem 1 of Douglis and Nirenberg [6] to deduce second derivative
estimates and analogous estimates on all higher derivatives as well. The second
derivative estimates we obtain here are somewhat sharper, in certain respects;

i.e., they do not involve a priori estimates on the magnitudes of the solu-
tions We.

9. Bounds for the parabolic case.

(A) Wenow embark upon some analogous computations for the operator
L=A—3/3t. The function

(15) K (P,Q,t) = (2V ) ™2 exp(— p* (P, Q) /4t)
is a parametrix for the operator L (p? as in the preceding paragraph). Put

Ni(P,Q,t) = LpK (P, Q,t) — (Ap—0/0t) K (P, Q, )
and

Nu(P, @ t) = (" dr [ Nua(PoZot—r)-N(Z,Q,7)515  (b>1).
0 M

It is well known that there exists a fundamental solution H for the heat

operator L on any compact Riemannian manifold M, which can be expressed
in the form

(16) H(P:th) =K(P: Q:t) +‘f;t dr MK(P:Z;t'—T) 'N(Z,Q,T)*lz,

where
N(P,Q,1) = S Nu(P,Q,1).

(See Milgram-Rosenbloom [17], Pogorzelski [24]). The function H (P, Q, t)
is symmetric in P, @ and is positive. It is of class C* except for P=0, {=0;

10
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and it satisfies LpH (P, Q,t) = LoH (P, Q,t) =0. Its spectral decomposition
is

H(P,Q,1) — V*+ Sexp(— 1), (P) (),

where the A, are the non-zero eigenvalues of A, the ¢,(P) being the corres-
ponding orthonormal eigenfunctions.
Green’s formula (analogous to 8) is

t
- w(P,t) =_ft0 dffM H(P,Q,t—1) Lu(Q, r)*lq

+ [ HPQt—t) u(@t)le (b<i<t),
M

this holding for any function w(P,¢) on M which is of class 02 in P and C*
in ¢t for {,=1 <.

(B) Suppose now that we have a solution f;: M — M’ of (2) defined in
0 <? <, and let M’ have non-positive Riemannian curvature. According
to Lemma 8A we have then Le(f;) =— Re(f:), R being a positive constant
(independent of the solution in question). Since H > 0, there follows from

(1)
(18) () (P) =B [ dr [ H(P,Q,t—)-o(fr) (@10 + ealf) (P)

where

(19) w(t) (P) = [ H(P,Q.t—t)e(fu) ()41q

and 0 <4, <t <%, Iterating (18) k—1 times we obtain

() (D)= [ i [ H (P, Qut—r)e () (@)#1e
(20)

k-1 t
() (P) + SB[ dr [ H,(P,0,t—m)e(f) (@) 410,
p=1 to M
where the Hy, are defined by H; = H and
H(P, Q1) — [ & [ Ha(P2t—0HEZQ,  (>1).

From the integral representation it can be shown (see Pogorzelski [24]) that

H(P,Q,t) = const. X t-% (P, Q)"+ (0=t=1).
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where « is an arbitrary but fixed positive number less than 1. Therefore Hy
is bounded for k >n/2 (0=¢{=1,k >1).

Consider now our solution f; for ¢ >1. Putting t—1 for ¢, in (20)
we have

e(f) (P) = const. ftidrfMe(fT) (0)+1

(21 w e o
tsupeo(f) (P)-[1+ SR s f H,(P,Q,)%1o].
M v=1 0 M

For the case at hand, e, is given from (19) by

olf) (P) = [ H(P,0,1)- (fen) ()31

Since H (P, Q,1) is bounded, we have e,(f;) (P) = const.f e(fir) (Q)*1q.
M
Recalling that f e(ft) (@) is a decreasing function, we obtain finally from
J M
(1)
e(f) (P) = const. | o(f) (@)41 (t>1).

Any smaller value can be put in for {—1 on the right, for example zero if
e(ft) (P) is continuous at ¢ =0.

Making that assumption, we now obtain an estimate for the range
0=t=1. In (R0) we now put {,=0, getting

@) e (@) Sconst.[ far o) (@1 + (]

where now we have

w(l) (B) = [ H(P,Q,0)e(fs) (@)#1e,

and where &,(f;) =sup{e,(fi) (P): P€ M}; we define é(f;) similarly. But
this function is precisely the solution of Le,=0 that reduces at {=0 to
e(fo) (). From general principles it follows that e,(f:) (P) =é(f,) for
t=0, and so (R2) gives at once

e(ft) (P) = const. e(f,) (0=t=1).
We have then the

THEOREM. Let f,: M—> M be a family of mappings for 0=1<1t,
satisfying (R) for 0 < ¢ <t and such that the energy density e(f:) (P) 1is
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continuous at t =0. Suppose that M’ has non-positive Riemannian curvature.
Then

() (P)=C-f e(fo) (@)1 jor 1=4<t,
and
o(f) (P) = 0sup(e(f) (Q): Qe M for 0= 1=,

C denoting a constant which does not depend on the particular solution fi

of (5).

Remark. TUnder certain circumstances much sharper estimates can be
obtained. With the hypotheses of the preceding theorem, assume further that
the Ricci tensor of M is positive definite at every point. From (6) it is clear
that de(f;) /0t = — Ae(f;) at any maximum point of e(f;) on M, A denoting
a positive constant. It follows easily that e(f;) (P) = const. 4t

(C) Now let (2% - -,27) be the coordinates of P in the interior U
of a compact coordinate neighborhood U on M. And suppose that our solution

of () and the first-order space derivatives are continuous at ¢=0. Then
from (2), (17) we have

Wee(P) = We(P, )
@) =i HPQt—7) F(Q 7)ot Wer(P 1)

=TVe(P,t) + W (P, 1),
where

Woe(P,1) = [ H(P,Q,1)W(Q,0)+1o
the F¢(P,t) being the functions on the right of ().

The first integral Ve (P, ¢) has Holder continuous first-order space deriva-
tives (Pogorzelski [23], Theorem 5):

| Vie(P, t) — Vie (P, t')| = const.sup | Fe |- [r(P, P")* + | t—1 |%/7],

@ being an arbitrary positive number less than 1, the points P and P’ both in
U. If we continue with the assumption (12), we shall have | Fo | = const. X é.
The integral W,°(P,t) can be differentiated under the integral sign (for
¢>0) and the derivatives tend exponentially to zero, as is quickly seen from
the spectral formula for H. Hence, if the hypotheses of Theorem 9B hold,
it follows that the functions We(P,t) have first-order space derivatives which
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are Holder-continuous in P, ¢, uniformly so for t=e>0:
| Wie (P, 1) — W (P, ') |
= const. [¢(fo) + sup | We(Q,0)|1- [r(P, P")*+ | t—1¢"|*].

(The constant depends upon ¢ because of the behavior of W,°(P,¢) for
small £.)

Referring to (13) we see that

(24_) |F0(P,t)—F°(Q,t)|"I'(P,Q)"a
= const. 3(fo) [1+ (fu)3 + sup | W2(Q,0)]]
for t=e>0.

k7
Now from (17) it is clear thatj drf H(P,Q,t—7)y(r)*1lg is a
0 M

function of ¢ alone for arbitrary . Hence for the second derivatives
Vi€ (P,t) = 02Ve(P,t) /oxidz! we can write

Vis(Byty = 0 i [ H(P,Qut—0) [Fo(Poyr) —F(0:7) ]41e.

From (Pogorzelski [24], Th. 3) this is
¢
Vop (Pt) = [ dr [ Hyy(P, @t —o) [F*(Porr) —F*(Q,7) 1o
0 M

17 t-€
— |+ =L+5,
t-€ o

where we assume ¢==2¢>0. The integral I, is improper but uniformly
convergent. Now |H,;;(P,Q,t)| < const. X t-fr(P,Q) 28 (arbitrary B,
0 <pB<1). Using (24) and putting P =P, in I, (we assume (P,P,€ U),
we obtain an absolutely convergent integral if &, 8 are chosen properly, and
there results

| L] < const. 5(fo) [1 4 sup | W(Q,0)] +a(fo)?] if £=26

since then r in I; will be =e. For I, we have | Hy;(P, Q,1)| < const. e7¢ for
some positive y and for t=e > 0. Hence

. f—
| I, | < const.sup | F° | J 2_7(,5_7) dr
0

< const. sup | F¢ | < const. &(fo),
using Theorem 9B.
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TurorEM. Suppose that M’ satisfies the tmbedding conditions (12).
Let f; satisfy the conditions of Theorem 9B, and let (a',- - -,z") be the
coordinates of a point P in the interior of a compact coordinate neighborhood
U on M. Given e >0, there is a constant C, independent of the solution f;
of (2), such that

B_V«'fﬂ@ﬂll <-4 (fo) [1+ & (fo)? -+ sup{| We(Q,0)]: @ € 1)

for t =¢, where &(f,) =sup{e(fo) (P): P M}.
Remark. Sincef H(P,Q,t)*1q is a constant, the functions We(Q,0)
M

appearing in the foregoing estimates can be altered by arbitrary additive
constants without affecting the validity of the estimates. For example, one
could replace We(Q,0) by the function minus its average value, say We, with
the result that the term sup | We(Q,0)| in Theorem 9C would be replaced
by sup | We(Q,0) — Wel.

10. Successive approximations.

(A) Let W(P,t) and W’ (P,t) be two solutions of (2) in 0=t < ¢,
both continuous along with their first order space derivatives at {—0; and
suppose that W (P,0) = W’ (P,0) € M’ for all P€ M. From (17) with ¢, =0,

We(P,t) — W’e(P,t)
¢
—— i f HP,Q 1) [P (Qr) —F(@, 1) 416,
0
where F°, F’° are the respective right members of (2). Set
X (t) =sup | We(P,t) — W (P, t)]
M,c
o+ [sup (Wie— W) (Wye — W) g1,
sC

From the constitution of F¢ and F’¢ it is easily verified (by an argument
similar to that for (13)), account taken of (12), that

| Fo—F’e | < const. X (¢) - U(t),
where

U(t) =eé(fe) +e(f"s) +e(fo)r+é(fo)
For 0 =¢=1 we can write H (P, (,¢) < const. % (P, Q) "2 and
| 0H (P, Q, 1) /0z% | < const. t-%r (P, Q)-n-1+2¢ (<a<k),
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where in the latter the constant depends upon the particular choice of local
coordinates z?%, of course. Now let 4 denote an upper bound for the quantity
U(t) in some fixed time interval 0 =¢=+,. From the integral expression
above there follows easily, for 3 < a <1,

X (t) < const. X 4 ft(t_,-)—aX(.,)d,.,
/0

and we conclude that X (¢) vanishes for small {. Hence the

THEOREM. Let f; and f'y be two solutions of (), both continuous along
with their first-order space derwatives at t=0. If fo=7F,, then the two
solutions coincide for all (relevant) ¢ > 0.

CoroLLARY. Any solution of (2) enjoys the semi-group property along
the trajectory of each point P € M. That is, if we write f(P) =T:(f ), then

Ttw(fo) =Tt(fr) =Tt(TT(f0))‘

(B) For the solution of (%) we now turn to the system of non-linear
integro-differential equations (23) associated with (2).

Let f: M— M’ be a mapping of class (%, given by global mapping func-
tions W= (W%,- - -,W2). For y=0 define W»= (W»,- - -, W»q) by

(25) woe(P,t) = [ H(P,Q,HWe(Q)+1o
and

Wre(P,t)
(26)

=_‘ftdff Hi(P,Q,t—r) - Frbo(Q, )%l + W>(P, 1),
0 M

where
Fve (P’ t) —_ .n.abc(Wv) . Wiv,aWju,bg'lj,

the functions mq° as in (é). Set
q
yy=sup [ X W»Wpegi]3
M c=1
From (26)
W,,./V,c (P’ t)

27) ="“‘ftd"fMH(P’Q’t_T) Fre(Q,r)#1q + Woo (P, 1),
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where the subscript ¢ denotes differentiation with respect to a system of local
coordinates o at P. We recall the estimate

| Hi(P, Q,t)| < Ator (P, Q)™+ 0=i=1;3<a<1),

A denoting a constant which depends in general on the local coordinate
system. Now let B denote an upper bound for the quantities |g° | in some
compact neighborhood U’ of the image f(M) in the tubular neighborhood
N CRe. If Wrte U for 0 =1t=e¢, then from (27) we conclude that

¥
4 <BO [ (t—7) () dr + 90 () (0=t=e),
where C is a constant which does not depend upon the given mapping f. Put

Yy ==8Up Y, I=t=e
Then
Py < Kfl_agv—lz + go: K =B0/(1 - O&).

If K%y, =% and Ke'-%j, =%, then
Kel'“??p é (Kel_agv—l) z ‘|“ Kel—ago é %

From a transparent induction it follows that, for sufficiently small positive e,
we shall have

Wr(P,t) €U and §, = 3K for 0 =1t=¢, v=0,1,2," - -.

In particular, the defining equation (26) makes sense for all v, provided
I=it=e
Now put

X, (t) =sup | W»e(P, t) — Wr-ie(P, t)]
Mo

+ [sup (Wee — Wmse) (Wype — W) g o
sC

From the definition above,

Fvie— Fr-le — ‘ﬂ'abc (Wzl—l) (Wiu,aij,b _ Wiy—l,aij—l,b) gij
+ [Wabc (Wu) — g’ ( Wv—l) ] Wiv,aij,bgM.

We can suppose that the constant B occurring above is also an upper bound
for the quantities | dwqp°/0w? | in the neighborhood U’. The preceding formula



HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS. 153

then gives us
| Fvie — Fv-te | < OBX,(§y + U1+ 9,2,

(” a constant independent of the given mapping f. Hence,
| Fro—Fr-be| < (VBX,[1/Ke® + 1/4K%2-2%] — 07X, (¢).

From (R6), (27) and the estimates cited for H (P, Q,¢) and H;(P, Q,t) we
obtain

Ty (B) <D0”j;tX,,(r) (f—r)®dr 0=t=e),

where D is a new constant. Thus if

X,(¢) =sup X, (r) (0=r=1),
then
— DC” v _
() < (P50 ) 2l (=12 - )
and so the series
XX, (%)
0

converges for all sufficiently small ¢. This shows that our successive approxi-
mations W?” and their first-order space derivatives converge uniformly on
M (for small ¢). Hence, the F*¢ also converge. Set We¢=—Ilim W»¢ and
Fe=lim F”° (y—>e). Thus We(P,¢) has continuous first-order space
derivatives W;¢ (for sufficiently small ¢, of course), and W;»¢— W;¢ (y—> ),
so that

Fo (P, t) = mqy (W) WisW g,

From (26) there follows at once

(28)  WeP,t)—— [ dr [ H(P,Q,t—1) Fo(Q )+l + Woo(P, 1.

We conclude that the functions We have Hélder-continuous first order space
derivatives—uniformly Hélder-continuous for any small closed t-interval
not containing zero. Therefore the functions F¢(P,t) are Holder-continuous
with respect to the space variable, and so the functions We of (28) satisfy
equation (2) for all positive ¢ in the interval in which the successive approxi-
mations converge (see Pogorzelski [24]). The We are moreover visibly con-
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tinuous with their first order space derivatives at ¢ =0, and We(P, 0) = We(P).
From Theorem 7C we recall that the point W(P,¢) = (W?,- - -, W¢) must
lie on the manifold M’ for all ¢ in the interval of convergence.

TaEOREM. Let M” be a compact subset of M’. Then, for any con-
tinuously differentiable mapping f: M — M’ such that f(M) lies in M”,
there is a positive constant t, depending only on M” and the energy density
e(f) such that (R) has a solution f; for 0 =t =1, which is continuous at
t=0, along with its first order space derivatives, and which coincides with
fat t=0.

It only remains for us to inquire into the length of the ¢-interval for
which the successive approximations converge. First of all, the upper bound
B for |mq®| and | 0mey®/0w?| figuring in the foregoing proof can be taken
once for all to be valid in some neighborhood U” of M”. Therefore the
constant K can be fixed, and « as well, of course. The ¢ must satisfy
K25, = %, and to see what this entails we must look briefly into .

Consider then a solution w of the heat equation on M, as a map
u: M—R. We suppose that w and its first order space derivatives are
continuous at t=0. The argument of Theorem 9B holds in this situation.
If we put p=g¥um; then p(P,t) = Csup{p(Q,0): Q€ M}, where C is a
constant depending only on M. Applying this to the functions W%¢, we
conclude that there is a constant C, such that , < Cy-é(f). Thus ¢ depends
only on M” and the magnitude of ¢(f), and the same is true of the quantity
C” involved in the estimates of the X,. The assertion of the theorem then
follows at once from those estimates.

In §2B we described the harmonic character of C? maps in terms of
their tension fields. For C* maps we have the

CoroLLARY. Let f: M— M be a continuously differentiable mapping
for which the energy is a minimum with respect to small variations. Then
f is harmonic.

For let f; be the corresponding solution of (2) guaranteed by the pre-
ceding theorem. The energy F(f;) is continuous at t =0 and by assumption
it must be non-decreasing for small ¢. But F(f;) is always non-increasing,
so that dW/dt =0 for small t. Thus (2) reduces to (1).

(C) TurorEM. Suppose that M’ has non-positive Riemannion curva-
ture, and that 1t satisfies the embedding restrictions (12). Then for any
continuously differentiable mapping f: M — M’ there is a unique solution f;
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of (R), defined for all t=0, which is continuous along with its first order
space deriwatives at t==0 and which coincides with f at t=0.

Such a solution exists for small ¢, by Theorem 10B, and it is unique, by
Theorem 10A. Let ¢; be the largest number such that a solution of the
required sort exists for 0 =1¢ <¢;, and supposes that ¢, is finite. From
Theorem 9B it is clear that the right members of (28) cannot become
unbounded for 0 =1¢ < ¢, and consequently the images f;(M) (0=t<t,)
all lie in a compact subset of M’; we recall that M’ is always assumed to be
complete. On the other hand, Theorem 9B shows that the energy density
e(f;) remains bounded, and therefore by Theorems 10A and 10B there is a
fixed positive number ¢; such that any f; can be continued as a solution of
() into the interval (¢,¢-+e). This contradicts the definition of #,.

(D) If M’ is not compact, then solutions of (2) may very well become
unbounded as t—>oc0, as in the

Ezample. Let M’ be the manifold obtained by revolving the graph of a
positive strictly decreasing smooth function v —=wv(u) around the u-axis; let
¢ denote the revolution angle. For a map f: S*— M’ of a circle S* para-
metrized by the central angle § our heat equation is

O L . ()
ot 062 14 (v)2 \o9 14 (v)2 \06
p 0% v u 0

9 T

If f satisfies initial conditions du/00 —0, ¢ — 6 when £ =0, then so does the
solution f; for any subsequent time. If we take w(u) —1-4 e%, then

R'ypp=—(e*+1)/(e** +1) <0, and the heat equation reduces to
bu o1
ot e 17

Thus e*4-u—=Rlog(e*+ 1) =1t const.; in particular, u—>c0 as t—>co.

We note in passing that there are no non-trivial closed geodesics on M’,
so that there are no harmonic representatives in any non-trivial homotopy
classes of maps S*— M.

The following result shows that solutions must remain bounded if M’
satisfies certain conditions at infinity.
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THEOREM. Let M’ be as in the preceding theorem and suppose further
that | w |- mwe® (w) = 0 uniformly as | w|—>oo, where |w | —sup |we|. Then
c

every solution of (2) is bounded.
Set
(1) =sup | We(P, )|, W(t) =int | We(P, )|, U(H) = | 3 (We)osi.
M,c M,e Mo

In virtue of Theorem 9B, the difference W (¢) — W (%) is bounded. Hence
if our solution is unbounded as t—>o0, then that is true of all three of the
quantities above. Supposing that to be the case, let us denote by A; the set
of all ¢ for which U () > k. The Ay are then all non-empty and each \; must
contain at least one ¢ =1t at which dU/dt =0. Now from (2) we have

awe
dat

2 WeaWe — E We = 2 chachiaijgU_
[ c

Hence by Green’s Theorem
%dU/dt =—-f (grad W)z*l —Zf Wcﬂrach@aijgU*l.
M oY M

For large values of ¢; we have a plain contradiction, since the right-hand side
must be negative.

11. Harmonic mappings.

(A) We can now apply some of the results established above to prove
the existence of harmonic mappings, even though we do not know whether
the solutions of the parabolic system (2) converge in general as ¢ —o0.

THEOREM. Let M’ have non-positive Riemannian curvature and let
fe: M—> M be a bounded solution of (R), 0<<t<<e. Then there is a
sequence Uy, 15,13, - - of t-values such that the mappings fi, converge uni-
formly, along with their first order space derivatives, to a harmonic mapping f.

From Theorems 9B and 9C it is clear that the mappings f; and their
first order space derivatives form equicontinuous families. Hence there exists
a sequence ti, %, - - - such that the mappings f; = fi, converge uniformly, with
their first order space derivatives, to a continuously differentiable mapping f.
From (2) and (8) we can represent the f;, by the formula

We(Pt) =V [ We(@ )1 — [ G(P,@)[F(Q, 1) + 5 (0,4 1510,
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where as usual Fe stands for the right member of (2). Now fix ¢ and tem-
porarily put

w(P) = [ 6(P,Q) G~ (@ )+l

The dWe(P,1t;)/dt are bounded as k—>oo, by Theorems 9B and 9C, and so
the u; and their first derivatives are bounded. Hence the u; form an equi-
continuous family, and we can suppose that the sequence ?,,%,,- - - is chosen
so that the u; converge uniformly, say to u. Now let G, denote the »-th
iterate of the Green’s function ¢. We have

fMG,,(P,Q)u(Q)*1=limf (P, Q)ur(Q)#1

_hmf Grar (P, Q) M

If v41>n/2, then G,,, is bounded. But the dWe(P,t;)/dt converge in
the mean to zero as k— o0, by Corollary 6C. Thus

f @, (P,Q)u(Q)*1 =0,
M

and so u=0 because of the positive-definite character of G. Therefore,

passing to the limit in the equation above, we get for the limit mapping f
the formula

We(P) =V f We(@ii— f G(P,Q)- Fe(Q)*1e
where
Fo(Q) —1im F*(Q, tr) —may? (W) WaW gV

From this it follows (as in §10B) that We¢(P) has Holder-continuous first
derivatives, and therefore f¢ is Holder-continuous. Consequently the We(P)
satisfy (1).

CoROLLARY. Let M’ have non-positive Riemannian curvature and let
f: M— M be a continuously differentiable mapping. Let f; be the solution
of (R) which reduces to f at t=0. If f; is bounded as t—>co, then f is
homotopic to a harmonic mapping f’ for which E(f) = E(f). In particular,
if M’ is compact or satisfies the conditions of Theorem 10D, then every
continuous mapping M —> M’ 1is homotopic to a harmonic mapping.
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CororrARY. If M’ s compact and has non-positive Biemannian curvature,
then every homotopy class of mappings M — M’ contains a harmonic mapping
whose energy is an absolute minimum.

For in any homotopy class we can choose a minimizing sequence of
harmonic mappings fi, fs, etc., by the preceding corollary. From Theorems
8B and 8D it follows that we can select a subsequence (same notation) which
converges uniformly along with first derivatives to a continuously differen-
tiable mapping f. Then B (f) =lim E (fx), and f is harmonic by Corollary
10B.

(B) TuroREM. Let M have non-negative Ricci curvature and let M’
have mon-positive Riemannian curvature. Suppose that M’ is compact or
that 1t satisfies the conditions of Theorem 10D. Then any continuous map
f: M— M’ is homotopic to a totally geodesic map. Furthermore,

1) if there is at least one point of M at which its Ricci curvature is
positive, then every continuous map from M to M’ is null-homotopic;

R) f the Riemannian curvature of M’ is everywhere negative, then every
continuous map from M to M’ is either null-homotopic or is homotopic to a
map of M onto a closed geodesic of M’.

This is a combination of Theorem 3C and Corollary 11A.

CoroLLARY. Let M be a compact smooth manifold admitting a Riemann
structure g° with non-positive Riemannian curvature. Then M does not admit
any Riemannion structure g with non-negatwe Ricci curvature unless that
curvature vanishes everywhere.

Proof. 1t suffices (by passing to the two leaved orientable cover if
necessary) to consider the case that M is orientable. If there were such a
metric g, then the identity map (M, g) — (M, ¢’) would be homotopic to a
totally geodesic map. That map has degree one, and therefore M cannot
have any point of positive Ricci curvatuie relative to g.

Remark. A special case of Theorem 11B (Part 1) can be obtained
without the use of harmonic theory. Namely, assume

1) that M has positive Ricci curvature everywhere; then by a theorem
of 8. Myers [20], the fundamental group =, (M, m) is finite;
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?) that M’ is any complete Riemannian manifold with non-positive
Riemannian curvature. Then the homotopy groups = (M’, m’) =0 for i541,
and a; (M’,m”) has no elements of finite order.

It is well known that the homotopy classes of maps of any arcwise con-
nected space M into M’ are in natural 1-1 correspondence with the conjugacy
classes of homomorphisms =, (M, m) — m (M’,m’). But clearly in the situa-
tion at hand every such homomorphism is trivial, whence every continuous
map M — M’ is null homotopic.

CoruMBIA UNIVERSITY,
THE JonNs HorPkIiNs UNIVERSITY,
THE INSTITUTE FOR ADVANCED STUDY.

REFERENCES.

[11 P. Bidal and G. de Rham, “Les formes différentielles harmonique,” Commentarii
Mathematici Helvetici, vol. 19 (1946-7), pp. 1-49.
[2] S. Bochner, “Harmonic surfaces in Riemannian metric,” Transactions of the
American Mathematical Society, vol. 47 (1940), pp. 146-154,
, “Analytic mappings of compact Riemann spaces onto Euclidean space,”
Duke Mathematical Journal, vol. 3 (1937), 339-354.
[4] ————, “Curvature and Betti numbers in real and complex vector bundles,” Ren-
diconti del Seminario Matematico di Torino, vol. 15 (1955-6), Pp- 225-253.
[6]1 C. Chevalley, Lie Groups I. Princeton, 1946.
[6] A. Douglis and L. Nirenberg, “Interior estimates for elliptic systems of partial
differential equations,” Communications on Pure and Applied Mathe-
matics, vol. 8 (1955), pp. 503-538.
[7] F. Dressel, “ The fundamental solution of the parabolic equation I,” Duke Mathe-
matical Journal, vol. 7 (1940), pp. 186-203.
[8] L. P. Eisenhart, Riemannian Geometry. Princeton, 1926.
[9]1 A. Friedman, “Interior estimates for parabolic systems of partial differential
equations,” Journal of Mathematics and Mechamnics, vol. 7 (1958), pp.
393-418.
[10] F. B. Fuller, “Harmonic mappings,” Proceedings of the National Academy of
Sciences, U.8. 4., vol. 40 (1954), pp. 987-991.
[11] M. Gevrey, “Sur les équations aux dérivées partielles du type parabolique,”
Journal de Mathématiques et Appliquées, s. 6, vol. 9 (1913), pp. 305-475.
[12] G. Giraud, “ Sur le probléme de Dirichlet généralisé,” Annales de PBoole Normale
Supérieure, vol. 46 (1929), pp. 131-245.
[13] R. Hermann, “A sufficient condition that a map of Riemannian manifolds be a
fibre bundle,” Proceedings of the American Mathematical Society, vol. 11
(1960), pp. 236-242.

[31




160

[14]

[15]
[16]
[171
[18]
[19]
[20]
[21]

[22]

JAMES EELLS, JR. AND J. H. SAMPSON.

. Hopf, “Uber den funktionalen, insbesondere den analytischen Charakter der

Losungen elliptischer Differentialgleichungen zweiter Ordnung,” Mathe-
matische Zeitschrift, vol. 34 (1931), pp. 194-233.

. Lichnérowicz, “ Quelques théorémes de géométrie différentielle globale,” Com-

mentarit Mathematici Helvetict, vol. 22 (1949), pp. 271-301.

. Maxwell, A Treatise on Hlectricity and Magnetism, Oxford, 1892.
. Milgram and P. Rosenbloom, “Harmonic forms and heat conduction I,”

Proceedings of the National Academy of Sciences, U.8. A., vol. 37 (1951),
pp. 180-184.

. Miranda, Equazioni alle Derivate Parziali di Tipo Hllittico, Berlin, 1955.
. B. Morrey, “The problem of Plateau on a Riemannian manifold,” Annals of

Mathematics, vol. 49 (1948), pp. 807-851.

. Myers, “Riemannian manifolds with positive mean curvature,” Duke Mathe-

matical Journal, vol. 8 (1941), pp. 401-404.

. Nash, “ The imbedding problem for Riemannian manifolds,” Annals of Mathe-

matics, vol. 63 (1956), pp. 20-64.

. Petrovsky, “On the analytic nature of solutions of systems of differential

equations,” Matematideskiy Sbornik, vol. 47 (1939), pp. 3-70.

[23] W. Pogorzelski, “ Propriétés des intégrales de I’équation parabolique normale,”

[24]

Annales Polonici Mathematici, vol. 4 (1957), pp. 61-92.
, “ Etude de la solution fondamentale de 1’équation parabolique,” Ricerche
di Matematica, vol. 5 (1956), pp. 25-56.

[25] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian mani-

folds,” T'6hoku Mathematical Journal, vol. 10 (1958), Pp. 338-354.

[26] J. Schauder, “Numerische Abschéitzungen in elliptischen linearen Differential-

gleichungen,” Studia Mathematica, vol. 5 (1934), pp. 34-42.

[27] D. Spencer, Mimeographed notes, Princeton University.



	Article Contents
	p.109
	p.110
	p.111
	p.112
	p.113
	p.114
	p.115
	p.116
	p.117
	p.118
	p.119
	p.120
	p.121
	p.122
	p.123
	p.124
	p.125
	p.126
	p.127
	p.128
	p.129
	p.130
	p.131
	p.132
	p.133
	p.134
	p.135
	p.136
	p.137
	p.138
	p.139
	p.140
	p.141
	p.142
	p.143
	p.144
	p.145
	p.146
	p.147
	p.148
	p.149
	p.150
	p.151
	p.152
	p.153
	p.154
	p.155
	p.156
	p.157
	p.158
	p.159
	p.160

	Issue Table of Contents
	American Journal of Mathematics, Vol. 86, No. 1 (Jan., 1964), pp. iii-iv+1-246
	Volume Information [pp.iii-iv]
	Front Matter
	Notes on Homotopy of Thom Spectra [pp.1-16]
	A Complete Description of the Normal Subgroups of Genus One of the Modular Group [pp.17-24]
	On the Integral Representations of Quadratic Forms Over Local Fields [pp.25-62]
	Quasiconformal Mappings and Extremal Lengths [pp.63-69]
	Generalized Automorphic Forms and Certain Holomorphic Vector Bundles [pp.70-108]
	Harmonic Mappings of Riemannian Manifolds [pp.109-160]
	Analytic Disks in Maximal Ideal Spaces [pp.161-170]
	Spherical Functions Over B-Adic Fields, II [pp.171-200]
	Compactifications of Symmetric Spaces [pp.201-218]
	On the Graded Ring of Theta-Constants [pp.219-246]



