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HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS.* 

By JAM?ES EELLS, JR. and J. IH. SAMPSON. 

Introduction. With any smooth mapping of one Riemannian manifold 
into another it is possible to associate a variety of invariantly defined func- 
tionals. Each such functional of course determines a class of extremal 
mappings, in the sense of the calculus of variations, and those extremals, in 
the very special cases thus far considered, play an important role in a number 
of familiar differential-geometric theories. 

The present paper is devoted to a rather general study of a functional E 
of geometrical and physical interest, analogous to energy. Our central problem 
is that of deforming a given mapping into an extremal of E. Following an 
infinite-dimensional analogue of the Morse critical point theory, we construct 
gradient lines of E (in a suitable function space) ; and E is a decreasing 
function along those lines. With suitable metric and curvature assumptions 
on the target manifold (assumptions which cannot be entirely circumvented, 
in view of the examples of ?? 4E and lOD), we prove that the gradient lines 
do in fact lead to extremals (see Theorem 11A). 

If f: M -> M' is a smooth mapping of manifolds whose metrics are 
gjjdxtdxj resp. g,6'dyadyfl, then the energy E (f) is defined by the integral 

E (f ) =21g go" ox! ,xi 

where the fi" are local coordinates of the point f (x), * 1 being the volume 
element of M (assumed compact). Thus E (f) can be considered as a 
generalization of the classical integral of Dirichlet. The Euler-Lagrange 
equations for E are a system of non-linear partial differential equations of 
elliptic type: 

Afc + rpy'a af3 i9f 01 ; 

A is the Laplace-Beltrami operator on M and the r,,y' are the Christoffel 
symbols on M'. Although this system is suggestive of the simple equation 
Au + + (u) * grad2 ut = 0for one unknown, there is in general very little con- 
nection between the two because of the phenomenon of curvature. 
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110 JAMES EELLS, JR. AND J. H. SAMPSON. 

It has been necessary to go into the question of existence of solutions 
in rather great detail, owing to the want of general results for non-linear 
systems. Direct methods of the calculus of variations seem to lead to severe 
difficulties, and that is one reason why we have preferred to approach the 
problem through the gradient-line technique, which amounts to replacing 
the equations above by a system of parabolic equations whose relation to the 
elliptic system is analogous to that of Fourier's equation to Laplace's equation. 
This approach is of independent interest, in any case. Our methods are 
strongly potential-theoretic in nature. The local equations are first replaced 
by global equations of essentially the same form, embedding M' in a Euclidean 
space. A stability theorem is established showing that a solution of the 
resulting parabolic system does in fact produce a 1-parameter family of 
mappings of M into 11W'. Fundamental solutions of Laplace's equation and 
the heat equation on (compact) manifolds are used to establish a priori 
derivatives estimates and to construct solutions of the parabolic system, the 
latter being translated into a system of non-linear integro-differential equa- 
tions of the Volterra type, following the method used by Milgram and 
Rosenbloom in a linear problem. Curvature enters in a manner not unlike 
that exploited by Bochner in [4]. 

Special cases of our extremal mappings go back to the very beginning 
of differential geometry. E.g. they include geodesics, harmonic functions, 
and minimal submanifolds. For minimal surfaces they were first studied 
locally by Bochner [2], in an explicitly Riemannian context. That work was 
carried to completion by Morrey [19]. In a report prepared by J. H. Sampson 
in February of 1954 at the Massachusetts Institute of Technology, the subject 
was taken up from a somewhat different point of view, and other geometrical 
applications were discussed. Since firm existence proofs were not then avail- 
able, general publication of the results did not seem warranted. Shortly 
thereafter, J. Nash and, independently, F. B. Fuller [10] advanced the same 
definition as that on which this article is based, and Fuller described several 
examples. The problem has also been considered by E. Rauch. 

The contents of the present paper are presented in the foUowing order: 

Chapter I. The concepts of energy and tension. 

1. The energy integral 
2. The tension field 
3. Invariant formulation 
4. Examples 
5. The composition of maps 



HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS. 11 

Chapter II. Deformations of maps. 
6. Deformations by the heat equation 
7. Global equations 
8. Derivative bounds for the elliptic case 
9. Bounds for the parabolic case 

10. Successive approximations 
11. Harmonic mappings 

Added in proof: The theory of the energy functional (and its harmonic 
extremals) is the first-order case of a general theory of p-th order energy 
(and its polyharmonic extremals). See J. Eells, Jr. and J. H. Sampson, 
L'energie et les deformations en geometrie differentielle, Colloque du CNRS 
(Proceding of a conference held in Grenoble in July, 1963) for a general 
formulation in fibre bundles. 

Chapter I. The concepts of energy and tension. 

1. The energy integral. 

(A) Let M and M' denote complete Riemannian manifolds of dimen- 
sions n and m, respectively, and suppose further that M is closed (i. e., compact 
and without boundary) and oriented. In the interests of simplicity we assume 
that both manifolds and their Riemannian metrics are smooth (i. e., of class 
C'O); however, it is not difficult to make minor modification to include 
differentiability class C5. We will let (xl, , xn) denote local coordinates 
on M in a neighborhood of a point P (said to be centered at P if (O, , 0) 
are its local coordinates), and (yl-,* , ym) local coordinates on M'. Thus 
we can write the Reimannian metrics g and g' in these local coordinates as 

ds2 = gijdxidxj, ds'2 = g',dyadyf, 

where we observe the summation convention; generally, when using local tensor 
calculus we follow the notations of Eisenhart [8]. We will denote covariant 
derivatives without the usual commas; e.g., 

f o afal/Xi fja = 02f/aXiXj -xrjkfka, etc., 

where rpjk denote the Christoffel symbols. 
With any smooth map f: M -- M' we assign a real number called its 

energy, as follows: For each point P C 11M we let <, >p denote the inner product 
on the space of 2-covariant tensors of the tangent space M (P) to M at P; 
thus if (et)1cn is a base for the cotangent space M'(P) of M(P) and 
a cc 1ei 0 e1 and a' are 2-covariant tensors of M (P), then 
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< ~, a >p ~jja'g pqPgig, 

where gikgkj - .8 Since the metric tensor g' of M' is 2-covariant, it induces 
through f a 2-covariant tensor field f*g' on M, whence we can define the func- 
tion P-* <g(P), (f*g')(P)>p on M. We will call e(f)P = <g(P), (f*g')(P)>p 
the energy density of f at P. Its dual differential n-form e (f) 1 can then 
be integrated over M, and with an eye toward the physical concept of kinetic 
energy (Mv2/2) we define the energy of the map f by 

(1) E(f) f e(f) * 

In a local coordinate representation we have 

E (f) 1 J g1ijfifjIg'ap [det (gjj) ]2 dx' A A dxn, 

where f, - afa/dxi. Observe that if the local coordinates centered at P and 
f (P) are both chosen to be locally Euclidean at their centers, then 

e (f)p P fily [fC,,(P) ] 2 

so that e(f) is non-negative, and E(f) vanishes when and only when f is a 
constant map. 

(B) Although the present work is devoted primarily to the functional 
IE and its extremals, there will be the indications (e.g. the example ?4E) 
that we will want ultimately to consider other types of energy of maps. We 
give here a general method of constructing these. 

Starting with the manifold M and any smooth symmetric 2-covariant 
tensor field a on M, we fix a point PC M and form the proper values of ac 
relative to the metric tensor g of M; i.e., the n real roots of the equation 

det(g?j(P)A-ajj(P)) 0. Apart from their order, these proper values are 
intrinsically associated with a and P; thus we are led to forming their sym- 
metric functions. 

Definition. Let, be any symmetric real function of n variables. For any 
symmetric 2-covariant tensor field a on M we let ,(a): M -- IR be the function 
such that u (a) P = the -r-function of the proper values of a (P) relative to 

(P). The u-integral of cc is the number 

I,J (a) pr cl (a) dn 

In particular, let up denote the p-th elementary symmetric function. 
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Then setting pO 1, 1n = vp/()we have Newton's inequalities ,p,-_ (?p)2, 

with equality if and only if all proper values Xa are equal; furthermore, if all 
x _ O, then 

(2) yLi? [y2]1/2? [>> ]1/3> . ** [ ']I/n and 

Ylo >#2/p1 ? * * *>jAn/t-. These provide some sort of comparability of 
the various u-integrals of ac. We have 

ai (a)P gi! (P)aij(P), un(ax)P det[ajj(P) ]1det[gjj(P)], 
aind in general 

(ip (2) P (det [g,j] )l , czl*Ca 
i1< *-.* <iP ail, * ** tn 

gni . . .gnn 

Remark. These integrals provide many variational problems of differ- 
ential geometric interest. For example, if we take for ac the Ricci tensor of M, 
then its proper values are the principal curvatures at a point, and a1 (a) is 
the scalar curvature function. If we take for a a second fundamental form 
(for a given direction) of an immersion of M, then an (a) is the Gauss- 
Kronecker curvature function (for that direction). 

For the present purposes we take a f*g' for some map f. Then 
(f*g')* fij fjIfg'afp, and a, (f*g') = <g, f*g'>; we are led to the 

Definition. For any map f: M -* M' and any symmetric function o- of 
n variables, the r-energy of f is the number 

E (f) o 
f (f*gp)*1. 

We observe that the energy of f is the (ru,/2)-energy of f. 
Let Jf (P) denote the Jacobian of f at P; i. e., the image under f of the 

unit n-vector of M (P) defining the given orientation of M; thus 

an (f g') P -<J (P), Jf (P) >/det (gij (P) ), 

where the inner product is that of the space of n-vectors of M'(f (P)). The 
volume of f is the number 

(3) Vn(f) J [n g )]2I 
- 

Note that VI(f) O if n > n. 

8 
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Remark. If we consider g + AfJ*g' dsX2 as a perturbation of the metric 
of M for A> 0, then the corresponding volume element is 

=1> [det (gj + Af?af,Ig'l) ]t dx' A A dxn. 

A simple calculation shows that 

E(f) d V(M) 

where V1x(M) f*lx. 

(C) We give here an interpretation of E (f) as a measurement of dis- 
persion; the calculations of this paragraph will not be used in any essential 
way later. 

Let r'-(P', Q') denote the geodesic distance between the points P', Q' C M', 
and suppose P, Q c M are points such that f(P) ==P', f(Q) Q'. For a 
fixed P we consider the function Q -> r'2 (P', Q'); it is elementary that, for 
Q sufficiently near P, that function is smooth. 

Let Af? gtiifj denote the Laplace-Beltrami operator on the function f. 
We calculate the Laplacean of r'2 qua function of Q. In coordinates centered 
at P and P' we have 

AQr2(PI, Q') gij Or' -giikka / 
axiaxi 

gir 
x 

A simple calculation gives 

AQ_2 gj a2r12 aya Oy3 a/2 
- ~~ ~~~+ aAY. ayaaOyf axi ax' aya 

Now 

aya 
O(r 

y') tio: 
2g a,s(P') + 

O 
(r') 

as Q -> P, whence 

AQr'2 (P', Q') e (f)P + O (r'). 

For any smooth function u defined in a neighborhood of P let 'ae (P) denote 
the average value (E > 0) 

hue (P) u*1/V(Be), 

where Be {Q CM : f(P, Q)?E} 

We require Maxwell's relation [16, p. 31. The formula is easily proved 
by expanding u in a Taylor's series at the center of a normal coordinate 
system.]: 
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hie(P) u(P) + 2(n +2) Au(P)+0 W) 

Applying this to u(Q) r'2(P', Q') and noting that u(P) = 0 and 

Au(P) =lim AQ/2(P, Q') =e(ff)P, 
Q->P 

we obtain 

JiB 

2 

(P= 

Q')*IQV (Be) + 2Ee (f )P + 
Q ()E8). 

if oe(P, Q) is a smooth function which is zero for r(P, Q) ? e and equals 
1/1V (Be) for r (P, Q) ? c, then we obtain from our last equation 

fXr2 2(PI Q) q)+e(P Q)* I (n + 2)XE(f) + ? e 

Naturally certain uniformity conditions must be fulfilled by the error terms 
for the validity of this formula, but since we make no essential use of the 
result, we shall not insist on that point. The left member of the preceding 
equation represents the mean square infinitesimal dispersion of the image 
points on A11 produced by f, and that quantity is estimated by the energy of f. 

2. The tension lield. 

(A) In this section we examine the extremals of E, interpreted as the 
zeros of the Euler-Lagrange operator associated with E. For this purpose 
we let 7r: 5? (M') -* M' denote the tangent vector bundle. We let &1 (M, M') 
denote the totality of smooth maps from M to Mi'; then for every f C 59 (M, M') 
the set of smooth maps u: M -* 5 (M') such that 7r o u = f forms a vector 
space 59 (f) with algebraic operations defined pointwise; such a u is called a 
vector field along f. We define an inner product in St (f) by 

<u, v>f <U (P), V (P) >f(p) *1. 

For any vector field v along f the directional derivative of E in the 
direction v, 

VE (f)- d [E (ft) ] t=op where ft (P) =expf(p) (tv (P)), dt 
is the endpoint of the geodesic segment in 111' starting at f (P) and deter- 
mined in length and direction by the vector tv (P) C M'(f (P)). We show 
in (B) below that the Euler-Lagrange operator applied to a map f defines a 
vector field Tr(f) along f which is the contravariiant repr-esentative of the 
differential of E at f; i. e., 
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VVE(f) ==<-<T(f),v>f for all vC E9((f). 

Thus the maps f for which r (f) = 0 are (so to speak) the critical points of E. 

(B) LEMMA. Let ft: M-*M' be a smooth family of maps for t in 
some time interval to < t < t,. Then 

(4) d-E(ft) [Aftp + gOjrafjft,aftjj]gtevf 
t *1, 

where A denotes the Laplace-Beltrami operator. 

Proof. From the definition (1) we obtain for any t C (to, t1) 

d-E (ft) 
= 4 g-2 Ox6t2ftja afl +gft,11ft.j 

Ogva3 ftv 
dt Oxiat o~~~~~~~y1 at 

The quantities 

~j = gi- Oft, 
axi at 

are the components of a contravariant vector field d on M, whence by Green's 
divergence theorem 

X jj *1 O-- . 

I.e., 

fg f[ftia ft g'aj9 + ftaft ft, at Og'a Oftv ]*1 = 0. 
at oxiat at a~~~6y" Oxi 

A routine calculation now gives (4). 
For any smooth map f C 9 (M, M') we set 

(5) -r(f ),y(P) =- f'Y(P) + gO (P) Va.6,(f (P) )fia(P) fj (P). 

It is clear that r (f)'Y is unaffected by any transformation of the local coordi. 
nates on M near P, and for any such transformation of coordinates near f (P) 
we see that r (fi)'Y (P) transforms as a contravariant vector in M' (f(P) ); 
see ? 3 for an invariant formulation. Thus with every f C X9 (M, M') we 
have a variation r(f) C X(f). 

Definition. We call T (f) the tension field of the map f, and we say that 
f is a harmonic map if r(f) 0. Thus (4) becomes 

d C dft 
dtE (ft) JM <T (f ) ' dt > 

Suppose now that f is an extremal (with respect to small deformations) 
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of E. If we apply (4) to suitably chosen local deformations (e.g., confined 
to small geodesic balls on M), we obtain from a standard argument that the 
Euler-Lagrange equation for the energy functional E is r(f) 0. In local 
coordinates that equation is elliptic. 

Remark. It is a simple matter to modify these constructions to include 
the case that M has a boundary; we should require in Lemma 2B that ft is a 
constant function of t on the boundary. 

PROPOSITION. Every map f: M -> M' of class C2 which satisfies r (f) 0 
is smooth. If M and M' are both analytic Riemannian manifolds, then every 
such map is analytic. 

The proof of the first assertion is easily obtained by inductive application 
of [14, Theorem 3, p. 210]; analyticity follows directly from [22, p. 4]. 

(C) Our next step is to interpret the tension field Tr(f) in terms of 
special coordinate systems on M and M'. 

For any PC M we let expp: M(P) -*M be that map which assigns to 
each vector u C M (P) the end point of the geodesic segment emanating from 
P and determined in length and direction by u; it is elementary that expp 
is a smooth surjective map, carrying a neighborhood of 0 C M (P) diffeo- 
morphically onto a neighborhood V of P in M. If we now choose an ortho- 
normal frame in M (P), then we can use the inverse of expp to refer each 
point Q C V to the components relative to that frame. These are called 
normal coordinates in V centered at P, and they form a coordinate system 
admissible for the differentiable structure of M. 

In terms of P-centered normal coordinates we have 

1) the metric tensor gij(P) =Sj, since the frame is orthonormal; 
2) the Christoffel symbols rijk(P) - 0 for all i, j, k; that is because the 

equations of the geodesics through P are linear, whence rjjk (P) uiuj - 0 
for all vectors u CE (P) ; see Eisenhart [8, p. 54]. In particular, fj'y (P) 

02fy (P) /axiaxj, from which we obtain the 

LEMMA. For any f C &1 (M, M') and point P C M let us fix normal coordi- 
nate systems V and V' centered at P and P'= f(P), respectively; in terms 
of these we have 

(f) ( P) E I ) 2 -< m) 

Thus f is harmonic if and only if at each pair of points P, f(P) there are 
such coordinates in which f satisfies the Euclidean-Laplace equation at P. 
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Example. Suppose M' is flat; i. e., its Riemannian curvature is zero at 

every point. It is well known that then M' admits a smooth coordinate 
covering such that in each coordinate chart we have r'y jo 0. Then 

r (f)Y =- fy and in such local coordinates the equation r (f) = 0 is linear. 

In particular, if M' is the Euclidean space Rm, then a map f: M -* Rm is 

harmonic if and only if it is constant, by the maximum principle. 

Example. If M and M' are Lie groups with bi-invariant Riemann metrics, 
and if f: M -* M' is a homomorphism, then f is harmonic. It suffices to 

verify this at the identity of M; taking canonical coordinates (which are 
normal; see Chevalley [5, p. 118]) at the neutral elements of M and M', we 
see that the representation of f is linear, whence r (f) = 0 by Lemma 2C. 

Example. If M and M' are Kdhler manifolds and f: M -* M' is a 
holomorphic map, then f is harmonic relative to the associated real Riemann 
structures on M and M'. Namely, we take local holomorphic coordinates 
zi Xi + \/ I x7+j and wa ya + \/ I yk+ (where dimM =2h, dimM' 
= 2k) centered at some points P C M, f (P) C M'. Because the wa are holo- 
morphic functions of the zi and because M is Ki:hler, they satisfy Laplace's 
equation Awa =0. Now A is a real operator, which we have Aya = 0 - AyI7+a 

for 1 ? C ?< 7k. Since M' is Kdihler, the wa can be chosen to be normal coordi- 
nates, whence all r'aa 0 o at f(P). Then r(f)P= 0. 

(D) Suppose f: M M' is a Riemannian immersion. Thus for each 
P C M the differential f* (P) of f at P maps M (P) isometrically into 
M'(f(P)); i.e., g f*g'. If tuI (1<?a< -n) is an orthonormal frame 
in (some coordinate system) on M' orthogonal to M, then 

(6) bI1 j=- (fjjY + raifjafjI) g-,yj4uvI =b-jb I 

are the components of the second fundamental form p (f) on M in M' relative 
to that frame (Eisenhart [8, ? 50]). The vector field t along the map f 
defined by 

r-n 
(7) t(P) E',g (P) b I j (P) er I (P) 

J=1 

for all PC E H is independent of choice of frame. It is traditionally called 
the mean normal curvature field of the immersion. The following formula 
is a well known interpretation: 

rn-n 
(P) E div (e. (P) e), I (P) . 

a=1 

Note that the coefficient of each e, I is the first elementary symmetric function 
of the proper values of b,r relative to g; that indicates how the following 
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results (and those of ? 4C) will generalize when we replace energy by c-energy. 
A Riemannian immersion is said to be a minimal immersion if t = 0 on 

M. The minimal immersions are precisely those which are the extremals of 
the volume functional V (Eisenhart [8, p. 176]). Usually the notion of 
minimal immersion is taken in a somewhat broader context, as a smooth map 
which is an extremal of V. There are examples (even for M' Rm and 
n = 2) of analytic extremals of V which are not strictly immersions, for their 
Jacobians vanish at isolated points. 

From (7) we conclude that 

r-n 
= L gii (fjfY + r' 'P-fjf) g',$jye. j}uj 

a=1 

rn-n 

E <-r(f ) a>a 

But (fj,f + r' fjafjf3) Oy = 0 (1 ? kc n) in general (Eisenhart [8, 
p. 160] ); i. e., i (f ) (P) is perpendicular to M (P). 

PROPOSITION. Let f: M-- M' be a Riemcannian immersion. Then 
e (f ) = n/2. The tension field r (f ) coincides with the mean normal curvature 
field on f. In particular, f is harmonic if and only if it is minimal. 

Note that any isometry fi: M-- M is harmonic, and that any covering 
map is harmonic. 

Remark. For any uh C M'(f (P) ) perpendicular to M (P) we have 
<T(f ), u>= trace (,/ (f )1u). 

(E) For any map fC E9((M,M') we define F: M-*MXM' by F(P) 
(P, f (P)); then F is a smooth imbedding, but not isometric in the product 

metric on M X M'. The following result is immediate: 

PROPOSITION. For any f C X4 (M, M') we have e (F) = n/2 + e(f). 
Furthermore, f is harmonic if and only if F is harmonic. 

3. Invariant formulation. 

(A) In this section we express our problem in terms of differential 
forms with values in a vector bundle. It turns out that in some sense the 
harmonic theory of such forms gives us an infinitesimal solution to our 
problem. We begin by summarizing the general theory; for details see 
Spencer [27] or Bochner [4]. 
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1. Let W -* M be a smooth vector bundle over M with fibre dimen- 
sion m. If aJ [P] (M) -* M denotes the bundle of p-covectors of M and if 
W 0 [PI (M) -* M is the tensor product bundle, then the smooth sections 
of that latter bundle are called the smooth p-forms on M with values in W; 
their totality forms a vector space, which we denote by AP (M, W). 

2. Suppose that W has a Riemannian structure; i. e., a given reduction 
of its structural group to the orthogonal group in dimension m. If W-* W*. 
denotes the dual bundle of W, then we have a bundle isomorphism p: W -* W*. 
Taken together with the canonical isomorphism *: J [P] (M) J 5[ n-p] (M) 
induced from the given Riemannian structure on M, we have the natural map 

Jtp,0 *: AP(M, W) -> An-p(M, W*). In particular, the evaluation of W* on 
W induces a bilinear pairing 

#: AP (M,, WV) X AP (M,!, Wz) -- An (Mk), 

the vector space of real valued n-forms on M. Thus AP (M, W) has the 
inner product 

( 8 ) <cP r>=f4~#i. 0 

3. Assume next that W has a connection which is compatible with its 
Riemannian structure; i. e., the covariant differential of the tensor field 
defining the orthogonal reduction of W is zero. We say that W is a Rieman- 
nian-connected bundle. Then we have a linear map d: AP(M, W) -> AP+1(M, TW), 
which can be described as follows: If 9k is a locally finite covering of M by 
coordinate systems, then for each U E 'U the connection in W can be given by 
a certain m X m matrix Ou = (OaUI) of 1-forms in U. Similarly any form 
c E AP (M, W) defines an m-tuple pu - (cp:U) of p-forms in U. If d denotes 
the exterior differential operator in U, then we define dcp by giving its repre- 
sentation in each U by the formula (In this section (3A) we violate our 
convention of lettering subscripts denote covariant differentiation. We adopt 
here a special symbol for that concept.) 

(do) U _dpU +0U A Opu 
-(dUl'u + lOUP A pu~, * dmu + lmUP A 0,u) 

4. We can now develop the theory of harmonic forms on M with values 
in a Riemannian-connected bundle. We have the adjoint map 3: AP (M, T) 

AP-' (M, W), characterized by the formula 
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In particular, for any (p E Al (M, W) and any coordinate chart U we have 
1-forms (pJu (1 ? c < m), which can be expressed 

=u op,U dxj in the coordinates (x1i, xn) in U. 

If we write similarly 
OaUP - Tai3 dxi, 

then 

(do)aU= (0'?ja + TajfScpjjU)dxi A dxi, 

(9) 
(8o)au gii ( V aju + TaAypju), 

letting V, denote covariant differentiation on M relative xi. The Dirichlet 
integral of (p E AP(M, W) is 2D(() <d(, d(> + <go, 8o>, and its associated 
Laplace operator is (d8 + 8d). A form (p E AP(M, W) is harmonic 
if zo = 0; that condition is equivalent to the pair d(p = 0 = 8-o. 

It is known that a Green's form exists for the operator A, from which 
it can be proved that there is a decomposition 

(10) AP(M, W) =HP(M, W) ? [dAAP-1(M, W) + AP+1(M11, W)], 

where HP(M, W), the space of harmonic p-forms with values in W, is 
orthogonal to the other two summands. 

5. The curvature of the connection can be expressed in U by an m X m 
matrix of 2-forms ?u = (0,306U) where ?u =dOU+OUA OU. If V denotes 
the covariant differential of M, then we define the covariant differential V on 
EpC AP (M1, W) by 

V u,u - VUOU + Ou A (Pu. 

Letting Rih denote R1hIl, the diagonal m X m matrix each of whose diagonal 
terms is the Ricci tensor field Rih (we follow the sign convensions in Eisenhart 
in defining Rij = Rhjh), we have for any (p E A1 (M, W) the following expres- 
sion for the components of the Laplacean of 4 in U: 

(_Ao), _ (VU),k('VU)7c(,$U + [(oHu).7h R ']o U, 

where t denotes the transposition of matrices. 

If p, EAl (Ml,W), define the function ( p=*(p#f) on M ; then in 
U we have (usual Laplacean A of functions) 

- t[ (?U) *h Rhli] (o U) haU (oU) 
i 
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where au denotes the Riemannian structure of W in U. For each ( E A1(M, W) 
define the function 

(11) Q(() [(?U).h R-h] (q,U)haU(cpU)i 

The matrix (of functions) of Q is 

Qafi = ghkgii [ (aayu7?Uy) kj - aapURkj]. 

We consider this as an nm X nm matrix in the subscripts (ah), (/3i) ; as such, 
it is symmetric: Qpi - 

QPa h. 

The integral over M of Av (c c /2) is always zero, by Green's theorem. 
Thus if c) is harmonic we have 

(12) MQ () *1 f (V VU) (U) kau ( v u) i ( U) k*1 < 0. 

(B) Given any f E 9 (M, M'), let f-15 (M') -> M be the induced vector 
bundle; it is clearly Riemannian-connected. Let us interpret the preceding 
development for that bundle. 

First of all, the elements of AO (M, f-1 (M')) are canonically identified 
with the vector fields along f (i. e., with the elements of the space 9 (f), in 
the notation of ? 2A). Secondly, for any P E M the differential f (P): 
Ml(P) -> M'(f(P)) is a linear map, to be considered as an element of 
M' (f (P) ) 0 MI1" (P) ; otherwise said, the assignment P-> f* (P) determines 
a specific 1-form fX C A (3M, f-15? (M')). Thirdly, we have 

E(f) =i2 ff #f 

LEMMA. For any f C 9 (M, M') we have df = 0; i. e., f * is orthogonal 
to 8A2(M,f-l J(MU')). Thus Af* =- d3f . 

Proof. Take a coordinate chart U on M, and write 

(13) O,Yuf paogff dxi. 

Then (f*U) f=f dxi, whence (1 aos -m) 

(df*U)-, - ,f'Y dxi A dxj + P'c,,fjfjP dxi A dxJ, 

which is zero, because both coefficients are symmetric in i, j. 

Similarly, the variation Sf* E AO (Al, f-1 (M') ) has coordinate represen- 
tation 

(f)u = gti{ViVjfy + P'Yfj%cfj1} 7- (f)'Y. 
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PROPOSITION. For any f E 9 (M, M') its diff erential f* is a closed 1-form. 
Its tension field T (f)= - f*, the divergence of its differential. The map 
f is harmonic if and only if its differential is a harmonic 1-form. 

Definition. For any map f E 9 (M, M') its fundamental form 8 (f) is the 
covariant differential Vf* of its differential. Thus 3(f) is the f-15(M')- 
valued 2-covariant tensor field on M whose coordinate representation is 

f ;ijf fif + rVafYfi1fl1 = f ;jiY. 

The tension field r (f) is just the trace of ,B(f); i. e., y (f) giif ;j/y 
(1 < y m i). It follows from ? 2D that if f is a Riemannian immersion, then 
/3(f) is the second fundamental form of M in M'. Analogously, let us say 
that a map f E 9 (M, M') is totally geodesic if /3(f) = 0 on M; we will see 
as a consequence of Corollary SA below that totally geodesic maps map 
geodesics into geodesics. 

(C) Let us consider the function Q (f*); from the expression (EapU)1h 
- g*kR' 7fk,Yfi we compute (11), taking into account the skew symmetry 

OU =-- ? Oeu to obtain the 

LEMMA. For any smooth map f: MA-M' we have 

(14) Q (f*) = - R -flRiffffffkef'g'kgja_RtjfffJ'g,flg. 

Its matrix (for arbitrary forms b C A' (M, f- (7(M'))) is 

(15) Qa$ii R'= p-fk Yfegikgi -Rig'ap. 

If f is harmonic, then 

(16) Ae(f) =I, (f) 12 + Q(f). 

We will refer to the matrix (15) as the Ricci transformation on the tensor 
product bundle f-17 (M') ? 5I1] (M). Observe that if f is a real-valued 
function on M, then that Ricci transformation is just that given by the Ricci 
tensor of M. 

Remark. The above computations can of course be made without passing 
through the medium of vector-bundle-valued differential forms. One starts 
by applying the Ricci identities (Eisenhart [8, p. 30]) to the direct evaluation 
of Ae(f), and then reads off the appropriate terms. 

The next result follows the well known pattern of Bochner; in [2] 
Bochner has also applied the method in a special case for maps. 

THEOREM. If f: MAl-- M' is a harmonic map, then 
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Q Q(f*) *1 _O~0, 

and 
equality 

holds when and only when f 
is totally geodesic. Furthermore, if Q (f*) > 0 on M, then f is totally geodesic and has constant energy 

d ensitly e ( f) 

Proof. This follows at once from Stokes' Theorem 

MAe (f ) 1 O,0~ 

applied to (16); for if Ae(f) ? 0, then zAe(f) 0 everywhere, whence e(f) 
is a constant function. 

Following the conventions of Eisenhart [8], we say that the Ricci 
curvature of M is non-negative if at every point P C M the matrix (- Rij (P)) 
is positive semi-definite. 

COROLLARY. Suppose that the Ricci curvature of M is non-negative 
and that the Riemannian curvature of M' is non-positive. Then a map 
f: M -> M' is harmonic if and only if it is totally geodesic. Furthermore, 

1) if there is at least one point of M at which its Ricci curvature is 
positive, then every harmonic map f: M -*M' is constant; 

2) if the Riemannian curvature of M' is everywhere negative, then 
every harmonic map f: Ml ->31' is either constant or maps M onto a closed 
geodesic of M'. 

Proof. The theorem shows that 

R / ,6fiafjof7,afllg kg7, + Riiffafjlg ?0. 

If hypothesis 1) is satisfied at PE M, then f* (P) =- 0, whence the constant 
e (f ) = 0; i. e., f is a constant map. If hypothesis 2) is satisfied at 
P' f(P) C M' and we take normal coordinates centered at P, then the 
f* (P) -image of the tangent space M (P) has dimension < 1. If it has 
dimension 0 at any f (P), then again e(f) 0; otherwise, the image f*(P)M(P) 
has constant dimension 1. Because f is totally geodesic, the conclusion follows. 

Example. If f: M -* M' is a harmonic immersion, then e (f) = n/2, 
and I g (f ) 12 + Q (f* ) 0. This relation also follows from Gauss's equations 
(Eisenhart [8, p. 162]) 

m-n 
RIjkI R'aes0]y5ffefj0fk'yfI' (bulikbuljz- bu1ilbzlbjk) 

o=1 
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by multiplying by gikgij and summing. We obtain 

m-n 
R jg j + Rl 6f ,,Yf jf ka f lg =Igj I -- I P (f ) 1I2 E E2 

cT=1 

where Pt,.u = ijb, is the c-th component of the mean normal curvature of 
the immersion (see (7)); each 0 if f is harmonic. For instance, if the 
Riemannian curvature of M' is non-positive and if the scalar curvature 
R1 = PRig of M is negative at some point, then there is no harmonic 
immersion of M in Mt. 

4. Examples. 

(A) The case dim M = 1. Let us take for M the unit circle S1, coordi- 
natized by the central angle 6. For any f C (S, M') we have 

e(f) g'dt df whence E (f) = C 1 

The tension field is 

Ir(f ),,'(t) d ~f2y + rl,ip- 4f dft 
dt2 " dt dt' 

which (when the parameter of f is proportional to arc length) is often called 

the curvature (or acceleration) of f. We have <K(f),df >=0, and ri(f) is 

proportional to the geodesic curvature vector field along f. Then f is harmonic 
if and only if f defines a closed geodesic on M'. It is well known that if M' 
is compact, then in every homotopy class of maps S' -* M' there is a harmonic 
map (and furthermore, one which minimizes the length in that homotopy 
class.) On the other hand, without further restrictions on g' there are com- 
plete Riemannian manifolds M' and non-trivial homotopy classes of maps 
S1 -- Ml' having no harmonic representatives; see ? 10 below. 

(B) The case dim M = 2. We established here certain relations showing 
the close connection of our problem with the Plateau problem, in its potential 
theoretic formulation (Morrey [19] and Bochner [2]) ; incidentally, we see 
that in our energy theory the cases dim 111 ? 2 are favored. 

Recall that a map h: M --> M' is conformal if there is a smooth function 
B: M -1R such that 

h*g' = exp (20) g- 

Thus the differential he preserves orthogonality and dilatates uniformly. 
Clearly such a map is a smooth immersion, and has energy density e (h) 
= nexp(20)/2. 
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PROPOSITION. If dim M n =2 and h: M -> M is a conformal diffeo- 
morphism, then for all fC E9((M,M') we have E(foh) E(f). Moreover, 
h is harmonic. 

Proof. First of all, (f o h)a - fpchiP, whence 2e(f o h) giihphj fpafq3g'afl. 
The conformaltity condition for h implies giihjPhjq exp (20) gpq and sub- 
stituting gives 

2e(f o h) =exp (2 0) glPf,fg'6= 2 exp (2 0) e(f) 

Secondly, we have 

h*(*1) [det(g,qhjPhjq)/det(gjj)]" *1 

- exp (no) *1, 

so that if n 2 we have h* (e (f) *1) = e (f o h) *1. 

Finally, in suitable local coordinates on M1 we have 

r," .jk V _- (,a0o* + aikoj - g-Pg*yov) 

and direct computation shows that 

i-(h) * (2-n)gii0 . (1?i?n). 

PROPOSITION. If dim M = 2, then for any f C &9 (M, M') we have 
VI(f) < E (f). Equality holds when and only when f is conformal. 

Proof. The first statement follows immediately from the inequalities (2). 
Suppose f is conformal; then for n = 2 we obtain 

V(f) M exp(20)[g91g22-gi2212Adxd2 =fe(f)*1= E(f). 

Conversely, if V(f) E (f) we conclude that at every point of M 

2 [det (f*g') j] =- gi) (f*g') *j [det (gij) 12. 

In isothermal coordinates on M we have 

[ ( f *g.') 1 - (f *g') 22 ]2 -{(f *g ) 12}2n 

whence (f*g')11- (f*g')22= 0 (f*g')12. Defining 0: M -R by 

exp (20) = [det (f g')*y/det (gj) ] , 

we obtain exp (20)g,j = (f*g'),1. 

COROLLARY. If a map fo: M -> M' minimizes V and is conformal, then 

fo minimizes E. 
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For any f CE (M, M') we have 

E(fo) V(fo) ? VI(f) ?E(f). 

Remark. If M is a Riemann surf ace, then its complex structure defines 
a conformal equivalence class of Riemann structures. The energy of any map 
f: M-> M' therefore depends only on the complex structure of M. 

(C) Harmonic fibre maps. For any map f C &9 (M, M') and P C M we 
have the vector space Mv(P) = {uC M(P): f*(P)u =O}; the vectors in 
Mv (P) are called vertical. Let MH (P) denote its orthogonal complement 
in M(P). Suppose that for all P C M the differential f (P) maps MH(P) 
isometrically onto M'(f (P)). Then f is a locally trivial surjective fibre map 
(see Hermann [13]); in particular, f determines an almost product structure 
on M (i. e., the structural group On of 5 (M) admits a reduction to the product 
group Om X O). We will call a map f: M -> M' a Riemannian fibration. 

Remark. There are smooth fibrations f: M --I M' having no Lie structural 
group; e. g., there are non-trivial compact smooth fibrations over the 3-sphere 
S3 (which cannot have a Lie structural group G, since 7r2 (G) = 0). It is a 
consequence of a theorem of Hermann [13] that the manifolds M, M' admit 
no Riemann structures compatible with f as above, for which the fibres are 
totally geodesic. 

LEMMA. If f: M -> M' is a Riemannian fibration, then for any P C M 
there are coordinate charts U and U' centered at P and f(P) respectively, 
in terms of which f ,(P) =, (1 <i < n, 1 ? m ?n). Furthermore, the first 
m coordinates in U can be considered as normal coordinates in U', and the last 
n - m coordinates are local coordinates for the fibres. 

Proof. Let (ei)in be an orthonormal base for M1(P) such that the first 
m vectors span MH(P), and the last n-in vectors span Mv(P). Then 
f (P)e, ee' (1<i_<m) form an orthonormal base for M'(f(P)), and we 
can construct the associated normal coordinates in some neighborhood U'. 
According to Hermann [13] the unique horizontal lift to P of any geodesic 
of M' starting at f (P) is a geodesic of M; one determined by e'i lifts to one 
determined by e,. We now use the local product structure to define a coordi- 
nate chart U in which the fibres have the desired property. Note that (unless 
the fibres are totally geodesic) we cannot generally require that the coordinates 
in U be normal. 

PROPOSITION. Let f: M -- >-I' be a Riewnannia,n fibration. Then e(f) 



128 JAMES EELLS, JR. AND J. H. SAMPSON. 

n/2. If for any P C M we let Pp denote the fibre through P and ip: Fp > M 
the inclusion map, then 

r(f) (Q) -f*(Q)T(ip) (Q) for all Q E Fp. 

In particular, f is harmonic if and only if all fibres are minimal submanifolds. 

Proof. In ? 2D we have seen that the tension field of any Riemannian 
immersion is perpendicular to the submanif old. Thus for every Q C Fp we 
have r(ip) (Q) C MH(Q). If we use a split coordinate system as in the previous 
lemma, we see that 

m 

*-r (ip) (P)' 
, 

Eaklyr(ip) k (p) . 
k=1 

The proposition follows by direct calculation. 

Examples. All covering maps are harmonic; in particular, the identity 
map is harmonic. which amounts to saying that Cartan's vitesse is a harmonic 
1-form. If yr (M) -_ M is the bundle of orthonormal r-frames of M, then 
it is known (Lichnerowicz [15]) that with its natural Riemannian structure 
on 5r(M) the fibres are minimal, whence that fibre map is harmonic. Vector 
bundle maps are harmonic. Every homogeneous Riemannian fibration is 
harmonic, for the fibres are always totally geodesic, and therefore minimal. 

(D) Maps into flat manifolds. Let us take for M' the unit circle S1; 
we will construct harmonic representatives in every homotopy class of maps 
11 > S'. First of all, it is well known that the set [M, St] of these homotopy 
classes forms an abelian group canonically isomorphic to the first integral 
cohomology group H' (M). Secondly, every such cohomology class is 
canonically represented by a harmonic 1-form on M. 

Suppose M is connected, and fix a point PO C Ei. Given any such har- 
monic 1-form o on M and any smooth path yp from PO? to a point P C M, we 
define the number 

f (P) X@ 
7P 

A different choice -p of yp may give a different number j (P), but 

i(P) f (P) j,p 

is an integer since the periods of w are integral; consequently, Z determines 
a well defined map f,6,: Mi-- S' by letting f,, (P) be the residue class modulo 1 
of f(P). 
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Now since fL, is harmonic, every P C M has a neighborhood U in which 
df = ; thus Af =df + dSf =o===0 in U. It is easy to see that -f, 
establishes an isomorphism [M, Si] H' (M). 

To define harmonic representatives of the homotopy classes of maps 
Me T- 1 the flat rn-torus, we merely take rn-fold products of harmonic maps 
M -< St, using ? 5C below; the existence of these harmonic representatives 
was first proved by F. B. Fuller [10]. More generally, any compact flat 
manifold M' is covered by Tnt, by a theorem of Bieberbach, and any homotopy 
class of maps M -- i' which can be lifted to maps ill -- Tm has harmonic 

representatives obtained by composition with the projection Tm-> M'. 

If M and M' are both flat, then the only harmonic maps MI - M' are 
those which are locally linear, as can be seen from the maximum principle. 

(E) Maps of Euclidean spheres. Let Sn(r) denote the Euclidean n- 
sphere of radius r; write Sn 1Sn(). Then the homotopy classes of maps 
of Sn into itself are classified by their degrees. We consider now the problem 
of constructing explicitly harmonic maps of a given degree 7D; it is a 
simple matter to modify the following remarks to include the case of maps 
Sn (r) _>Sn(r ). 

If (x', * ,xn+i) are Euclidean coordinates and q: Sn(r) -> Sn(r) is a 
map given by q (xi, xn+1) - (x'r'/r,* , xn+lr'/r), then 

e (rq) =-n/2 (r'lr) 1. 

We will henceforth refer points of Sn to coordinates (0, p), where 0 denotes 
colatitude (O < 0 <7r) and c0 a point on the equator Sn-l of Sn. Further- 
more, corresponding to the integer Ic let 5: Sn-l (r) - Sn-l- (r') be the (n - 2)- 
fold suspension of the map S1 (r) -> S1 (r') defined by 4 -- (cos 7c(, sin Ic(p); 
since the degree is invariant under suspension, 1 has degree 7D. An elementary 
calculation gives 

(17) e(4) (12c +n, 2) (r'/r)2. 
2 

We are interested in maps fi: Sn < Sn of the form (0, p) - (O, b), where 
? is a function of 0 alone, and 5 is defined for r = = 1. From (17) we see 
that on Sn-1(sinO) we have 2e(f) (I2 + n-2)sin2?/sin20, whence 

CC Fl do?2 sin2 ? E(f) ~ 
JoJSn-(sinO) Ldj) (c n-2) 

2 

(18) 
I7(Sn-1)ar rd 2 si2? 

2 )Jsisin'1O LY1 ) + (dc2 +n-2) sin2 ] dO. 

9 
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In case n = 1 the existence and properties of harmonic maps of degree kc 
is elementary. 

We now consider the case n = 2. We have g1l = 1, g12 =0 = 21, 

g22 ~sin2 0. The tension field of any map f is given by its components 

=,, tenio of@?e[slvat) a)] 

_ 1 a 2a a as- 
x(b)=MAI+2cot? Lsin2O 0p ?+ 0o 00i 

For the special maps under consideration we find that for a harmonic map f 
1r (qc) = A d2=c/d 2 O, which means that the choice -c= k c/ is compatible 
with our above selection. Substituting in the first equation we find 

1 d sin 0 do k\2 sias 0 
(0)-Isin - c2 n?cos sin60 d dO) i2 

the only solution of () 0 regular at the poles is 

(19) ?=) 2 arc tan [c(tan 0/2) k] with c > 0. 

Then d?/dO = iksin?/sin0, from which we can conclude that E(f) 
=47r I k l; note that it is independent of c. Finally, the integral formula 
for the degree of a map shows that degree f = ?+- k. We observe that for 
k =0 and all c > 0 the map is constant; for k l 1 and c 1 the map is 
the identity and the antipodal map, respectively. 

Remark. Although the above construction does exhibit a harmonic map 
in every homotopy class, it does not begin to exhaust their topological interest. 
For instance, with the uniform topology on 9 (S2, S2), the component 
9((S2, S2) of those maps of degree 0 has infinite cyclic homology: 

H, (& 0(S% S2) ) 7r, (& 0(S2P S2) )=- V3 (S2) Zp 

generated by the Hopf map. A harmonic representative of that generator 
should have positive Morse index. 

Consider now the case n ? 3. We do not know how to construct har- 
monic maps of degree ? 2. Incidentally, the suspensions of the above maps 
(and their "compressed" suspensions below) are generally not harmonic. 
We propose now to show that the functional E: 9 (Sn ISn) -*R does not 
have an absolute minimum on the component 9k(SdS, Sn) for k 0 O and n > 3; 
that this phenonmenon could be illustrated explicitly and simply by maps of 
spheres was suggested to us by C. B. Morrey. 

Let f0(Op,) =(, (0?), ) be the map of Sv- Sn defined using (19) 
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with exponent k 7 0. Thus for small c > 0 the map f, compresses most of 
Sm into a small cell centered at the pole, and that compression takes place 
along longitudes. 

The energy integral (18) now takes the form 

E(2f ) - V(S-1) (2k2 + n -2) sinSinn-lo 2)dO 

For n ? 3 we have 

E(f) ? I(Sn-1) (2k2 +-n- 2) jfin2?c (0)do. 

The following lemma shows that limE(f) O ; i. e., for n 3 there are 

maps in 9k (Sn, Sn) of arbitrarily small energy. But for kIc 0 there is no 
map f E( k(Sn, Sn) with zero energy, for such an f is constant, and therefore 
has degree 0. 

LEMMA. Sin2 EC (0) dO -> as c - 0. 

Proof. For any .e> 0 let p r - e/2. There is a number K such that 
0 ? (tan 0/2) K K for all O <? 0 ?p. It follows that ?,(0) ?2 arctan(cK), 
whence there is a number c, > 0 for which 0 < sin2 ?, (0) < e/2p if 0 < c ? c,. 
Thus 

sin2 0(6)dO+ sin2ll0(6)dO 6J E/2pd6+f 1 d6i (. 

5. The composition of maps. 

(A) The following computation is elementary. 

LEMMA. If f: M -* M' and f: M' - M" are any smooth maps, then 
their fundamental forms satisfy 

(20) (f i f ) ;.a f ;Vyfla + f' ;aaffj1 

COROLLARY. The composition of totally geodesic maps is totally geodesic. 
The inverse of a totally geodesic diffeomorphism is totally geodesic. 

COROLLARY. 

(21) T (f' o f )a T (f)7Yf',a + gif';a3afiaf fj!. 

If f is harmonic and f' totally geodesic, then f o f is harmonic. 

In general, however, we do not expect the composition of harmonic maps 
to be harmonic, as the following example shows: 
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Example. Let T2 be the flat 2-torus parametrized by the angles (0, O) 
with 0? 0,c O, < 27r. Let f': T2__ S3 be defined by 

f'(0,p) = (cos 0, sin 0, cos q, sin P)/V2, 

considered as a point in R4. Then f' defines a Riemannian imbedding of T2 
in S3, which is a minimal but not a totally geodesic imbedding. To see that 
f' is harmonic we show that T (f') is perpendicular to S3(f'(P)) in R4, and 
then appeal to Proposition 5B below. Namely, because T2 is flat we have 

T f)a.2f/a 02f/a laa- 4 
02f' + _-- f'a (1?a?4) 

whence T(f') (P) is directed along the radius of S3 at f (P). On the other 
hand, T2 is not totally geodesic in S3, for the map f: S1 T2 defined by 
f(0) = (O,0) is a geodesic of T2; it does not lie in any 2-plane through 0 
in R4, and is therefore not a geodesic of S3. In particular, f: S1' T2 and 
f': T2 >S3 are both harmonic maps, and their composition f'of is not. 

(B) PROPOSITION. If f': M'`- M" is a Riemannian immersion, then 
for any map f: M->M' we have E(f) ==E(f'of). The tension field T(f) 
is the projection on M' of the tension field T(f'of). 

Proof. The first statement follows from the equation 

e(f'of) = 1<g,ff* of'f*g"> = e(f). 

The second statement is a consequence of (21); for if f' is a Riemannian 
immersion, then the right member is the decomposition of T (f' o f) into 
horizontal and vertical components because (f ;) is the second fundamental 
form of f'. 

COROLLARY. A map f: M--M' is harmonic if and only if T(f'of) is 
perpendicular to MI'(f (P)) for all P C M. 

This generalizes the classical fact that a curve in M' is a geodesic if and 
only if its curvature vector in M" is always perpendicular to M'. 

(C) PROPOSITION. Let f': M'-->M" be a Riemannian fibration with 
totally geodesic fibres. Then for any map f: M-->M' we have 

T(f' of) =f'(T(f)) 

This is immediate, because we can in the present situation take split normal 
coordinates in Lemma 4C. 
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COROLLARY. If 11 A M" and fi: M ]I- M' is a section, then f' o f 1 
is harmonic, and therefore -r (f) is always vertical. 

Example. If we view a smooth r-form U on M' as a section of the bundle 
,[r] (MI') of r-covectors of M', then the condition that X be harmonic in the 
sense of de Rham-Hodge is generally different from the condition ir (w) == O, 
using (say) the Riemannian structure on f [r] (MI) of Sasaki [25]. However, 
these two concepts do coincide if M' is flat. 

Example. A map f: M -- M' X M" into a Riemannian product has a 
canonical decomposition f (P) = (f'(P), f"(P) ) for all P C M1. Then f is 
harmonic if and only if both components f', f" are harmonic. For instance, 
seee Proposition 2E. 

(D) Let us suppose that M' is a Riemannian submanifold of M" and- 
that the imbedding is proper; i. e., such that the inverse image of any compact 
subset of M" is compact in M'. Since M' is complete, there is a positive 
smooth function p: M' R such that for any P' C M' the set 

{P C M : r'(P',P") ?p(P')} 

is geodesically convex in M"; if M' is compact, then of course we can suppose 
that p is a positive constant. For each P' C M' let Dp denote the closed ball 
of dimension q - m (q = dim M") consisting of all geodesic segments of length 

p (P') emanating from P' and perpendicular to M'(P'). The following 
result is well known and elementary. 

LEMMA. Let N = U {Dp,: P' C M'}; then N is a neighborhood of M' 
in M", and the obvious map 7r: N - M' defines a smooth fibre bundle over ' 

whose structure group is 0q -n and whose fibres are closed balls. 

Taking into account Proposition 5C we have the 

PROPOSITION. Let f': M'-> M" be a proper Riemannian imbedding and 
7r: N -o M' a normal tubular neighborhood. Then for any map f: M-> N the 
composition r aof is harmonic if and only if T (f) is vertical. 

Chapter II. Deformations of Maps. 

6. Deformations by the heat equation. 

(A) This chapter is devoted to the fundamental problem of deforming 
a given map into a harmonic map; i.e., into a smooth map f: M - M' 
satisfying the nonlinear elliptic equation 
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(1) 7(f) = . 

We begin by discussing general methods of attack. 

The interpretation given in ? 2A of the tension field r (f) as the contra- 
variant representative of the differential of E at f suggests that we try to 
invent gradient lines of E in a suitable function space of maps from 31 to M', 
and then to prove that these trajectories lead to critical points of E. We 
propose the following method for realizing such an attempt, which we now 
outline briefly. We do not pursue this method in the present paper, although 
the qualitative results are essentially those of the following sections. 

Let (r(M31,7') denote the function space of all maps from M to M' 
whose partial derivatives (relative to fixed coordinate coverings) of orders 
< r are square integrable. An inequality of Sobolev insures that if 2r > dim M 
then the maps in $V(r (M,3') are continuous, and its topology is larger than 
the uniform topology. It can be shown that the space r (31,M'71) admits an 
infinite dimensional Riemannian manifold structure modeled on a separable 
Hilbert space, and that E: Sr (M,') M) 1>? is a differentiable function. If 
Tr is its gradient field on X9r(M 3M1); i.e., VVE(f) -<,Kr(f),v> for all 
vectors v in the tangent space at f, then the ordinary differential equation 

dft r (ft) 

has a local solution which is unique; furthermore, E (ft) is a decreasing 
function of t. Under suitable curvature restrictions the solutions are globally 
defined. If each trajectory ft is relatively compact, then it has a limit point 
a harmonic map. Thus these trajectories define a canonical homotopy of the 
initial map onto a harmonic map; moreover, such trajectories enjoy the 1- 
parameter group property. We observe that the critical points of E are just 
the zeros of all Tr (for any r > dim M/2). 

Now the function space 6W0(M,M') is not a manifold, although with 
every map f we have the Hilbert space 69? (f) of vector fields along f defined 
in ? 2A. In particular, T (f ) 7- (fi) is in 9o(f). In analogy with the above 
outline we are led to consider the nonlinear parabolic equation 

(2) ft = (ft) (to < t < t1). 

The study of this equation is our primary object in the following sections. 
We will find that the properties of the trajectories of (2) include most of 
those mentioned as belonging to the trajectories of 7r (2r > dim M). (There 
is one basic difference: The solutions of (2) are generally defined only for 
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non-negative time, whereas the trajectories of 7r are always defined for an 
open time interval around t 0.) 

Remark. In the calculus of variations a standard method (Morrey [19]) 
of establishing the existence of a minimum of E for a given class of maps is 
to take the space 91 (M, M') and to introduce on it a weak topology relative 
to which 1) E is lower semi-continuous, and 2) there are sufficiently many 
compact sets. That approach works well for dim M = 1 or 2; however, the 
example given in ? 4E shows that it will not work in general for n > 3. 

(B) PROPOSITION. If (t, P) -ft(P) is a map of (to, t) X M -M' 
which is C' on the product manifold and C2 on M for each t, and if that 
map satisfies (2), then it is CG. 

We will refer to such an ft as a solution of (2). 

This follows from Friedman [9, Th. 4 and 5] provided the second 
derivatives ftjf of the ft are Hl6lder-continuous. But we can represent the 
local functions ft by Green's formula, using the fundamental solution of the 
heat equation Au -au/Ot =O as in ?? 9-10 below. The required Hl6der- 
continuity is then established by standard techniques from the properties of 
the potentials involved (Pogorzelski [24], Dressel [7], Gevrey [11, No. 8]). 

(C) Let ft: M -- M' satisfy (2); the subscript t refers to the deforma- 
tion parameter (we will always indicate explicitly differentiation with respect 
to t). Then from (4) of ?2B we have 

dt - 
(f at JMt X atI 

If D/dt denotes covariant differentiation along paths in M'', then for each 

P C M the curvature vector of the path t -> ft (P) is given by D (dft/dt)/dt. 

PROPOSITION. If ft: M - M' satisfies (2), then the energy E(ft) is a 
strictly decreasing function; i. e., dE (ft)/dt < 0 except for those values of t 
for which T (ft) = 0. Furthermore, its second derivative expresses the average 
angle between the tension field and the curvature vectors of the deformation 
paths: 

dt2 2 < T (ft) 

LEMMA. Let ft: M -> M' be an arbitrary deformation for t C (t0, t,). 
If we let 

D Oafta 02-fta+ a Of t Oftv 
A axt a+ r xi at 
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then 
d2_E(ft) D faft DD (aft)A 

d t2 9M <$ (x At ) x bJ$ j 
>*1 

fXgtijr1a6ftgxftjf a aft f A< D ( f) 

Green's ivergenc theorem.at a This follows from a direct calculation of 02e (ft)/at2 and an application of 
G#reen's divergence theorem. 

Because the first integral of the right member is always non-negative, 
we have on appeal to the above proposition the 

THEOREM. If ft: M- M' satisfies the heat equation (2), then 

1d2_E(ft) _ (i,D (af t~ D (af t\ 
2 dt2 aM a<Ixi ' axi kat,/ 

(3) 
- C jRta4> Maft- afta at 

In particular, if M' has non-positive sectional curvature, then d2E (ft) /dt2 ? 0. 
If t is a value for which equality holds, then r (ft) is a covariant constant; 
i.e., 

D (aft(P) -0 for all P C M and (1?i?n) 

COROLLARY. If A' has non-positive sectional curvature and if ft satisfies 
(2) for all t ? to, then 

dE(ft) 0 as t- oo. 
dt 

(D) We have seen in ? 5 that in supposing M' contained in a larger 
manifold MA" we do not alter the energy of a map f: M -> M'. That suggests 
that we still have control of the energy and the tension of deformations of f 
which take place in a normal tubular neighborhood N of M' in M". 

If f': M' -> M" denotes the imbedding, then the induced tangent vector 
bundle is f'-5(l(M") = 5 (Al') 0 91 (Al",MAl'), where the second summand is 
the normal bundle of M' in M". Then 9% -- M' is IRiemannian-connected in 
the sense of ? 3A. There is a canonical vector field p: N -o 92 covering the 
projection map ir: N -- M' defined by assigning to each Q" CN the unique 
vector p(Q") C MA"(Xr(Q") ) such that expx (Q") (p,(Q") ) = Q". 

Suppose now that ft: MA -- N is a smooth deformation (t0 ? t < t1). 
Then p o ft is a vector field on the map -r o ft, and using the harmonic integral 
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theory of ? 3 applied to the vector bundle 92 M, we can define its Laplacean 

(p ? ft). Let 

L (p ? ft) (,o o ft) -at (P oft)p 

where D/flt is the covariant derivative in N along the path 7r o ft. 

We now establish the following stability property of deformations. 

THEOREM. Let N be a normal tubular neighborhood of M' in M", and 

suppose that ft: M -> N is a smooth deformation (to ? t < ti). If L (p o ft) 

is always horizontal in 5 (M") and if ft,: M - M', then ft: M - Mf' for all 

to ? t < ti. 

Proof. We apply Green's theorem to u, v C AO (M, (7r ft)-192 ) 

fMKu, Av>*1 =-f K <du, dv>*1. 

The hypotheses imply that <po ft, L (po ft)> 0 for all t, so that 

?=f <P ?oft, A(p oft)> *1 <p o ft, At (P ft) > *1. 

Therefore 

2 dtM<P ? ft., p ? ft> *1 
JI<P ftP A (p ?oft) > *1 

dtf TM 

. f d(p o,ft) 12 *1 O. 

I.e., J p | ft12*1 is a non-negative, non-increasing function of t, and it 
M 

is zero for t = to. We conclude that p o ft = 0 for all to ? t < t1, which states 
precisely that every fit maps M into Hl'. 

7. Global equations. 

(A) We now occupy ourselves with the problem of replacing equations 

(1) and (2), which in terms of local coordinates on M and M' are local 

systems of equations, by some much more tractable global systems. 

Remark. Assume for the moment that we have an isometric imbedding 

w: M' - Rq for some q, which we can always do by a theorem of Nash [21]. 
Then as in Proposition 5B we find that equation (2) is satisfied for a deforma- 
tion ft: M -> M' when and only when the composition Wt = w ? ft satisfies the 

condition that the vectors LWt = AWt - it re perpendicular to M'; see 
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Lemma 7B below. When expressed in terms of the coordinates of R1, that 
condition gives rise to a global parabolic system of equations of the type (2). 
On the other hand, the assumption of an isometric imbedding apparently 
affords no real simplification in our theory, and we will not make it. We 
proceed with an elementary imbedding convenient for our purposes. 

Suppose that M' is smoothly and properly imbedded in some Euclidean 
space Rq by a map w: M'- R. 

LEMMA. Given such an imbedding of M' in Rq, it is always possible to 
construct a smooth Riemannian metric g" = (g'"ab)ia,blq on a tubular neigh- 
borhood N of M' so that N is Riemannian fibred. 

Proof. Let N be any tubular neighborhood of M' constructed using the 
Euclidean structure of Rq; let s-: N -- M' be the projection map. It suffices 
to construct an appropriate smooth inner product in each space Rq(P') for 
all P' C M', for we can translate that tangent space to any point Q' C N along 
the straight line segment (necessarily contained in N) from P' 7r (Q') 
to Q'. We take g' in M' (P') and the induced Euclidean metric in the 
(Euclidean) orthogonal complement of M' (P') in Rq (P'), and take their sum 
in Rq(P'). 

In terms of local coordinates (yl, . . y") on M' that metric can be 
described as follows: Write w(P') = (w1(P'), * *, wq(P')); then 

awe' aw' 

,0=1 ay, OyO 

is the metric on M' induced from the Euclidean metric. Let taa be the unique 
solution of 

Eaw awy G Otwa 

ftta 

We have the duality relation atp=-&',P and the metric tensor is oayo 

q owe owe 
g ab = -ab , - ataatbP +, g.alta0!tb 

e=1 ay,! Oyfo 
Then 

,,Ow4 Owb 
g ab 0 a =0 - 93ga, 

so that g" does induce g' on M'. For any vector v C R (P') satisfying 
q Owz 'q 
Yv,- - O (1??a m) we have , vata =O also, so that 

g=1 aYa a 0 and g"absasb (v) 2=1 

g abVa = 0 and g"abVaVb -~ (V)2 
oya ~~~~~~a 
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Thus g" has the desired properties. 

(B) LEMMA. Let ft: M-- Mi' be any smooth deformation, and let 
Wt: M-> N be the composition w oft = Wt. Then ri(ft) = aft/at if and only 
if r (Wt) -aWW/tt is perpendicular to M'(ft (P) ) for all P C M. 

Proof. The argument is essentially that of Proposition 5B; we choose 
local coordinates on M' and obtain 

g',yX ( (ft)X aft ) ==g awe 7(Wt)d g,X aft at ay'Yo 

=g 05d ayo ((Wt) at - - 

In terms of the coordinates of Rq the differential of the projection map 
7r: N -> M' has components 7ra 0a7re/aWa. Its covariant differential in terms 
of the metric g" is 

awa0wb rabd7rde (1 < a, b, c < q). 

The map p: N ->Rq defined (as in ?6D) by p,(Q') =Q'-7r(Q') assigns to 
each Q' C N a vector perpendicular to M' (7r (Q') ), and Pa0 + 7rac = Sac, 

Pabe + rabe + r ab0 0. 

For its restriction to M' we obtain 

- bowOWb awb WaOW-b aya ' 

where wa =- aw4/aya. For each a, I8 the right member defines a vector per- 
pendicular to M'; because the w,0 span the tangent space to M' in which 
they lie, we obtain the 

LEMMA. For any vectors u, v C M'(Q') the vector whose components 
are pabceUaVb is perpendicular to MI(Q'). 

LEMMA. For any map Wt: M-> N with image in M' let t be the vector 
with components 

-e = LWte - 7rOa-bWtaWtjbg'j, 

where L - A - a0at is the heat operator on M. Then 4 is tangent to M'. 

Proof. As in Proposition 5B we have 

L (p (Wt)d p,?dL (Wt)ac + waw2b WtaWtjblgl 
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(5) 

podL (Wt) ? - WaaWb Wt1aWt1bgij 

But p (Wt) = 0, whence the left member vanishes. Since the second term in 
the right member is a normal vector, we have 

pCaL (Wt) c= pd a_27rb WtWtJbgij. 

It follows that 

pcdtc = (ped 02WrW pedirabi) WtHaWtjbgij = 0 

for 1 ? d < q. Thus t has normal component 0. 

PROPOSITION. A map f: M11 --M' satisfies (1) if and only if the com- 
position W = w of satisfies 
( 1 ) AWO =c babcWeW,Wbg9j 

in terms of local coordinates on M. 

A deformation ft: M- M' (to < t < t,) satisfies (2) if and only if 
Wt -- w o ft satisfies 

(2) L (Wt) c==n-b"WtaWtJbg'J (to < t < ti). 

Proof. It suffices to establish the equivalence of (2) and (2). For 
that we take any deformation ft and compute 

(7r (Wt) at g )/ gdwy (L (Wt) c + P"abcWtiaWtjbgii)g t,d 

- (L ( Wt) c -ab WtaWtga g cdwMd, 

by the second lemma. If Wt satisfies (2), then T(Wt) (P) - aWt (P)/at is 
perpendicular to M'(ft (P) ), whence by the first lemma ft satisfies (2). 
Conversely, if ft satisfies (2) and we define $ as in the third lemma, then 
our equation shows that $(P) is perpendicular to 1'(ft(P)), whence it 
must be 0. 

(C) The following result is an application of Theorem 6D. In order 
to have a proof avoiding the use of vector-bundle-valued harmonic forms, we 
can start with (5) and substitute (2) to obtain 

L (p (Wt) ) c 
- 7trd ( aidb + pedr' abe) WtiaWtjbgii, 

using the projection relation pdC,7rd 7rdped. It follows that p0 * L(p(Wt))c - 0, 
so that 
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a ' 
IC C(p(W )O= 2 

E (p(Wt)O)2 

Applying Green's identity (as in Theorem 6D) we find that 

2I 
dt ' E(p(Wt)C)2*l= f (grad(Wt)2*1, 

and the conclusion follows: 

THEOREM. Let Wt: M- >N be a smooth deformation satisfying (2) for 
to ? t < t1. If Wt0 maps M into M', then so does every Wt(t0 ? t < t,). 

8. Derivative bounds for the elliptic case. 

(A) Under suitable curvature and metric restrictions on MI we shall 
establish derivative estimates important for the solution of (1) and (2), or 
equivalently, of (1) and (2). Our starting point is the following result, 
essentially established in ? 3C. 

LEMMA. Any solution ft of (2) has energy density e(ft) satisfying 

(6)~~A 'ft ) ae (ft) I p (f t) 12 - Rlap6faf ti ftjEft,6gikggt 
1 

(6) at 
- 9'ditjRj 

where /3(ft) is the fundamental form of ft and where R'o,iys and RiJ are the 
components of the Riemannian curvature tensor on M' and of the contra- 
variant Ricci tensor on M, respectively. 

(B) For the elliptic systems (1), (i) we invoke Green's formula for 
the operator A on M. Let r(P, Q) denote the geodesic distance between 
points P, Q of MI. Since M is compact (without boundary), there is a constant 
a> 0 such that r2(P, Q) is of class Co for r2(P, Q) <3a. Let +(A) be a 
monotone C - function in 0 <A< oo with p (A) == A in 0 ? A ? a and p (x) 
= constant for A> 2a. Set p2 (p, Q ) = p (r2 (p, Q)); this is positive for 
P # Q and is of class C-. The function 

F (P, Q) K p (P, Q)-n+2 (=2 log p (P, Q) for n == 2) 

is a parametrix for the operator A, where i/K iS (n -2) times the surface of 
the unit (n -1) -sphere. Green's formula is 

(7 u(P =- [u(Q -A-P(P Q F(P Q A(Q]*Q 



142 JAMES EELLS, JR. AND J. H. SAMPSON. 

this holding for any function u (P) of class C2 on M (see Giraud [12], Bidal- 
de Rham [1]). 

Consider now a solution of (1), and suppose that the Riemannian curva- 
ture of M' is non-positive. From (6), in which it is merely necessary to 

suppress the term Oe(ft))/t, there follows at once 

e (f) > -Re (f), 

where R is a constant (independent of the solution in question). Since 
F (P, Q) ? 0 (a and q being suitably chosen for n = 2), (7) applied to e (f) 

yields 

e (f ) (P) _ ,( [AQF(P~, Q) + R * F(P, Q) Ie (f ) (Q) *1Q. 

By using the osculating Euclidean metric at a point of M one can show that 

AQF (P, Q) I _ const. X p (P, Q) -n2. Hence for some constant A, 

e (f ) (P) ?A F (P, Q) e (f ) (Q)*1Q. 

Iterating this c - 1 times we obtain 

e(f) (P) Ak k(P, Q)e(f) (Q)*1Q. 

where the Fk are defined inductively by F1 =F and 

-k(P,Q) - A Fk-l(P,Z) F(Z,Q)*1z (I> 1). 

If I > n/2, then Fk is bounded (see Giraud [12]), and we have the following 

THEOREM. If M' has non-positive Riemannian curvature, then there is 

a constant C such that e (f ) < C E (f ) for any harmonic mapping f: M -* M'. 

(C) Green's function G (P, Q) for Av can be written in the form 

G(P,Q) = F(P,Q) +F'(P,Q), where F' is of class Coo for P#Q and has 

a singularity of order lower than that of F for P = Q (Giraud [12], Bidal- 

de Rham [1]). G(P, Q) is symmetric and of class Coo for P # Q and satisfies 

APG(P, Q) AQG(P, Q) =V1, where V is the volume of M. Green's 
formula (7), with G in place of F, is 

(8) u (P) V J u(Q)*1-f G (PF, Q) l u (Q) *1Q. 

Now let U be a compact coordinate neighborhood on M, U its interior, 

and let P E U have coordinates (xl, * ,x). Write 
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G,(P,Q) =-G(P,Q)/0x& ; G*,(P,Q) =a2G(P,Q)/0x%Oxj 

Using normal coordinates on M one can show that there is a constant C such 
that 

I Gi(P, Q)C C - r(P, Q)-n+1 

(9) i Gj (P, Q) j< C * r(P, Q) @ 
I G(P,Z) - G (Q,Z) j C? r(P, Q)a[r(P,Z) +l- + r(Q,Z) -n+'l-] 

for P, Q E U, a: being an arbitrary but fixed number with 0 < a < 1. 

If u is a solution of Au = f on M for some function f, then from (8) 
we have (for PFE U) 

ui(P)== Gj(PnZ)-f (Z)8*1z 
Hence 

I ui(P) - ui(Q) _ Gj(P, Z)- Gj(Qn Z) f* f(Z) I *z 

for P, Q E U. Using the last inequality of (9) we obtain 

(10) I (P)- ui(Q)* r(P, Q) C' sup I f 

where 

C' C * sup f [r(P, Z)-f1- + r (Q, Z) *l0]*1z. 

Suppose now that f is ll6lder-continuous with exponent a and llilder modulus 
Ma (ft). I. e., Mu (f) =sup I f (P) -f (Q) r (P, Q) t. It is a classical result 

M 

of potential theory that the function 

G, (P, Z) * [f (Po) -f (Z) 1lz (P, Po E U) 

has a derivative with respect to xi at the point PO, given by 

Gjj (Po, Z) * [f (Po) - f(Z)] 1s' 

and by (9), this integral is majorized by 

CMa(f) J. r(Pon Z)-n1+ z .Z. 

On the other hand, the function 4 (P) 4' G (P, Z) *lIz is a constant, since 

AO =0 and so 4' G (P,Z)- f(Po)lz =0. We conclude that 
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(11) I 02u/0j0xj I _ C.. M (f) in U. 

(This is an interior estimate of the type given by llopf and Schauder (llopf 
[14], Schauder [26], Miranda [18]), but differs from them in that the 
magnitude of u is not involved.) 

(D) We apply these results to a harmonic mapping f: M -- M'. Denote 
the right member of (1) by Fc: 

Fe = 7rabcW*Wjbgij. 

At this point we impose some boundedness conditions on the embedding of lM' 
in Rq, conditions which are automatically fulfilled if M' is compact. Namely 
we assume that 

7rab| Co? , 0rabo/OWd I Co on M, 
(12) A,ds02 < ds'2 ? A2ds02, 

where CO, A1, A2 denote positive constants and where ds02 denotes the line 
element induced on M' by the usual metric in Rq. 

Again let U be the interior of a compact coordinate neighborhood on M, 
and let P, Q be points of U. From (12) and an elementary calculation 
involving the Schwarz inequality for quadratic forms and the equality 
e (f ) P = g abW aWjbg'j, 

I Fp (P) - F20(Q) 
| r(P, Q) t 

(13) _<B [e + eL sup I W*a(P)-W*a(Q) I r(P, Q) -], 
a, 

where B is a constant and e=(f) =sup{e(f) (P): PE M}. From (1) and 

(10), 

|W a(P) -W2a(Q) r r(P, Q)~? -c< C' sup I Fa | 
M 

and plainly j j ? const. X e, in virtue of (12). From the compactness 
of M there follows the estimate 

(14) M.(Fc) < B'(e + e2) 

for the ll6lder-modulus of FC, B' denoting a constant. Referring to (11), 
we have the 

THEOREM. Suppose that M' satisfies the embedding conditions (12). 
Let U (xl,. * ,xn) be the interior of a compact coordinate neighborhood on 
M. Then there is a constant C such that 

a02Wa/OxiOxi?Cc( e(f) ?e(f) 3) in U, (1 -a_q), 



HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS. 145 

for any harmnonic mapping f: M -M', where e (f ) =sup{e (f ) (P): P E M}. 

Remark. We point out that second derivative estimates can be obtained 
from linear theory in another way. Namely, if we write our equation (i) 
in the form 

AWC + Ab jWjb 0, where Abci -VabcWiag", 

then we have a linear system with bounded coefficients (in compact coordinate 
neighborhoods), by Theorem 8B. A ll6lder-modulus for the Wjc will then 
give us a Hll6der-modulus for the coefficients of the linear system, and we can 
apply Theorem 1 of Douglis and Nirenberg [6] to deduce second derivative 
estimates and analogous estimates on all higher derivatives as well. The second 
derivative estimates we obtain here are somewhat sharper, in certain respects; 
i. e., they do not involve a priori estimates on the magnitudes of the solu- 
tions We. 

9. Bounds for the parabolic case. 

(A) We now embark upon some analogous computations for the operator 
L -- A/8t. The function 

(15) K (P, Q, t) - (2 V\,r) -nt-nI2 exp ( p2 (p, Q)/4t) 

is a parametrix for the operator L (p2 as in the preceding paragraph). Put 

N, (P, Q, t) - LpK (P, Q, t) = (Ap-0/t)K(P, Q, t) 
and 

Nk (P,~ Q, t) jodr Nk-1 (P., Z, t -T) N (Z, Q, 7-) *z (k > I). 

It is well known that there exists a fundamental solution H for the heat 
operator L on any compact Riemannian manifold M, which can be expressed 
in the form 

(16) H(P,Q~,t)=EK(P,Q, t) + Jqd, KE(P,Z, t-r N f(Z, Q.7 r) *:Lz 

where 
00 

N(P~,Q, t) =- ,Nk (P~,Q,t). 
k=1 

(See Milgram-IRosenbloom [17], Pogorzelski [24]). The function H(P, Q, t) 
is symmetric in P, Q and is positive. It is of class C0 except for P = Q, t - 0; 

10 
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and it satisfies LpH (P, Q, t) = LQH (P, Q, t) = 0. Its spectral decomposition 
is 

oo 

H (P~, Q~, t) - V-1 + E exp (- Xvt) -ov(P) qv (Q), 
V=1 

where the A4 are the non-zero eigenvalues of Av, the q,, (P) being the corres- 
ponding orthonormal eigenfunctions. 

Green's formula (analogous to 8) is 

u (P~ t) -j dr H(P, Q, t 7T) Lu (Q, T) *1Q 
(17) to.M 

+ sH (P, Q,t-to) *tl(Q, to) *iQ (to <t <tl ), 

this holding for any function u (P, t) on M which is of class C2 in P and C0 
in t for toC t < tl. 

(B) Suppose now that we have a solution ft: M -> M' of (2) defined in 
0 < t < t1, and let M' have non-positive Riemannian curvature. According 
to Lemma 8A we have then Le (ft) ? - Re (ft), R being a positive constant 
(independent of the solution in question). Since H > 0, there follows from 
(17) 

Ct' 
(18) e(ft) (P) ?1 R dT H T(P, Q, t-T) * e(fr) (Q)*1Q + eo(ft) (P) 

0to M 
where 

(19) eo(tt) (P) H4 H(P, Q, t-to)e(ft) (Q)*1Q 

and 0 < to < t < t1. Iterating (18) k -1 times we obtain 

e (ft) (P) ?C RJI dTf Hk (P, Q, t-T) e (fT) (Q) *1Q 

(20) 
k-l t 

+ eo (ft) (P) + E Rv dT Hv (P, Q, t-T) eO (fT) (Q) *IQ, 
i=1 t0 M 

where the Hk are defined by H1 = H and 

Hk (P, Qn t) jsdT Hk1 (,~ Z, t -T) H (Z, Qn T) *1 ( > 1) 

From the integral representation it can be shown (see Pogorzelski [24] ) that 

H(P, Q, t) ? const. X t-ar(P, Q)-n+2ca (0? t ? 1). 
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where a is an arbitrary but fixed positive number less than 1. Therefore Hk 
is bounded for k > n/2 (0? t? 1,Ik > 1). 

Consider now our solution ft for t > 1. Putting t -1 for to in (20) 
we have 

e (ft) (P) 
? const. dT e (fT) (Q) *1 

(21) k-1 1 

+ sup eo(fr) (P) *[+ RJ dT J H (P, Q, T)*lQ]. 
M p=1 0 M 

For the case at hand, eo is given from (19) by 

eo (ft) (P) Jr H (P, Q, 1) e (ft-1) (Q)1Q. 

Since H (P, Q, 1) is bounded, we have eo (ft) (P) ? const.J' e(ft-i) (Q)*1Q. 

Recalling that f e(ft) (Q) is a decreasing function, we obtain finally from 

(21 ) 

e (ft) (P) -< const. e (ft-1) (Q ) 81(t > 1 ) 

Any smaller value can be put in for t -1 on the right, for example zero if 
e (ft) (P) is continuous at t 0. 

Making that assumption, we now obtain an estimate for the range 
0 ? t ? 1. In (20) we now put to = 0, getting 

(22) e(ft) (P) ? const. [fdT e(fr) (Q)*1 + jo(ft)], 

where now we have 

eo (ft) (P) H H(P, Q, t) e(fo) (Q) 1Q, 

and where eo (ft) =sup{eo (ft) (P): PFE M}; we define e(ft) similarly. But 

this function is precisely the solution of Leo = 0 that reduces at t = 0 to 
e (fo) (Q). From general principles it follows that eo (ft) (P) ? e(fo) for 
t > O, and so (22) gives at once 

e(ft)(P) ?const.e(fo) (O?t 1). 

We have then the 

THEOREM. Let ft: M -- M' be a family of mappings for 0 ? t < t1 

satisfying (2) for 0 < t < t, and such that the energy density e(ft) (P) is 



148 JAMES EELLS, JR. AND J. H. SAMPSON. 

continuous at t - 0. Suppose that M' has non-positive Riiemannian curvature. 
Then 

e(ft) (P) ? C e (fo) (Q)*1 for 1 t < ti 
and 

e(ft) (P) ? C sup{e(fo) (Q): Q C M} for O t< 1, 

C denoting a constant which does not depend on the particular solution ft 
of (5). 

Remark. Under certain circumstances much sharper estimates can be 
obtained. With the hypotheses of the preceding theorem, assume further that 
the Ricci tensor of M is positive definite at every point. From (6) it is clear 
that ae (ft)/0t ?-Ae (ft) at any maximum point of e (ft) on M, A denoting 
a positive constant. It follows easily that e (ft) (P) _ const. e-At. 

(C) Now let (xi, *, xn) be the coordinates of P in the interior U 
of a compact coordinate neighborhood U on M. And suppose that our solution 
of (2) and the first-order space derivatives are continuous at t 0. Then 
from (2), (17) we have 

Wto (P) = we (p, t) 

(23) = X dTA H (P, Q, t -T) * F (Q., -r) 1Q + Woc (Pp t) 

=c(P,t) +Woo(P,t), 
where 

WOc(P, t) =f (P, Q, t)WC(Q, O)*1Q, 

the FC(P, t) being the functions on the right of (2). 

The first integral Vc (P, t) has ll6lder continuous first-order space deriva- 
tives (Pogorzelski [23], Theorem 5): 

IT7Vc (p, t) - TVc ((p', t') I _ const. sup IFc F [r (P, P') a + I t t' | 0/2], 

a being an arbitrary positive number less than 1, the points P and P' both in 
U. If we continue with the assumption (12), we shall have i Fj i ? const. X e. 
The integral Woc (P, t) can be differentiated under the integral sign (for 
t > 0) and the derivatives tend exponentially to zero, as is quickly seen from 
the spectral formula for H. Hence, if the hypotheses of Theorem 9B hold, 
it follows that the functions Wc (P, t) have first-order space derivatives which 
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are idi1der-continuous in P, t, uniformly so for t ? E > 0: 

Wic (,P t) - WTc (PF, t') I 
? const. [e (fo) + sup I WC (Q, 0) [r (P, P') a + I t-t' 2]. 

M 

(The constant depends upon E because of the behavior of Wo0 (P, t) for 
small t.) 

Referring to (13) we see that 

(24) F 
FC(Fp t) Fc(Q, t) r(P, Q)-a 

_const. e(fo) [1 + e(fo)l + sup I Wc(Q 0) I] 
M 

for t?E>0. 

Now from (17) it is clear that dTf H(P,Q,t-T)1>(T)*1Q is a 

function of t alone for arbitrary ip. Hence for the second derivatives 

Vi jc (P, t) = a2Vc (p, t) /aXjaX' we can write 

V >(P t) = axx' dTr f (PF Q, t-T) [F (Pop T) -Fe(Q, T)]*1Q. 

From (Pogorzelski [24], Th. 3) this is 

VTJC (PF t)=f drfH HF,j (P, Q, t T) [c (Po 7) -Fc (Q, 7) ] *1Q 

t t-e 

:+ + I1 + I2, 

where we assume t? 2E > 0. The integral I, is improper but uniformly 
convergent. Now I Hj (P, Q, t) I < const. X tIer (P, Q) -n-2+20 (arbitrary pl, 
0 </3 < 1). Using (24) and putting F = Po in I (we assume (P, Po E U), 
we obtain an absolutely convergent integral if a, 3 are chosen properly, and 

there results 

I I < const. e(fo) [1 + sup I Wc(Q, 0) I + (fo)1] if t ? 2E, 
M 

since then T in I, will be ? e. For I2 we have j H(Pp Q, t) I < const. e<Vt for 
some positive y/ and for t ? E > 0. Hence 

/ t-e 

I,2 I < const. sup Fc e-Y(trT) d- 

< const. sup Fj < const. e(fo), 
using Theorem 9B. 
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THEOREM. Suppose that M' satisfies the imbedding conditions (12). 
Let ft satisfy the conditions of Theorem 9B, and let (xl, * *,xn) be the 
coordinates of a point P in the interior of a compact coordinate neighborhood 
U on M. Given E> 0, there is a constant C, independent of the solution ft 
of (2), such that 

| XWc(Pt)| < C e (fo) [1+ e (fo)' + sup{ I Wc (Q 0)) Q C M} 

for t > , where e(fo) =sup{e(fo) (P): P C M}. 

Remark. Since H (P, Q, t) *1Q is a constant, the functions WC (Q, 0) 

appearing in the foregoing estimates can be altered by arbitrary additive 
constants without affecting the validity of the estimates. For example, one 
could replace WC (Q, 0) by the function minus its average value, say WC, with 
the result that the term sup I W' (Q, 0) I in Theorem 9C would be replaced 
by sup IWc(Q, 0)-We. 

10. Successive approximations. 

(A) Let W(P, t) and W'(P, t) be two solutions of (2) in 0 ? t < t1, 
both continuous along with their first order space derivatives at t 0; and 
suppose that W (P, 0) = W'(P, 0) C M' for all P C 3i. From (17) with to p, 

we ( p, t)-Wec ( p, t) 

-X dT H(P., Qp t -T) [YO(Qp T) - 
FCO(Qp T)]lQp 

where opo F'c are the respective right members of (2). Set 

; (t) ==sup I WC (P, t) -We (P, t) 
M,c 

+ [sup ( -W$`c) ( Wjc 
- 

wjc ) gi]. 
M,c 

From the constitution of FC and F'c it is easily verified (by an argument 
similar to that for (13)), account taken of (12), that 

F -Fpoc K< const.X(t) * (t) 
where 

U(t) = (ft) + (f't) + e (ft) + (f't) . 

For 0 ? t ? 1 we can write H (P, Q, t) < const. t-r(P, Q)-n+20a and 

I OH(Pp Q, t)/axi I <const. t-r(P. Q)-n-1+2a (0 < a < 1), 
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where in the latter the constant depends upon the particular choice of local 
coordinates xt, of course. Now let A denote an upper bound for the quantity 
U (t) in some fixed time interval 0 ? t ? t2. From the integral expression 
above there follows easily, for < a < 1, 

t> 

X(t) < const. X A (t-r) XX(r)dr, 

and we conclude that X (t) vanishes for small t. Hence the 

THEOREM. Let ft and ft be two solutions of (2), both continuous along 
with their first-order space derivatives at t = 0. If fo = f',, then the two 
solutions coincide for all (relevant) t > 0. 

COROLLARY. Any solution of (2) enjoys the semi-group property along 
the trajectory of each point Pc MJI. That is, if we write ft(P) = Tt(f ), then 

Tt+,r(fo) Tt(fr) -= Tt (Tr(fo) ) 

(B) For the solution of (2) we now turn to the svstem of non-linear 
integro-differential equations (23) associated with (2). 

Let f: 11M -- M' be a mapping of class C1, given by global mapping func- 
tions W= (W1, ,W2). For v?0 define W7- (WV1y * ) by 

(25) WO?C(P, t) f (P, Q, t)WC(Q)*1Q 

and 
WV,c (P, t) 

(26) t J Hi (P, Q, t- T) Fv-1,0 (Q, T) *1Q + WioC (P t) 

where 

Fv,c ( P, t ) =7rabc (WTV) * Wiv aWjvpbgtii 

the functions 7rabo as in (2). Set 

Yv sup [ E Wit0WjPV0ogiJ]A. 
M 0=1 

From (26) 

Wv, C(P, t) 

(27) _=f dTr H(P, Q, t ) Fv 1lC(Q, )*1Q + WO?c(P, t), 
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where the subscript i denotes differentiation with respect to a system of local 
coordinates xi at P. We recall the estimate 

Hi (Pp Qp t) < At-t~r(P. Q) -n-1+201 (0_ t_<1;1- <a<l)p 

A denoting a constant which depends in general on the local coordinate 
system. Now let B denote an upper bound for the quantities jrab" I in some 
compact neighborhood U' of the image f (M) in the tubular neighborhood 
N C R . If Wv-1 C U' for 0 ? t ? ,E then from (27) we conclude that 

t 
y < BC (t_ -7)-0y2v- (T) dT + y(t) ( O_ t< , 

where C is a constant which does not depend upon the given mapping f. Put 

v supy^, O?t_E. 
Then 

gv < YEI-019V_2 + pop K f BCI (1 - ). 

If KE17019,, < ? and KE1-70 ? , then 

KE1-0iv ? (KE1-a1V_ )2 + KE'-a ? 

From a transparent induction it follows that, for sufficiently small positive E, 

we shall have 

Wv(P,t) C U' and 7 < E101_ for 0Ot<E, v=0,l,2, 

In particular, the defining equation (26) makes sense for all v, provided 
0 < t < e. 

Now put 

Xv (t) =sup I WV,c (P, t) _WV-1P (P t)l 
M,a 

+ [sup (Wiv,c - WtV-'0) (TWjV,c - WjVlC ) gii] 
M,a 

From the definition above, 

FV,C FV-,c =7rab0 ( WV-1) ( W.av4Wjv,b - WTv-laWjv-9lb ) gij 

+ [7rabo (Wv) - ab (Wv-) ] Wivbg 

We can suppose that the constant B occurring above is also an upper bound 
for the quantities I 07rab oIWd I in the neighborhood U'. The preceding formula 
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then gives us 

I Fpvc -p v-1,c I < CGBXv ('v + 'v-i + 9v% 

C' a constant independent of the given mapping f. Hence, 

Il 10 - Fv-l,c I < C'BXv [1/KE1-a + 1/4K2E2-2a] = CG"X (t). 

From (26), (27) and the estimates cited for H(P, Q, t) and H,(P, Q, t) we 
obtain 

t 
xv+l (t) < DC" X:v(r) (t T,) -ad-r (O t C ) 

where D is a new constant. Thus if 

X(t) sup X" (Tr) (? < T t), 
then 

iv(t tl7t a 
10( (v = 1 , 2, ) 

and so the series 

00 co 

converges for all sufficiently small t. This shows that our successive approxi- 
mations WV and their first-order space derivatives converge uniformly on 
M (for small t). Hence, the Fv c also converge. Set Wc lim WVqo and 
FC= lim FVqc (v ---oo). Thus WC (P, t) has continuous first-order space 
derivatives Wq' (for sufficiently small t, of course), and Wv - Wt' (v -o o), 
so that 

FC (P, t) = 7rabc (W) WiaWjbg'i. 

From (26) there follows at once 

(28 ) We (p~ t) =-S dr JWH (P, Q, t -T-) ' F (Q, Tr) *IQ + W so (P, t) . 

We conclude that the functions WC have Hllder-continuous first order space 
derivatives-uniformly Hll1der-continuous for any small closed t-interval 
not containing zero. Therefore the functions FC (P, t) are Hl6der-continuous 
with respect to the space variable, and so the functions WC of (28) satisfy 
equation (2) for all positive t in the interval in which the successive approxi- 
mations converge (see Pogorzelski [24]). The WC are moreover visibly con- 
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tinuous with their first order space derivatives at t = 0, and WC(P, 0) = WC(P). 
From Theorem 7C we recall that the point W(P, t) = (Wly . , Wq) must 
lie on the manifold M' for all t in the interval of convergence. 

THEOREM. Let MO" be a compact subset of M'. Then, for any con- 
tinuously differentiable mapping f: Ml -- M' such that f (M) lies in M", 
there is a positive constant t, depending only on M" and the energy density 
e(f) such that (2) has a solution ft for 0 < t ? t1 which is continuous at 
t =0, along with its first order space derivatives, and which coincides with 
f att t=0. 

It only remains for us to inquire into the length of the t-interval for 
which the successive approximations converge. First of all, the upper bound 
B for I lrabc I and I 7rabc/0wd I figuring in the foregoing proof can be taken 
once for all to be valid in some neighborhood U" of M". Therefore the 
constant K can be fixed, and a as well, of course. The e must satisfy 
KE1-a70_ ? , and to see what this entails we must look briefly into . 

Consider then a solution u of the heat equation on M, as a map 
u: M->R. We suppose that u and its first order space derivatives are 
continuous at t= 0. The argument of Theorem 9B holds in this situation. 
If we put p- giujuj, then p(P,t) <Csup{p(Q,0): QCM}, where C is a 
constant depending only on M. Applying this to the functions W0,C, we 
conclude that there is a constant C, such that 9iO < Cl e(f). Thus E depends 
only on MI" and the magnitude of e (f), and the same is true of the quantity 
C" involved in the estimates of the X,. The assertion of the theorem then 
follows at once from those estimates. 

In ? 2B we described the harmonic character of C2 maps in terms of 
their tension fields. For C' maps we have the 

COROLLARY. Let f: M -> M' be a continuously differentiable mapping 
for which the energy is a minimum with respect to small variations. Then 
f is harmonic. 

For let ft be the corresponding solution of (2) guaranteed by the pre- 
ceding theorem. The energy E (ft) is continuous at t 0 and by assumption 
it must be non-decreasing for small t. But E(ft) is always non-increasing, 
so that dW/dt = 0 for small t. Thus (2) reduces to (1). 

(C) THEOREM. Suppose that M' has non-positive Riemannian curva- 
ture, and that it satisfies the embedding restrictions (12). Then for any 
continuously differentiable mapping f: M -> M' there is a unique solution ft 
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of (2), defined for all t> 0 which is continuous along with its first order 
space derivatives at t = 0 and which coincides with f at t- 0. 

Such a solution exists for small t, by Theorem lOB, and it is unique, by 
Theorem IOA. Let t, be the largest number such that a solution of the 
required sort exists for 0 < t < t,, and supposes that t, is finite. From 
Theorem 9B it is clear that the right members of (28) cannot become 
unbounded for 0 < t <t, and consequently the images ft(M) (O < t <t ) 
all lie in a compact subset of M'; we recall that M' is always assumed to be 
complete. On the other hand, Theorem 9B shows that the energy density 
e(ft) remains bounded, and therefore by Theorems IOA and lOB there is a 
fixed positive number -E such that any ft can be continued as a solution of 
(2) into the interval (t, t + ,E). This contradicts the definition of t,. 

(D) If M' is not compact, then solutions of (2) may very well become 
unbounded as t-oo, as in the 

Example. Let M' be the manifold obtained by revolving the graph of a 
positive strictly decreasing smooth function v v (u) around the u-axis; let 
0 denote the revolution angle. For a map f: S' -> M' of a circle S' para- 
metrized by the central angle 0 our heat equation is 

au &2u vIvit fU a _2 vvI (acp\ 

At 002 
+ 

+ (VI)2 Y0 1 + (VI)2 \k00) 

0 02 + 2 v' au 0 
At 002 v as 06 

If f satisfies initial conditions du/00 0, Op =6 when t = 0, then so does the 
solution ft for any subsequent time. If we take v (u) = 1 + e-u, then 
R'1212 -(eu + 1) / (e2u + 1) < 0, and the heat equation reduces to 

au eu + 1 
At e2U + 1 

Thus eu + u-u 2 log ( eu1 + ) t + const.; in particular, u -oo as t -o . 

We note in passing that there are no non-trivial closed geodesics on MI, 
so that there are no harmonic representatives in any non-trivial homotopy 
classes of maps S1 -> M'. 

The following result shows that solutions must remain bounded if M' 
satisfies certain conditions at infinity. 
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THEOREM. Let M' be as in the preceding theorem and suppose further 
that I W rabC(W) O 0 uniformly as I w coo, where I w sup w0 1. Then 

every solution of (2) is bounded. 

Set 

W(t) =sup I Wc(P,t), IT(t) ==inf I Wc(P,t)I, U(t) = (WC)2*1. 
M,c M,c JMa 

In virtue of Theorem 9B, the difference W (t) W(t) is bounded. Hence 
if our solution is unbounded as t - co, then that is true of all three of the 
quantities above. Supposing that to be the case, let us denote by Xk the set 
of all t for which U (t) > k. The Ak are then all non-empty and each Xk must 
contain at least one t - tk at which dU/dt ? 0. Now from (2) we have 

z W"AW"-E WC dWcdt = WcrabcWWg 

Hence by Green's Theorem 

1dU/dt -fM (grad W)21 WC7ra 

For large values of tk we have a plain contradiction, since the right-hand side 
must be negative. 

11. Harmonic mappings. 

(A) We can now apply some of the results established above to prove 
the existence of harmonic mappings, even though we do not know whether 
the solutions of the parabolic system (2) converge in general as t -> oo. 

THEOREM. Let M' have non-positive Riemannian curvature and let 
ft: M->M' be a bounded solution of (2), 0 < t <oo. Then there is a 
sequence tl, t2, t3, * * of t-values such that the mappings ftk converge uni- 
formly, along with their first order space derivatives, to a harmonic mapping f. 

From Theorems 9B and 9C it is clear that the mappings ft and their 
first order space derivatives form equicontinuous families. Hence there exists 
a sequence tl, t2, such that the mappings fk = ftk converge uniformly, with 
their first order space derivatives, to a continuously differentiable mapping f. 
From (2) and (8) we can represent the fk by the formula 

fw(I f (,t1)+dWc Wc(P, tk) = VF1 J We(Q, tk)*I G(P1 Q) [Fc(Q, tk) + dt (Qp tk)I*lQ, 
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where as usual FC stands for the right member of (2). Now fix c and tem- 
porarily put 

uk(P) f G(P, Q) dWt (Q, tk)*1Q. 

The dWc(P,tk)/dt are bounded as k--oo, by Theorems 9B and 9C, and so 
the uk and their first derivatives are bounded. Hence the uk form an equi- 
continuous family, and we can suppose that the sequence t1, t2, * * * is chosen 
so that the uk converge uniformly, say to u. Now let G, denote the v-th 
iterate of the Green's function G. We have 

fG, 
(P, Q)u(Q)*1 limr GvT(P Q)Uk(Q)M m k M 

lim Gv+1(P Q) dWc(Q,tk) 

If v + 1 > n/2, then G,+1 is bounded. But the dWc (P, tk) /dt converge in 
the mean to zero as 7c -- co, by Corollary 6C. Thus 

T Gv(P, Q)u(Q)*1 ? 0, 

and so u 0 because of the positive-definite character of G. Therefore, 
passing to the limit in the equation above, we get for the limit mapping f 
the formula 

wc(P) =v-1 Jwc(Q*1 G (P, Q) Fc(Q)*lQ 

where 
FC (Q) = lim Fc (Q, tk) =7rtab (W)WjWjbgii. 

From this it follows (as in ? lOB) that WC (P) has Hllder-continuous first 
derivatives, and therefore fe is Hllder-continuous. Consequently the Wc (P) 
satisfy (1). 

COROLLARY. Let M' have non-positive Riemannian curvature and let 
f: M->M' be a continuously differentiable mapping. Let ft be the solution 
of (2) whtch reduces to f at t 0. If ft is bounded as t -oo, then f is 
homotopic to a harmonic mapping f' for which E (f') ? E (f). In particular, 
if M' is compact or satisfies the conditions of Theorem lOD, then every 
continuous mapping M - M1' is homotopic to a harmonic mapping. 
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COROLLARY. If M' is compact and has non-positive Riemannian curvature, 
then every homotopy class of mappings M -- M' contains a harmonic mapping 
whose energy is an absolute minimum. 

For in any homotopy class we can choose a minimizing sequence of 
harmonic mappings fl, f2, etc., by the preceding corollary. From Theorems 
8B and 8D it follows that we can select a subsequence (same notation) which 
converges uniformly along with first derivatives to a continuously differen- 
tiable mapping f. Then E(f) limE(fik), and f is harmonic by Corollary 
lOB. 

(B) THEOREM. Let M have non-negative Ricci curvature and let M' 
have non-positive Riemannian curvature. Suppose that M' is compact or 
that it satisfies the conditions of Theorem lOD. Then any continuous map 
f: M-- M' is homotopic to a totally geodesic map. Furthermore, 

1) if there is at least one point of M at which its Ricci curvature is 
positive, then every continuous map from M to M' is null-homotopic; 

2) if the Riemannian curvature of M' is everywhere negative, then every 
continuous map from M to M' is either null-homotopic or is homotopic to a 
map of M onto a closed geodesic of M'. 

This is a combination of Theorem 3C and Corollary IIA. 

COROLLARY. Let M be a compact smooth manifold admitting a Riemann 
structure g' with non-positive Riemannian curvature. Then M does not admit 
any Riemannian structure g with non-negative Ricci curvature unless that 
curvature vanishes everywhere. 

Proof. It suffices (by passing to the two leaved orientable cover if 
necessary) to consider the case that M is orientable. If there were such a 
metric g, then the identity map (M, g) -> (M, g') would be homotopic to a 
totally geodesic map. That map has degree one, and therefore M cannot 
have any point of positive Ricci curvatuie relative to g. 

Remark. A special case of Theorem liB (Part 1) can be obtained 
without the use of harmonic theory. Namely, assume 

1) that M has positive Ricci curvature everywhere; then by a theorem 
of S. Myers [20], the fundamental group r (1M, in) is finite; 



HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS. 159 

2) that M' is any complete Riemannian manifold with non-positive 
Riemannian curvature. Then the homotopy groups ,i (M', m') = 0 for i , 
and sr (M', i') has no elements of finite order. 

It is well known that the homotopy classes of maps of any arcwise con- 
nected space M into M' are in natural 1-1 correspondence with the conjugacy 
classes of homomorphisms 7r-1(M, m) -> 7T1(M', m'). But clearly in the situa- 
tion at hand every such homomorphism is trivial, whence every continuous 
map M -> M' is null homotopic. 
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