
LECTURE - 1 (HOMOGENEOUS POLYNOMIALS AND PROJECTIVE MANIFOLDS)

Recall that one produce submanifolds of CPn using homogeneous polynomials. Indeed, here are
examples of such submanifolds :

(1)
∑

aiXi = 0. This is called a hyperplane. That this is a submanifold is easy to see : If X j , 0,
then we may divide by X j, consider coordinates zi, j =

Xi
X j

and see that since this is a linear
relation, we can solve for one of these in terms of the others in a holomorphic manner.

(2) More generally, if F(X0, . . . ,Xn) = 0 is a homogeneous polynomial such that ∇F , 0 on
the zero locus, then this defines a submanifold of CPn. Indeed, suppose we choose a
coordinate chart where X0 , 0 and assume that ∂F

∂X j
, 0. Defining zi =

Xi
X0

we see that

f (z1, . . . , zn) = F(1, z1, . . . , zn) = 0. Taking derivatives we get ∂ f
∂z j
= ∂F

∂X j
, 0. Therefore, by the

implicit function theorem, we are done. (Suppose j = 0, and that ∂ f
∂zi
= 0 for all other i. This

situation is not possible. (Why ?))
(3) Likewise,

∑
X2

i = 0,
∑

Xi = 0 defines a complex codimension-2 submanifold. (This can be
easily generalised to a bunch of homogeneous polynomials with independent derivatives.)

Now what are polynomials like X0,X2
1+X2

2 etc maps to ? They are surely not holomorphic functions
on CPn. Let’s write them down in local coordinates. Take the degree one polynomial X1. Now
suppose we choose a coordinate chart U0 : X0 , 0. Then zi =

Xi
X0

are local coordinates on U0, i.e., U0 is
homeomorphic to Cn. Now the polynomial X1 = z1X0, i.e., it is “function” z1 : U0 → C. If we choose
another coordinate chart like U j : X j , 0, then X1 = w1X j. Note that w1 and z1 are not the same on
U j ∩U0 but are related by multiplication with w1

z1
. Thus morally speaking, X1 should be thought of

as a map, not to C but to a manifold (which we shall denote as O(1)) defined as ∪iUi×C
On Ui∩U j ,(p,vi)≡(p,gi jv j)

where gi j =
X j

Xi
. These gi j are obviously holomorphic functions from Ui ∩U j to C∗. They also satisfy

gi j = g−1
ji and gi jg jkgkl = 1. This manifold O(1) is known to algebraic geometers as the “Hyperplane

line bundle on CPn”. The gi j are called the “transition functions” of the line bundle.
The manifold O(1) is a curious object. It admits an obvious “projection” map π to CPn such that

π−1(p) is C, i.e., a 1-D complex vector space. So, in a sense, it consists of complex lines, varying
holomorphically, parametrised byCPn. This is an example of a holomorphic line bundle. In general,
a holomorphic line bundle L on a complex manifold X is simply a complex manifold L = ∪αUα×C

(p,vα)≡(p,gαβvβ)
where Uα is a collection of open sets on X such that X = ∪αUα (they are called “trivialising open sets
of L”), gαβ : Uα ∩Uβ → C∗ is a collection of holomorphic functions (called “the transition functions
of L”) satisfying gαβ = g−1

βα and gαβgβγgγα = 1.

Exercise 0.1. Prove that

(1) The holomorphic line bundle L is actually a complex manifold of dimension n + 1.
(2) Also prove that there is a holomorphic projection map π : L → X such that π−1(p) = C, i.e., a 1-D

vector space. These vector spaces are called the “fibres” of the line bundle.
(3) Moreover, prove that around every point p ∈ X, there is an open set U such that π−1(U) is biholo-

morphic to U × C with the map preserving fibres and the biholomorphism being linear on the fibres.
(This is called being “locally trivial”.)
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(4) (Optional) Prove that every complex manifold L that satisfies the second and third points above is
actually biholomorphic to the holomorphic line bundle we defined (with the biholomorphism preserving
fibres and being linear on them).

A holomorphic function s : X→ L such that π ◦ s(p) = p is called a holomorphic section of L. For
instance, X0,X1, . . . ,Xn are holomorphic sections of O(1) over CPn. We say that s : U → C provides
a local trivialisation for L over U if s , 0 anywhere on U, i.e., using s one can show that L restricted
to U is actually isomorphic to the trivial line bundle U × C.

Other than O(1) on CPn, what examples of holomorphic line bundles can we come up with ?
A stupid example is X × C. This is (rightly) called the trivial line bundle over X. Here are some
constructions of new line bundles from two given ones V and W on X with transition functions g
and h.

(1) V∗ is the dual line bundle whose fibres are the duals of Vp and whose transition functions
are g−1

αβ .
(2) V ⊗ W is a line bundle whose fibres are tensor products of the vector spaces and whose

transition functions are the product of the matrices g and h.
(3) Suppose f : N→M is a holomorphic map then f ∗(V) (called the “pullback of V”) is a vector

bundle over N with the same fibres but with transition functions f ∗gαβ = gαβ◦ f . For example,
if i : N ⊂M is a complex submanifold of M, then i∗(V) is called the restriction of V to N. The
transition functions are simply restrictions.

The above definition of O(1) seems too contrived. Here is a more pleasant geometric definition
of the Tautological line bundle O(−1).

Definition 0.2. The total space of the tautological line bundle is a subset of CPn
× Cn+1 consisting

of ([X0 : X1 : . . .], v0, v1, . . . , vn+1) such that ~v = µ~X for some complex number µ. The projection map
is π([X0 : X1 . . .], ~v) = [X0 : X1 . . .]. In other words, on the space of lines through the origin, at every
line, simply choose the 1-D vector space represented by that line. The dual bundle O(1) consists of
linear functionals on each of those lines.

Exercise 0.3. Prove that the tautological line bundle as defined above is indeed the dual of O(1) as defined
earlier.

Why is it denoted as O(1) ? The reason is that homogeneous polynomials of degree 1 are holo-
morphic sections of this bundle. (Indeed, we constructed this bundle so that precisely this happens.)

In fact, something stronger is true : All holomorphic sections ofO(1) correspond to homogeneous
degree-1 polynomials. (This is an example of the slogan of Serre’s GAGA : “Analytic and algebraic
geometry coincide on the projective space.”)

Its proof is as follows :
Homogeneous degree-1 polynomials correspond to holomorphic sections ofO(1) : Indeed, given F(X0,X1, . . .) =∑
aiXi where at least one a j , 0, we have already seen that these correspond to sections of O(1)

(indeed O(1) was defined in a such a way that X1 corresponds to a section. You can easily ver-
ify that

∑
aiXi also canonically defines a section). However, we shall do this in another way,

i.e., by interpreting O(1) as the dual of the tautological line bundle O(−1). A section of O(1)
is supposed to be a linear functional at every point [X0 : X1 : X2 . . .] on the corresponding 1-
D vector space consisting of vectors ~v lying along the line defined by [X0 : X1 . . .]. In other
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words, define 〈sF([X0 : X1 . . .]), ~v〉 =
∑

aivi. This is holomorphic. Indeed, on U0 : X0 , 0 for
instance (the other U j behave similarly), [X0 : X1 . . .] = [1 : z1 : z2 . . .] and ~v = v0(1, z1, z2 . . .),
〈sF(z1, z2, . . .), v0(1, z1, . . .) = v0(a1 + a2z2 + . . .). Thus, locally, 〈sF, ~v〉 behaves linearly in ~v and holo-
morphically in z as per definition.

All holomorphic sections correspond to homogeneous polynomials : Suppose s is a section of O(1). Then
at every point [X0 : X1 : . . .], s([X0 : X1 . . .]) is a linear functional that takes ~v = µ~X and spits out a
complex number. This means that we can talk of a holomorphic function F([X0 : . . . ,Xn], v0, v1 . . .) =
〈s([X0 : X1 . . .]), v〉 such that F([X0 : . . .], λv0, λv1 . . .) = λF([X0 : X1 . . .], ~v). Moreover, since ~v = µ~X,
the previous function is actually simply a holomorphic function F(X0,X1, . . . ,Xn) on Cn+1

− ~0 such
that F(λX0, λX1, . . .) = λF(X0, . . . ,Xn). By Hartog’s theorem this extends to all ofCn+1. Moreover, ∂F

∂Xi
is a homogeneous function of degree 0. Thus it is a constant equal to its value at the origin. Thus F
is linear. �

Exercise 0.4. DefineO(k) as the tensor product ofO(1) with itself k-times. Prove that its holomorphic sections
correspond to degree k homogeneous polynomials.

The bottom line is that there are holomorphic line bundles on CPn (and thus on its submanifolds)
that have lots of holomorphic sections and that the “homogeneous coordinates” X0,X1 . . . on CPn

are secretly sections of a certain line bundle, namely, O(1).
A natural question is “Which compact complex manifolds arise as submanifolds of CPn ? (such

things are called “projective varieties”)” The answer to this question is provided by the Kodaira
embedding theorem. As an application of the Kodaira embedding theorem, it turns out that if you
choose a complex torus at random, then almost surely it will NOT be projective. On the other hand,
all Riemann surfaces (1-D complex manifolds) are projective.
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