LECTURE - 2 ALMOST COMPLEX STRUCTURES, METRICS, ETC

Now that we know what complex manifolds are, an interesting question is "Given a 2 n -real dimensional smooth manifold, is it secretly a complex manifold ?" A much easier question is : "What piece of information on a real vector space allows it to become a complex vector space ?" The answer to this easier question is obtained by knowing how $\sqrt{-1}$ acts on the real vector space V. The properties it should satisfy are:
(1) The action should be \mathbb{R}-linear, and
(2) its square is $-I d$.

We define a almost complex structure J on a real vector space V as a real linear map $J: V \rightarrow V$ such that $J^{2}=-I$. In particular, on $\mathbb{R}^{2 n}$, there is a natural almost complex structure given by $J_{s t d}=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$.

Exercise : Prove that such a V is even (real) dimensional and that there exists a basis so that $J=J_{\text {std }}=$ $\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$.

An almost complex manifold is a smooth manifold equipped with a smoothly varying (means that for any smooth vector field $X, J X$ is a smooth vector field, or alternatively, $J=J_{-j}^{i} d x^{j} \otimes \frac{\partial}{\partial x^{i}}$ in local coordinates where J_{-j}^{i} are smooth functions) almost complex structure $J: T M \rightarrow T M$. Not every manifold can be given an almost complex structure (even if it is even dimensional). A complex manifold has a natural almost complex structure given by $J\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial y^{i}}$ and $J\left(\frac{\partial}{\partial y^{i}}\right)=-\frac{\partial}{\partial x^{i}}$ where $z^{i}=x^{i}+\sqrt{-1} y^{i}$. Why is this well-defined ? If we choose a different set of holomorphic coordinates \tilde{z}, then

$$
\begin{align*}
& J\left(\frac{\partial}{\partial \tilde{x}^{i}}\right)=J\left(\frac{\partial}{\partial x^{j}} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}+\frac{\partial}{\partial y^{j}} \frac{\partial y^{j}}{\partial \tilde{x}^{i}}\right) \tag{0.1}\\
& =\frac{\partial x^{j}}{\partial \tilde{x}^{i}} J\left(\frac{\partial}{\partial x^{j}}\right)+\frac{\partial y^{j}}{\partial \tilde{x}^{i}} J\left(\frac{\partial}{\partial y^{j}}\right) \tag{0.2}\\
& \quad=\frac{\partial x^{j}}{\partial \tilde{x}^{i}} \frac{\partial}{\partial y^{j}}-\frac{\partial y^{j}}{\partial \tilde{x}^{i}} \frac{\partial}{\partial x^{j}} . \tag{0.3}
\end{align*}
$$

At this point, note that $\frac{\partial z^{i}}{\partial \bar{z}}=0$ (the Cauchy-Riemann equations). Substituting these in 0.3 we see that

$$
J\left(\frac{\partial}{\partial \tilde{x}^{i}}\right)=\frac{\partial}{\partial \tilde{y}^{i}}
$$

and likewise. Therefore, J is a well-defined endomorphism of $T M$. Please note that NOT every almost complex manifold arises out of a complex manifold. (It is not easy to give such counterexamples though.)

Note that we can consider the complexification of the tangent bundle $T_{\mathbb{C}} M=T M \otimes \mathbb{C}$ (simply replace each tangent space by its complexification). The a.c.s extends in \mathbb{C}-linear manner to $T_{\mathbb{C}} M$. Now note that $J \frac{\partial}{\partial z^{i}}=\sqrt{-1} \frac{\partial}{\partial z^{i}}$ and $J \frac{\partial}{\partial \bar{z}^{i}}=-\sqrt{-1} \frac{\partial}{\partial \bar{z}^{i}}$ where we recall that $\frac{\partial}{\partial z^{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{i}}-\sqrt{-1} \frac{\partial}{\partial y^{i}}\right)$. In
fact, one can prove that on any a.c. vector space $(V, J), J_{\mathbb{C}}$ has only two eigenspaces $V^{1,0}, V^{0,1}$ with eigenvalues $\pm \sqrt{-1}$.

The map $L:\left(T_{p} M, J\right) \rightarrow\left(T_{p}^{1,0} M, \sqrt{-1}\right)$ given by $\frac{\partial}{\partial x^{i}} \rightarrow \frac{\partial}{\partial z^{i}}$ and $\frac{\partial}{\partial y^{i}} \rightarrow \sqrt{-1} \frac{\partial}{\partial z^{i}}$ is a complex linear isomorphism between the bundles. (It is well-defined because it can be written in a basis independent manner as $v \rightarrow \frac{v-\sqrt{-1} j v}{2}$.) Note that we have a natural almost complex structure on $T^{*} M$ as well : $J^{*} d x^{i}=-d y^{i}, J^{*} d y^{i}=d x^{i}$ (why is it well-defined ?). Likewise, $d z^{i}=d x^{i}+\sqrt{-1} d y^{i}$ is an element of $\left(T^{1,0} M\right)^{*}$ (and likewise for $\overline{d z}$). There is a natural complex linear isomorphism $d x^{i} \rightarrow d z^{i}$, $d y^{i} \rightarrow-\sqrt{-1} d z^{i}$ between $T^{*} M$ and $T^{1,0} M$.

Consider the standard manifold \mathbb{C} and \mathbb{R}^{2}. Both have two other natural structures - standard metrics. How do they play with the almost complex structures? The inner product g (which is also going to be called a metric from now onwards) on \mathbb{R}^{2} is very special in that J preserves it (after all, J is rotation anticlockwise by 90 degrees), i.e., $g(J v, J w)=g(v, w)$. Now there is a Hermitian metric on $T^{1,0} \mathbb{C}$ given by $h\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}\right)=1$, i.e., $h=d z \otimes d \bar{z}$ (just like $g=d x \otimes d x+d y \otimes d y, h$ is a bilinear map from $T^{1,0} \times T^{0,1} \rightarrow \mathbb{C}$ and hence factors uniquely as a linear map from the tensor product and is hence an element of the dual of the tensor product). Writing $d z=d x+\sqrt{-1} d y$, we see that $h=g-\sqrt{-1}(d x \otimes d y-d y \otimes d x)=g-\sqrt{-1} d x \wedge d y$. The real part of h is g and $\sqrt{-1} \operatorname{Im}(h)$ seems to be a 2-form $\omega=\frac{\sqrt{-1}}{2} d z \wedge d \bar{z}$. Note that $\omega\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=g\left(J \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$.

More generally, if M is a complex manifold with a Hermitian metric h on $T^{1,0} M$ (it is a smoothly varying Hermitian inner product), then locally, $h=h_{i j} d z^{i} \otimes d \bar{z}^{j}$ where $h_{i \bar{j}}$ is a smooth Hermitian positive definite matrix. Its real part is $g=\operatorname{Re}\left(h_{i j}\right)\left(d x^{i} \otimes d x^{j}+d y^{i} \otimes d y^{j}\right)+\operatorname{Im}\left(h_{i j}\right)\left(d x^{i} \otimes d y^{j}-d y^{i} \otimes d x^{j}\right)$. It is clear that g is symmetric. It defines a well-defined compatible Riemannian metric on M because it can be written in a basis independent manner as $g(v, w)=\operatorname{Re}(h(L v, L \bar{z}))$ (and this also proves that it is positive-definite). The imaginary part is $-\omega=-\operatorname{Re}\left(h_{i j}\right)\left(d x^{i} \otimes d y^{j}-d y^{i} \otimes d x^{j}\right)+\operatorname{Im}\left(h_{i j}\right)\left(d x^{i} \otimes\right.$ $\left.d x^{j}+d y^{i} \otimes d y^{j}\right)=\sqrt{-1} \frac{h_{i \bar{j}}^{2}}{2} d z^{i} \wedge d \bar{z}^{j}$ is a globally-defined real 2-form because $\omega(v, w)=-\operatorname{Imh}(L v, L \bar{w})$. In fact, as one can see from the local expression, it is a $(1,1)$-form. Conversely, given a compatible Riemannian metric g, we can define $\omega(X, Y)=g(J X, Y)$ and a Hermitian metric h on $T^{1,0}$ by $h(L v, L w)=g(v, w)-\sqrt{-1} \omega(v, w)$.

Now we notice an important fact : A complex manifold is always orientable. To prove this, we simply need to prove that the (real) transition functions have positive Jacobian. The derivative linear $\operatorname{map} D f_{p}$ at a point p is (in the $x, y, \tilde{x}, \tilde{y}$ bases)

$$
\left[D f_{p}\right]=\left(\begin{array}{ll}
\frac{\partial \tilde{x}^{i}}{\partial x^{i}} & \frac{\partial \tilde{x}^{i}}{\partial y^{j}} \tag{0.4}\\
\frac{\partial \tilde{y}^{i}}{\partial x^{i}} & \frac{\partial \tilde{y}^{i}}{\partial y^{j}}
\end{array}\right)(p)
$$

Since we can complex linearly extend $D f_{p}: T_{\mathbb{C}, p M} \rightarrow T_{\mathbb{C}, p} M$ we can choose to express it in the basis $\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial \bar{z}^{i}}$ as

$$
[D f]_{p}=\left(\begin{array}{cc}
\frac{\partial z^{i}}{\partial z^{i}} & 0 \tag{0.5}\\
0 & \frac{\partial \tilde{z}^{i}}{\partial \bar{z} \bar{j}}
\end{array}\right)(p)
$$

whose determinant is positive. In fact, this can be generalised to say that any biholomorphic map between complex manifolds is orientation preserving.

Since compact complex manifolds are orientable in a standard way, we can integrate top forms on them. In particular, given a Riemannian metric g, there is a volume form $\sqrt{\operatorname{det}(g)} d x^{1} \wedge d y^{1} \wedge d x^{2} \wedge$ $d y^{2} \ldots$. We can express this form for a compatible Riemannian metric as $\frac{\omega^{n}}{n!}$. Indeed, it is enough to prove that these two forms coincide at every point in some coordinate system (that can vary from point to point).

Exercise : Show that there is a choice of holomorphic coordinates around a point p so that $h(p)=\sum_{i} d z^{i} \wedge d \bar{z}^{i}$ (and hence $g(p)=\sum_{i} d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}$ and $\omega(p)=\sum_{i} d x^{i} \wedge d y^{i}$.

Using the exercise, one can see that the forms are equal. Given a complex submanifold $S \subset M$, and a Hermitian metric h on M, we have an induced Hermitian metric on $T^{1,0} S$ and hence an induced compatible Riemannian metric, and an induced 2 -form $\omega_{S}=i_{S}^{*} \omega$. The volume of S equals $\int_{S} \frac{\omega^{s}}{5!}$. This is in stark contrast to smooth submanifolds where the volume/area need not be the integral of a globally defined form.

To give more examples, especially on compact manifolds, let us look at a simple comapct manifold : Complex tori. Let $\Lambda \subset \mathbb{C}^{n}=\mathbb{R}^{2 n}$ be a complete lattice, i.e., there is a basis $e_{1}, e_{2}, \ldots, e_{2 n}$ of $\mathbb{R}^{2 n}$ such that every element of Λ is of the form $\sum_{i} n_{i} e_{i}$ where $n_{i} \in \mathbb{Z}$. Define an equivalence relation $z \sim w$ iff $z-w \in \Lambda$.

Exercise : $\frac{\mathbb{C}^{n}}{\Lambda}$ is a compact complex manifold diffeomorphic to $S^{1} \times S^{1} \times \ldots$.
One coordinate chart on this complex torus is z^{1}, \ldots, z^{n} (just coordinates on \mathbb{C}^{n}). The other charts are obtained from this by simply translating by appropriate elements of Λ. Hence $d z^{1}, d z^{2} \ldots$ are globally well-defined holomorphic 1 -forms. Likewise, $\frac{\partial}{\partial z^{i}}$ are globally well-defined holomorphic vector fields (that are everywhere linearly independent). Hence, define a smooth Hermitian metric by $h\left(\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial \bar{z}}=\delta_{i \bar{j}}\right.$, i.e., $h=\sum_{i} d z^{i} \otimes d \bar{z}^{i}$. It is basically the metric induced from the usual one on \mathbb{C}^{n}.

