
LECTURE 7 - THE CALABI CONJECTURE(S)

At this point we note that the Ricci curvature is quite useful in Riemannian geometry. In partic-
ular, we have the Bonnet-Myers theorem : If (M, g) is a complete Riemannian manifold satisfying
Ric ≥ Kg where K > 0 is a constant, then M is compact. As a consequence, the universal cover of M
is also compact and hence the fundamental group is finite. This theorem motivates the following
conjecture due to Calabi in the Kähler case (let’s call this “Calabi’s Ricci conjecture”):

Let (M, ω) be a compact Kähler manifold and η ∈ [c1(M,K∗M)]. Then there exists a unique Kähler
metric ω′ ∈ [ω] such that Ricc(g′) = 2πc1(g′) = η.

Assuming this conjecture to be true (was shown by Yau), if K∗M is a positive line bundle (which
for instance is the case when d < n + 1 for a degree-d hypersurface of CPn), then there exists a Kähler
metric of positive Ricci curvature and hence the fundamental group is finite !
Yau also showed that anything diffeomorphic to CP2 is biholomorphic to it using this version of
Calabi’s conjecture.

A related natural question is the existence of Riemannian metrics g satisfying Ric(g) = λg where
λ is a constant. Such metrics are called Einstein metrics (because in the Lorentzian context, such
metrics represent gravity in a region of space where there is no ordinary matter/energy but can
have dark energy). These metrics are difficult to find and if found, they are typically not unique.
Their study is quite popular in Riemannian geometry. In the Kähler case Einstein metrics are not
only much better behaved but also, their existence leads to algebro-geometric consequences (for
the interested, search for “Bogomolov-Miyaoka-Yau inequality” on google). There is a Calabi Con-
jecture for the existence of Kähler-Einstein metrics too. However, there is a small subtlety here.
Note that if 2πc1(g) = λg, then [c1] has a sign, i.e., either [c1(K∗M)] = [0] or it has a positive or a
negative representative. (Note that this is not a trivial condition. It is not at all clear that the De
Rham cohomology class of a (1, 1)-form has a representative that locally gives a positive-definite or
a negative-definite matrix.)

Calabi’s KE conjecture : Let M be a compact Kähler manifold whose c1(M) = [c1(K∗M)] is either [0]
or has a positive or a negative representative. Then

(1) If [c1(M)] = [0], in every Kähler class [ω] there exists a unique Kähler metric ω′ ∈ [ω] such
that Ric(ω′) = 0.

(2) If [c1(M)] < 0 or [c1(M) > 0, then there exists a unique Kähler metric ω such that Ric(ω) = ω
(if c1 > 0) or Ric(ω) = −ω if c1 < 0.

This conjecture was studied by Aubin and Yau originally. They proved it in the c1 = 0, < 0 cases.
It is unfortunately FALSE in the c1 > 0. A necessary and sufficient condition was discovered (by a
bunch of people including but not limited to Chen, Donaldson, Sun, and Tian) and the mystery was
resolved only in 2012. After that a few more proofs were given (simplifying the original ones) - in
particular - our very own Ved (along with Gabor Szekelyhidi) gave one.
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1. The Poisson ODE and Fourier analysis

Suppose we want to solve the ODE u
′′

= f for a 2π periodic smooth function u where f is a
2π-periodic smooth function, then

u
′

(x) = u
′

(0) +

∫ x

0
f (t)dt(1.1)

u(x) = u(x + 2π) implies that u
′

(x) = u
′

(x + 2π) (in fact they are equivalent if u(0) = u(2π)). Thus∫ 2π
0 f (t)dt = 0. This is a necessary and sufficient (by the periodicity of f ,

∫ x+2π
x f (t)dt =

∫ 2π
0 f (t)dt)

condition. (Smoothness is guaranteed by the fundamental theorem of calculus.)
In other words, there is a unique-upto-a-constant smooth periodic solution of the ODE if and only

if f is smooth, periodic, and satisfies
∫ 2π

0 f (t)dt = 0. Interestingly enough, denoting the vector space
of smooth 2π-periodic functions as C∞, the map T : C∞ → C∞ given by T(u) = u

′′

has kernel precisely
the constants. Moreover, equipping this vector space with the inner product 〈u, v〉 =

∫ 2π
0 uvdx, we

see that T = T∗ and T(u) = f if and only if f is orthogonal to ker(T∗) = ker(T). This is very similar to
finite-dimensional linear algebra. Moreover, by the fundamental theorem of calculus, if f is k-times
continuously differentiable (will be denoted as Ck from now on), then u is Ck+2.

The above mentioned observations are not coincidences. Later on, we will see that many PDE
(the so-called elliptic PDE) satisfy similar properties. However, to prove such things, we cannot rely
on a direct formula for the solution unlike the case of ODE. So we need a more abstract, theoretical
method.

Thinking naively (like an engineer or a physicist) we write the Fourier series u =

∞∑
k=−∞

û(k)eikx

where û(k) = 1
2π

∫ 2π

0
u(x)e−ikxdx and likewise for f . Then we see that

û(k)k2 = − f̂ (k)(1.2)

In other words, there is a (formal) solution if and only if f̂ (0) = 0 = 1
2π

∫ 2π
0 f (x)dx. In this case,

û(0) is a free parameter and hence the solution is unique upto a constant. Moreover, since as sharp
changes in music (think of opera music) correspond to very shrill sounds, if the high-frequency
Fourier components are “small”, then the function is very “smooth” (melodious notes are not too

shrill). Since û(k) =
f̂ (k)
k2 , u behaves more smoothly than f does. So if f is a smooth function, we

expect u to be so as well.
To make things rigorous, firstly, notice that the Fourier coefficients make sense for any integrable

function. The convergence of Fourier series is a subtle phenomenon though. For example, there
exist continuous functions whose Fourier series do not convergence pointwise at some points. 1

Nonetheless, we have the following useful results.

(1) Riesz-Fischer : A measurable function on [0, 2π] is in L2 if and only if its Fourier series
converges in the L2 norm to it. Moreover, if ak is in l2, then

∑
akeikx converges in L2.

(2) Parseval-Plancherel : The Fourier series transform is an isometric isomorphism between
L2([0, 2π]) and l2.

1Already this is beginning to hint that expecting results like “If f is Ck, then u is Ck+2” is a bad idea from the Fourier-
analytic point of view. In fact for PDE, this expectation is false.
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(3) Let C0,α (0 < α < 1) consist of all Hölder continuous 2π-periodic functions g, i.e., periodic
functions g such that |g(x) − g(y)| ≤ C|x − y|α for all x, y. Note that if f is in C1, then f is
Hölder continuous.
Theorem : If f ∈ C0,α then | f̂ (k)| ≤ K

|k|α ∀ |k| ≥ 1.

Proof.

2π
̂f (x + h)(k) − f̂ (k)

hα
=

∫ 2π

0

f (x + h) − f (x)
hα

e−ikxdx

⇒ |

̂f (x + h)(k) − f̂ (k)
hα

| ≤ C(1.3)

Now

|

∫ 2π

0

f (x + h) − f (x)
hα

e−ikxdx| = |
∫ 2π+h

h

f (y)
hα

e−ik(y−h)
−

∫ 2π

0

f (x)
hα

e−ikxdx|

= | −

∫ h

0

f (y)
hα

e−ik(y−h)dy +

∫ 2π+h

2π

f (y)
hα

e−ik(y−h)dy +
1
hα

∫ 2π

0
e−ikx f (x)(eikh

− 1)dx|

= |
1
hα

∫ 2π

0
e−ikx f (x)(eikh

− 1)dx| = | f̂ (k)|
|eikh
− 1|

hα
(1.4)

Take h = 1
k . Using 1.3 and 1.4 we see that | f̂ (k)| ≤ K

kα .
As for uniform convergence, �

(4) Theorem : If f ∈ C0,α, the Fourier series converges uniformly to f .
(5) Theorem : If f ∈ C1 then f̂ ′ = ik f̂ (k). This holds for higher derivatives too.

Proof.

f̂ ′ =
1

2π

∫ 2π

0
f
′

(x)e−ikxdx = −
1

2π

∫ 2π

0
f (x)(e−ikx)

′

dx =
1

2π

∫ 2π

0
ik f (x)e−ikxdx = ik f̂ (k)(1.5)

�

(6) Theorem : If f is smooth, then the Fourier coefficients are rapidly decaying (decay faster
than any polynomial). Also the Fourier series of f and its derivatives converge uniformly.
Conversely, if ak are rapidly decaying, then they are the Fourier coefficients of a smooth
function (with convergence being uniform).

Proof. If f is smooth, then ˆf (l)(k) = (ik)l f̂ (k). Since ˆf (l)(k) is bounded, f̂ (k) is rapidly decaying.
By one of the earlier theorems, the convergence is uniform.

If |ak| ≤ Cl|k|−l, then by the Weierstrass M-test (choosing l > 1), we see that
∑

akeikx converges
uniformly to a continuous function u. The same argument also shows that

∑
(ik)lakeikx

converges uniformly to ul. It is easy to see (fundamental theorem of calculus and interchange
of summation and integration) that ul = u(l). �
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