
LECTURES 5 AND 6

1. Lecture 5 (First Chern form, Kähler connection, and curvature)

Suppose h̃ is another Hermitian metric. Note that h̃α
hα

=
h̃β
hβ

. Hence h̃ = he−φ where φ is some

smooth globally defined function. Note that c1(h̃) = c1(h) +
√
−1

2π ∂∂̄φ. In other words, [c1(h)] (the De
Rham cohomology class) is independent of the metric chosen !! This topological quantity is called
the first Chern class of the line bundle L.

It seems that the first Chern form almost gives us a Kähler form except for the point that it may
not be positive-definite. We define the following : A holomorphic line bundle is said to positive is
c1(L)(h) is positive for some Hermitian metric h (likewise, negative). A (1, 1) De Rham cohomology
class [ω] is said to be positive if there is a Kähler form in it, i.e., there is a Kähler form ω′ such that
ω′ = ω + dη.

Exercise : Using the ∂∂̄ lemma, show that if [ω] = [c1(L)] then there is a smooth Hermitian metric h so
that c1(h) = ω, i.e., every form in the first Chern class can be realised using a Hermitian metric.

By the way,

Theorem 1.1 (Kodaira’s embedding theorem). A compact complex manifold can be holomorphically
embedded as a submanifold in CPn iff it has a positive holomorphic line bundle L.

The Fubini-Study metric (up to a factor) as we defined it is the first Chern form of O(1) equipped
with a metric. Before we look at that, here are a couple of points :

(1) Recall that if L is a holomorphic bundle, then there is a dual bundle L∗. It is defined set
theoretically as∪pL∗p and the topology and complex structure are given by local trivialisations,
i.e., if sα are local holomorphic bases for L, then s∗α defined as s∗α(sα) = 1 are local holomorphic
bases of L∗. (So the transition functions are g̃αβ = 1/gαβ. (More generally, if E is a holomorphic
(or even smooth for that matter) vector bundle, then E∗ = ∪pE∗p set theoretically. The topology
and complex structure are given as : If eα,i are local holomorphic bases for E then e∗iα(eα, j) = δi

j

are holomorphic local bases of E∗. So the transition functions are ([gαβ]−1)T.)
(2) If h is a Hermitian metric on L, then there is a natural Hermitian metric h∗ on L∗ defined

as h∗α = 1/hα. Indeed, h∗α = h∗β|g̃αβ|
2 and hence h∗ is a well-defined metric. Therefore,

c1(h∗,L∗) = −c1(h,L).

There is an obvious Hermitian metric on O(−1) ⊂ CPn
× Cn+1 coming from the Euclidean metric

on Cn+1. Locally, in the chart U0, if s0 ∈ O(−1) = (1, z1, z2, . . .) is a local basis, then hα = 1 + |z|2.

Hence, c1(O(−1), h) = −
√
−1

2π ∂∂̄ ln(1 + |z|2) and c1(O(1), h∗) = ωFS =
√
−1

2π ∂∂̄ ln(1 + |z|2). The associated
Hermitian metric is hi j̄ = 1

π
∂2

∂zi∂z̄ j ln(1 + |z|2).
Given the Fubini-Study metric, we can calculate the induced metric on submanifolds. Indeed,

let F(Xi) be a degree d homogeneous polynomial such that ∇F , 0 on S = F−1(0). As we saw
earlier, S is a compact complex submanifold of CPn. Assume without loss of generality that ∂F

∂X1 , 0
1
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near a point on S where X0 , 0. Therefore, locally, z1 = f (z2, . . . , zn) and F(1, f , z2, . . .) = 0. Now

ωFS|S =
√
−1

2π ∂∂̄ ln(1 + | f |2 +
∑

i=2 |zi
|
2), which equals

1
1 + | f |2 +

∑
i=2 |zi|2

√
−1

2π

∂ f ∧ ∂̄ f +
∑
i=2

dzi
∧ dz̄i

−

∑
i, j( f̄ ∂ f

∂zi + z̄i)( f ∂ f̄
∂z̄ j + z j)dzi

∧ dz̄ j)

1 + | f |2 +
∑

i=2 |zi|2


=

1
1 + | f |2 +

∑
i=2 |zi|2

√
−1

2π

(
δi j̄ + aiā j − cic̄ j

)
dzi
∧ dz̄ j(1.1)

Noting that ωn = det(hi j̄)n!
√
−1
2 dz1

∧ dz̄1 . . ., we can calculate the volume form by computing the
determinant of the above matrix.

Exercise : Calculate the determinant of the matrix above.

Before we go on further, we need another notion from vector bundles. If E is a rank-r vector
bundle, then ΛrE is also a vector bundle where Λr

pEp = Ep ∧ Ep ∧ . . .. If eα,i is a local basis of E, then

ηα = eα,1 ∧ eα,2 . . . eα,r is a local basis for ΛrE. If eβ,i = [gαβ]
j
ieα, j, then

Exercise : Prove that ηβ = det(gαβ)ηα

Therefore, if H is a Hermitian metric on E, then det(H) is a Hermitian metric on det(E). In particu-
lar, det(T∗1,0M) = KM is called the canonical bundle of M and ifω is a Kähler form on M, then det(h)−1

(which is basically (ω
n

n! )−1) is a Hermitian metric on KM. Thus, c1(KM,det(h)) =
√
−1

2π ∂∂̄ ln(det(h)).

Exercise : Compute c1(KCPn) with the metric induced from the Fubini-Study metric. A harder exercise is
to compute c1(KS) with the metric above. If you do the calculations correctly, you should get something like
c1(Kn

CP
) = −(n + 1)ωFS, and c1(KS) = (d − n − 1)ωFS +

√
−1∂∂̄ψ for some smooth globally defined function

ψ.

The above exercises show that KCPn is a negative line bundle, and if d is large, then KS is a positive
line bundle (and hence K∗S is negative). When d = n + 1, [c1(KS)] = [0]. Such an S (for example
(X0)5 + . . . (X4)5 = 0 called the Fermat quintic) is called a Calabi-Yau manifold. These manifolds are
important in String theory. They have nice Kähler metrics with good curvature properties.

2. Lecture 6 (Kähler connection and curvature)

Now we shall study the curvature of the Levi-Civita connection of Kähler manifolds. Recall that
the Levi-Civita connection ∇ gives us a way to find the directional derivative of vector fields. ∇XY
is the derivative of Y along X. It is uniquely determined by a few properties. More generally, given
a smooth vector bundle E on a smooth manifold M, a connection is way to find the directional
derivative of sections. It is defined as a map :

∇ : Smooth sections o f E × Smooth vector f ields on M→ Smooth sections o f E

satisfying
(1) ∇ f1X1+ f2X2s = f1∇X1s + f2∇X2s where f1, f2 are smooth functions on M.
(2) ∇X(s1 + s2) = ∇Xs1 + ∇Xs2.
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(3) ∇X( f s) = X( f )s + f∇Xs.

If there is a Hermitian metric H on E, then ∇ is said to be metric compatible if X(H(s1, s2)) =
H(∇Xs1, s2) + H(s1,∇Xs2).

The Levi-Civita connection can be used to differentiate not just vector fields, but also induces
a connection on T∗M by X(ω(Y)) = ∇Xω(Y) + ω(∇XY). The Christoffel symbols are defined as
∇∂k∂ j = Γi

jk∂i. For the Levi-Civita connection there is a nasty formula for these beasts. But it is much
simpler for calculations to note that the Christoffel symbols at p vanish in normal coordinates near p.
For one-forms, ∇∂kdx j(∂i) = ∂k(δ j

i ) − δ
j
l Γ

l
ki and hence ∇∂kdx j = −Γ

j
kidxi. Using these two connections,

we can talk about differentiating other tensors. For instance if J = Ji
jdx j
⊗ ∂i, then ∇X J is defined to

be ∇X J = X(Ji
j)dx j

⊗ ∂i − Ji
jΓ

j
klX

kdxl
⊗ ∂i + Ji

jdx j
⊗ Γk

ilX
l∂k.

The Levi-Civita connection ∇ on a complex manifold can be extended complex linearly to a
connection on CTM. On a Kähler manifold, since there are holomorphic normal coordinates at
every point p, ∇J = 0 (because J has constant coefficients). We can define the Christoffel symbols in
the z, z̄ basis as follows.

∇∂zk∂z j = Γi
jk∂zi + Γī

jk∂z̄i(2.1)

and so on. Since J∂zi =
√
−1∂zi and ∇J = 0, we see that J∇∂zi =

√
−1∇∂zi . Therefore, ∇∂zk∂zi ∈ T1,0

and hence Γī
jk = 0. Now the torsion-free ness forces ∇ī∂k = ∇k∂ī and hence both of them vanish.

So the only surviving symbols are Γi
jk = Γi

k j and Γī
j̄k̄

= Γi
jk. One can now calculate the Christoffel

symbols. The Levi-Civita connection satisfies ∇g = 0. Since ∇J = 0, ∇h = 0.

hi j̄,k = ∂k(h(∂i, ∂ j̄)) = h(∇k∂i, ∂ j̄) + h(∂i,∇k∂ j̄)

= h(Γl
ki∂l, ∂ j̄) = Γl

kihl j̄

⇒ Γi
jk = hil̄∂ jhkl̄.(2.2)

The upper indices indicate the inverse. So the matrix of 1-forms Γ i
k = [∂hh−1] i

k . The Riemann
curvature tensor (extended C-linearly) is

(∇k∇l̄ − ∇l̄∇k)∂i = R j
i kl̄
∂ j.(2.3)

Exercise : Prove that the other covariant derivatives commute.

Upon computing

(∇k∇l̄ − ∇l̄∇k)∂i = −∇l̄Γ
j
ki∂ j

= −∂l̄(Γ
j
ki)∂ j = −∂l̄(h

jl̄∂khil̄).(2.4)

In holomorphic normal coordinates, R j
i kl̄

(p) = −∂l̄∂khi j̄(p). By the local ∂∂̄ lemma, since hi j̄ = ∂ j̄∂iφ
for some smooth φ, we can interchange the derivatives to get many symmetries of the holomorphic
Riemann curvature tensor. Recall that the Ricci curvature in usual Riemannian geometry is defined
as Ricc(Y,Z) = tr(X→ R(X,Y)Z). The Ricci tensor is symmetric.
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In holomorphic normal coordinates, the Ricci tensor can be computed (extended C-linearly) as

Riccil̄ = R j
i jl̄

(p) = −
∑

j

∂l̄∂ jhi j̄(p)

= −
∑

j

∂l̄∂ j∂i∂ j̄φ(p) = −
∑

j

∂ j̄∂ j∂i∂l̄φ(p) = −
∑

j

∂l̄∂ih j j̄(p)

= −∂l̄∂i ln(det(h))(p).(2.5)

The above calculation shows that Ricc(JY, JZ) = Ricc(Y,Z). Akin to ω, we define a Ricci form on
a Kähler manifold as Ricc(JX,Y). It is clear that this form is a (1, 1)-form that is real (we will
abuse notation and call this Ricci form also as the Ricci curvature sometimes). So the Ricci form is
√
−1∂̄∂ ln(det(h)). In other words it is simply 2πc1(K∗M).
Let us now connect the Ricci tensor in these complex coordinates (that is acting in a Hermitian

manner on T1,0M) to real coordinates. In almost the same way as h is related to g, the tensor

T(u, v) = Re(Ricc(Lu, L̄v)) = Re(Ricc( u−
√
−1Ju
2 , v+

√
−1Jv
2 )) is equal to 1

2 Ricc(u, v). So the isomorphism
gives a slightly different (by a factor of 2) Ricci tensor than the one we use in Riemannian geometry.
The scalar curvature in Riemannian geometry is defined as the trace of the Ricci tensor.

Exercise : Prove that the scalar curvature in the complex setting above differs from the usual one by a factor
of 4.

The Riemannian sectional curvatures are g(R(u, v)v,u). In the Kähler case, calculations above
show that R(x, y, z,w) = R(x, y, Jz, Jw). For a unit vector x, we define the holomorphic sectional cur-
vature as H(x) = R(x, Jx, Jx, x) and for two orthonormal unit vectors, x, y, the bisectional curvature
is R(x, Jx, Jy, y).

Exercise : Show that the bisectional curvature is R(x, Jx, Jy, y) = R(x, y, y, x) + R(x, Jy, Jy, x) (thus justi-
fying its name).

Note that R j
j iī

= R(∂i, ∂ī, ∂ j, ∂ j̄) is the following using the usual isomorphism between T1,0 and
TM (and symmetries of the Riemann tensor).

R j
j iī

=
1
4

R(∂xi , J∂xi , J∂x j , ∂x j).(2.6)

Exercise : Show that all holomorphic sectional curvatures of Cn, CPn, andD are 0, positive constants, and
negative constants respectively.

In the Riemannian case, when all the sectional curvatures are constant, the manifold is isometric
to a quotient of Euclidean space, the Sphere, or Hyperbolic space. Akin to that, if all the holomorphic
sectional curvatures are constant, the manifold is biholomorphically isometric to a quotient of Cn,
CPn, orD.
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