
ATM SCHOOL 2018 - SUBHARMONIC AND PLURISUBHARMONIC FUNCTIONS
(LIBERALLY COPIED FROM KRANTZ’S BOOK, AND D. VAROLIN’S NOTES)

1. What is the end game ?

One of the aims of complex analysis is to classify domains upto biholomorphism. Another is to
construct holomorphic functions with specified behaviour at given points. Both of these aims are
more or less well studied in some avatars at least. (The Riemann mapping theorem and the Mittag-
Leffler theorem.) In more than one complex variable, both problems are widely open and in fact,
there is no analogue of the Riemann mapping theorem. (For instance, B(0, 1) is not biholomorphic
to D(0, 1)n when n > 1.)

It turns out that they key to understanding domains (whether in C or Cn for n > 1) and holomor-
phic functions on them is the study of certain PDE on them. For example, as we shall see later, one
way to prove the Riemann mapping theorem in an important sub class of smoothly bounded (what
does this mean?) domains is by solving the equation ∆u = 0 on Ω with the Dirichlet boundary
condition u = f on the boundary (where f is continuous). In higher dimensions, a different, more
complicated PDE (the complex Monge-Ampère equation) helps with the study of domains.

Prerequisites are multivariable calculus, linear algebra, and complex analysis.

2. What is a subharmonic function and how does one construct these beasts ?

Here are some observations :

(1) Harmonic functions in 1-D are linear u(x) = ax + b. Not too interesting. But, if we relax
the requirement to u

′′

≥ 0, we get the rich class of convex functions. These obey the Jensen
inequality : tu(x1) + (1 − t)u(x2) ≥ u(tx1 + (1 − t)x2). Moreover, their maximum is always
attained on the endpoints.

(2) Harmonic functions in higher dimensions are also very rigid. (They obey the identity
principle.)

Exercise : Prove that a C2 solution u : Ω ⊂ C→ R of ∆u = 0 is smooth.

Exercise : Prove the identity principle for harmonic functions u : Ω ⊂ C→ R.

(Actually, the above exercises hold true in arbitrary dimensions.)

Harmonic functions (in any dimension) also obey the mean value property (MVP): Suppose
B(0, r) ⊂ Ω. Then

u(0) =

∫
∂B(0,r) udA

Vol(∂B(0, r))
=

∫
B(0,r) udV

Vol(B(0, r))
(2.1)
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Proof. Let f (r) =

∫
∂B(0,r) udA

Vol(∂B(0,r)) . Then f is differentiable (by dominated convergence). Now

f (r) =

∫
∂B(0,1) urn−1dσ

rn−1Vol(∂B(0, 1))

⇒ f
′

(r) =

∫
∂B(0,1)

∂u
∂r dσ

Vol(∂B(0, 1))
=

∫
B(0,1) ∆udV

Vol(∂B(0, 1))
= 0(2.2)

Thus f (r) = limr→0 f (r) = u(0). Multiplying by dr and integrating, we see the volume version of the
MVP. �

Exercise : Prove that if a C2 function u : Ω ⊂ Rn
→ R satisfies the MVP then it is harmonic.

Exercise : Prove that if a harmonic function attains its maximum or minimum in the interior of a domain,
then it is a constant. (The strong maximum principle.)

From the above observations, it makes sense to relax our class of objects to “subharmonic func-
tions”, i.e., roughly functions of the type ∆u ≥ 0. However, we want to consider non-smooth
functions too. The prototypical example to keep in mind is u(z) = ln |z|2 = ln(x2 + y2). This is of
course harmonic away from z = 0 (because it is locally the real part of a branch of ln(z)). Note that
ln |z|2 can be approximated using the decreasing sequence ln(|z|2 + 1

n2 ). So we instead of continuity,
we want a property that is preserved under decreasing limits of functions. Moreover, we want the
global maximum of the function on a compact set to make sense. The correct property we are looking
for is upper semicontinuity, i.e., near x0, the values of u should either be close to u(x0) or less than it.
More precisely, f : Ω ⊂ Rn

→ R ∪ {−∞} is called upper semicontinuous if lim supy→x0
f (y) ≤ f (x0)

or equivalently, u−1[−∞, y) should be open. Hence upper semicontinuous functions are Lebesgue
measurable.

Exercise : Prove the equivalence of definitions of upper-semicontinuity. Also prove that upper semicontin-
uous functions achieve their maximum on a compact set , that if u1,u2 are upper semicontinuous then so is
u = max(u1,u2), and that if ui, i ∈ I is a family of upper semicontinuous functions, then infi∈I ui(x) = u(x)
is upper semicontinuous.

Note that if u is upper semicontinuous (u.s.c), then u+ is bounded and hence integrable. But u−

can have infinite integral. Thus
∫

udV makes sense if we allow −∞ as an answer. It is easy to see

that so does the integral of u over the surface of a sphere make sense. We also have the following
result.

Theorem 2.1. If f is a u.s.c function on Ω that is bounded above, then there is a sequence of continuous
functions C ≥ f1 ≥ f2 ≥ f3 . . . on Ω that converge to f .

Proof. We give a sketch : The functions f j(x) = supy∈Ω{ f (y) − j|x − y|}work. �

Exercise : Fill in the details above.

Definition 2.2. A subharmonic function u : Ω ⊂ C→ R∪{−∞} is an upper-semicontinuous function
that is not identically −∞ and satisfies the following property : Suppose K ⊂ Ω is a compact set, and
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h is a continuous function on K that is harmonic on its interior such that on ∂K, u ≤ h, then u ≤ h on
all of K.

Examples :
(1) A Harmonic function u is an example because for any compact set and a harmonic function

h, u − h is harmonic and we may use the maximum principle.
(2) A fundamental example is ln(| f |2) where f : Ω ⊂ C→ C is a non-zero holomorphic function.

Indeed, this is obviously upper-semicontinuous and is harmonic away from 0. If K contains
0 in its boundary, then u− h is harmonic in the interior and hence cannot attain its maximum
there. If K contain a zero of f in its interior, then we can reduce the problem to a disc centred at
that zero of radius r by the previous argument. Taking r→ 0, we see that u(z0) = −∞ < h(z0).

(3) If u is subharmonic and c > 0 is a constant, then cu is obviously subharmonic.
(4) If u = sup uα where uα are subharmonic is finite and u.s.c, then u is subharmonic. So the

maximum of two subharmonic functions is subharmonic.
(5) If u1 ≥ u2 ≥ u3 . . . are subharmonic and their limit u is not identically −∞ then u is subhar-

monic.
Here are some equivalent definitions.

Theorem 2.3. Let Ω ⊂ Cn be an open connected subset and let f : Ω→ R ∪ {−∞} be u.s.c. TFAE
(1) u is subharmonic.
(2) If δ > 0, D̄(z, δ) ⊂ Ω, and µ is a non-negative Borel measure on [0, δ] with non-zero mass, then u

satisfies the µ-SMVP :

u(z) ≤

∫ 2π
0

∫ δ
0 u(z + reiθ)dµ(r)dθ

2π
∫ δ

0 dµ(r)
(2.3)

(3) For each z0 ∈ Ω, there exists a δz0 > 0 such that D̄(z0, δz0) ⊂ Ω and for all r ≤ δz0 , and µz0 - a
non-negative Borel measure on [0, δz0] not supported on 0 with non-zero mass such that u satisfies
the µ-SMVP on Dr(z0).
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