
ATM SCHOOL 2018 - SUBHARMONIC AND PLURISUBHARMONIC FUNCTIONS
(LIBERALLY COPIED FROM KRANTZ’S BOOK, AND D. VAROLIN’S NOTES)

1. Recap

(1) Agreed that it is important to study the Dirichlet problem for ∆u = 0 to prove the RMT.
(2) Proved the MVT for harmonic functions and discussed that they are too rigid to construct

easily.
(3) Defined subharmonic functions and gave several examples.

2. What is a subharmonic function and how does one construct these beasts ?

Here are some equivalent definitions.

Theorem 2.1. Let Ω ⊂ Cn be an open connected subset and let f : Ω→ R ∪ {−∞} be u.s.c. TFAE
(1) u is subharmonic.
(2) If δ > 0, D̄(z, δ) ⊂ Ω, and µ is a non-negative Borel measure on [0, δ] with non-zero mass, then u

satisfies the µ-SMVP :

u(z) ≤

∫ 2π
0

∫ δ
0 u(z + reiθ)dµ(r)dθ

2π
∫ δ

0 dµ(r)
(2.1)

(3) For each z0 ∈ Ω, there exists a δz0 > 0 such that D̄(z0, δz0) ⊂ Ω and for all r ≤ δz0 , and µz0 - a
non-negative Borel measure on [0, δz0] not supported on 0 with non-zero mass such that u satisfies
the µ-SMVP on Dr(z0).

Proof. (1) 1 implies 3 : Choose a decreasing sequence f j of continuous functions converging to
u on D̄. Solve ∆h j = 0 on D with h j = f j on ∂D. This can be done by an explicit formula.
(See Poisson kernel on wikipedia or in Krantz’s book.) Since u ≤ h j = f j on ∂D, by definition

u(z) ≤ h j(z) =

∫ 2pi
0 f j(z+reiθ)dθ

2π . By the monotone convergence theorem we are done.
(2) 2 implies 3 : Simply integrate on both sides w.r.t measure.
(3) 3 obviously implies 4.
(4) 4 implies 1 : Suppose u ≤ h on ∂K. Let M be the maximum of v = u − h on K. If 1 is not true,

then for some K and some h, M > 0 at a point p in the interior of K. The set F ⊂ K where
v = M does not meet ∂K. Let z0 ∈ F have minimal positive distance from K and let δz0 > 0 be
less than this distance. Then the µ-SMV property provides a contradiction.

�

Exercise : Let u be subharmonic and p ∈ Ω. Prove that the averages of u over circles of centre z0 and radii
r converge to u(z0) as r→ 0.

This has the following consequences

Corollary 2.2. (1) u1 + u2 is subharmonic if u1,u2 are so.
(2) Subharmonicity is a local property, i.e., u is subharmonic in Ω iff it is locally so.
(3) If φ : R→ R is convex and increasing, then φ ◦ u is subharmonic whenever u is so.
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(4) If the maximum of a subharmonic function u over a bounded connected open set Ω is attained in the
interior, then u is constant on Ω.

(5) Subharmonic functions are locally integrable.

Proof. (1) The µ-SMV property obviously holds for the sum if it holds individually.
(2) Follows from property 4 above.
(3) Follows from the Jensen inequality φ(< u >) ≤< φ(u) > and property 4 above.
(4) Let M be the maximum. u−1(M) is closed by upper semicontinuity. It is also open by the

µ-SMVP.
(5) Suppose X is the set of z ∈ Ω such that u is locally integrable over a small disc. Obviously X is

open. It is non-empty because if u(a) > −∞ (which happens at least for one a by assumption),
by the SMVP the average over a small disc centred at a is > −∞. X is also closed (and hence
all of Ω) because if pn ∈ X → p (and p ∈ Ω), then choosing a small disc around p which lies
wholly in Ω, clearly it contains a close enough pn and a smaller disc centred at pn (containing
p). By the SMVP u is locally integrable on this disc.

�

Finally, we have a very useful characterisation of subharmonic functions in terms of distributions.

We say that for a locally integrable u, ∆u ≥ 0 in the sense of distributions iff
∫

Ω

u∆φ ≥ 0 for any

smooth functionφ ≥ 0 with compact support in Ω. We prove the following alternate characterisation
of subharmonic functions.

Theorem 2.3. If u is subharmonic, then ∆u ≥ 0 in the sense of distributions. Conversely, if f is locally
integrable and ∆ f ≥ 0 in the sense of distributions then it can be modified on a set of measure 0 to become
subharmonic.

Exercise : Prove the above for smooth functions (Hint : Prove/Use the SMVP).

Now we recall an important technical device of smoothing out locally integrable functions.
Suppose ψ(x) = ψ(|x|) ≥ 0 is a smooth function that is compactly supported in the unit ball and
has integral 1. For ε > 0, define ψε = 1

εnψ(x/ε). Now for x in the interior of Ω, for sufficiently

small ε (such that the following integral makes sense) uε(x) = u ∗ ψε(x) =

∫
B(0,ε)

u(x − y)ψε(y)dy =∫
B(x,ε)

u(y)ψε(x − y)dy is smooth in x when u is locally integrable. In fact,

Lemma 2.4. (1) Exercise : If u is continuous, then uε → u on compact subsets of Ω.
(2) If u ∈ Lp where 1 ≤ p < ∞ then uε → u in Lp.

The proof is in the appendix of Evans’ book.
Now we have

Lemma 2.5. If u is subharmonic and smooth, then uε are subharmonic and decrease to u pointwise as ε→ 0.

Proof. Indeed, ∆uε = (∆u)∗ψε ≥ 0 and hence they are subharmonic. uε(x) =

∫
B(0,ε)

u(x−reiθ)dθψε(r)rdr

which we know is a decreasing function of ε. �

Finally we prove the theorem above :
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If u is subharmonic, ∫
B(z0,r)

uεdV =

∫
B(z0,r)

∫
RN

u(x − εt)ψ(t)dtdx

=

∫
RN

∫
B(z0,r)

u(x − εt)ψ(t)dxdt ≥ Vol(B(z0, r))
∫
RN

u(z0 − εt)ψ(t)dt(2.2)

and hence the SMVP holds and by an above result the smooth function uε satisfies ∆uε ≥ 0. Also,
uε → u pointwise a.e. Indeed, if uε → v pointwise, and v > u on a set of non-zero measure, then

lim
∫

uε =

∫
v >
∫

u which is a contradiction because u ∈ L1
loc and hence the above results say

that uε → u in L1
loc.

Hence if φ has compact support,
∫

u∆φ = lim
ε→0

uε∆φ ≥ 0.

If ∆ f ≥ 0, then fε is smooth and satisfies ∆ fε ≥ 0 (because ∆ f ≥ 0 and ψ ≥ 0). It is decreasing
in ε. Indeed, double smooth f by taking ( fε)δ) = ( fδ)ε which is of course decreasing in ε for every
fixed δ. Letting δ > 0, we see that fε is subharmonic and decreasing in ε. Therefore the limit g

is subharmonic and is easily seen to satisfy (by the µ SMVP) that
∫

( f − g)φ = 0 for all smooth

compactly supported φ. Hence f = g almost everywhere. �
Actually, the above technique allows us to prove Weyl’s lemma

Lemma 2.6. If a locally integrable function u satisfies ∆u = 0 in the sense of distributions, then it is smooth.

Proof. Indeed,
∫

u(y)∆yψε(x− y)dy = 0 which means that ∆xuε(x) = 0. By the µ-SMVP, uε = u which

is smooth. �
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