ATM SCHOOL 2018 - SUBHARMONIC AND PLURISUBHARMONIC FUNCTIONS (LIBERALLY COPIED FROM KRANTZ'S BOOK, AND D. VAROLIN'S NOTES)

1. Recap

- (1) Agreed that it is important to study the Dirichlet problem for $\Delta u = 0$ to prove the RMT.
- (2) Proved the MVT for harmonic functions and discussed that they are too rigid to construct easily.
- (3) Defined subharmonic functions and gave several examples.
 - 2. What is a subharmonic function and how does one construct these beasts ?

Here are some equivalent definitions.

Theorem 2.1. Let $\Omega \subset \mathbb{C}^n$ be an open connected subset and let $f : \Omega \to \mathbb{R} \cup \{-\infty\}$ be u.s.c. TFAE

- (1) *u* is subharmonic.
- (2) If $\delta > 0$, $\overline{D}(z, \delta) \subset \Omega$, and μ is a non-negative Borel measure on $[0, \delta]$ with non-zero mass, then u satisfies the μ -SMVP :

(2.1)
$$u(z) \le \frac{\int_0^{2\pi} \int_0^{\delta} u(z+re^{i\theta})d\mu(r)d\theta}{2\pi \int_0^{\delta} d\mu(r)}$$

- (3) For each $z_0 \in \Omega$, there exists a $\delta_{z_0} > 0$ such that $\overline{D}(z_0, \delta_{z_0}) \subset \Omega$ and for all $r \leq \delta_{z_0}$, and μ_{z_0} a non-negative Borel measure on $[0, \delta_{z_0}]$ not supported on 0 with non-zero mass such that u satisfies the μ -SMVP on $D_r(z_0)$.
- *Proof.* (1) 1 implies 3 : Choose a decreasing sequence f_j of continuous functions converging to u on \overline{D} . Solve $\Delta h_j = 0$ on D with $h_j = f_j$ on ∂D . This can be done by an explicit formula. (See Poisson kernel on wikipedia or in Krantz's book.) Since $u \le h_j = f_j$ on ∂D , by definition $u(z) \le h_j(z) = \frac{\int_0^{2pi} f_j(z+re^{i\theta})d\theta}{2\pi}$. By the monotone convergence theorem we are done.
 - (2) 2 implies 3 : Simply integrate on both sides w.r.t measure.
 - (3) 3 obviously implies 4.
 - (4) 4 implies 1 : Suppose $u \le h$ on ∂K . Let M be the maximum of v = u h on K. If 1 is not true, then for some K and some h, M > 0 at a point p in the interior of K. The set $F \subset K$ where v = M does not meet ∂K . Let $z_0 \in F$ have minimal positive distance from K and let $\delta_{z_0} > 0$ be less than this distance. Then the μ -SMV property provides a contradiction.

Exercise : Let u be subharmonic and $p \in \Omega$. Prove that the averages of u over circles of centre z_0 and radii r converge to $u(z_0)$ as $r \to 0$.

This has the following consequences

Corollary 2.2. (1) $u_1 + u_2$ is subharmonic if u_1, u_2 are so.

- (2) Subharmonicity is a local property, i.e., u is subharmonic in Ω iff it is locally so.
- (3) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex and increasing, then $\phi \circ u$ is subharmonic whenever u is so.

- (4) If the maximum of a subharmonic function u over a bounded connected open set Ω is attained in the interior, then u is constant on Ω .
- (5) Subharmonic functions are locally integrable.
- *Proof.* (1) The μ -SMV property obviously holds for the sum if it holds individually.
 - (2) Follows from property 4 above.
 - (3) Follows from the Jensen inequality $\phi(\langle u \rangle) \leq \langle \phi(u) \rangle$ and property 4 above.
 - (4) Let *M* be the maximum. $u^{-1}(M)$ is closed by upper semicontinuity. It is also open by the μ -SMVP.
 - (5) Suppose X is the set of z ∈ Ω such that u is locally integrable over a small disc. Obviously X is open. It is non-empty because if u(a) > -∞ (which happens at least for one a by assumption), by the SMVP the average over a small disc centred at a is > -∞. X is also closed (and hence all of Ω) because if p_n ∈ X → p (and p ∈ Ω), then choosing a small disc around p which lies wholly in Ω, clearly it contains a close enough p_n and a smaller disc centred at p_n (containing p). By the SMVP u is locally integrable on this disc.

Finally, we have a very useful characterisation of subharmonic functions in terms of distributions. We say that for a locally integrable u, $\Delta u \ge 0$ in the sense of distributions iff $\int_{\Omega} u\Delta \phi \ge 0$ for any smooth function $\phi \ge 0$ with compact support in Ω . We prove the following alternate characterisation of subharmonic functions.

Theorem 2.3. If *u* is subharmonic, then $\Delta u \ge 0$ in the sense of distributions. Conversely, if *f* is locally integrable and $\Delta f \ge 0$ in the sense of distributions then it can be modified on a set of measure 0 to become subharmonic.

Exercise : *Prove the above for smooth functions (Hint : Prove/Use the SMVP).*

Now we recall an important technical device of smoothing out locally integrable functions. Suppose $\psi(x) = \psi(|x|) \ge 0$ is a smooth function that is compactly supported in the unit ball and has integral 1. For $\epsilon > 0$, define $\psi_{\epsilon} = \frac{1}{\epsilon^n}\psi(x/\epsilon)$. Now for x in the interior of Ω , for sufficiently small ϵ (such that the following integral makes sense) $u_{\epsilon}(x) = u * \psi_{\epsilon}(x) = \int_{B(0,\epsilon)} u(x-y)\psi_{\epsilon}(y)dy = 0$

 $\int_{B(x,\epsilon)} u(y)\psi_{\epsilon}(x-y)dy$ is smooth in *x* when *u* is locally integrable. In fact,

Lemma 2.4. (1) Exercise : If *u* is continuous, then $u_{\epsilon} \to u$ on compact subsets of Ω . (2) If $u \in L^p$ where $1 \le p < \infty$ then $u_{\epsilon} \to u$ in L^p .

The proof is in the appendix of Evans' book. Now we have

Lemma 2.5. If u is subharmonic and smooth, then u_{ϵ} are subharmonic and decrease to u pointwise as $\epsilon \to 0$.

Proof. Indeed, $\Delta u_{\epsilon} = (\Delta u) * \psi_{\epsilon} \ge 0$ and hence they are subharmonic. $u_{\epsilon}(x) = \int_{B(0,\epsilon)} u(x - re^{i\theta}) d\theta \psi_{\epsilon}(r) r dr$ which we know is a decreasing function of ϵ .

Finally we prove the theorem above :

2

If *u* is subharmonic,

(2.2)
$$\int_{B(z_0,r)} u_{\epsilon} dV = \int_{B(z_0,r)} \int_{\mathbb{R}^N} u(x-\epsilon t)\psi(t)dtdx$$
$$= \int_{\mathbb{R}^N} \int_{B(z_0,r)} u(x-\epsilon t)\psi(t)dxdt \ge Vol(B(z_0,r)) \int_{\mathbb{R}^N} u(z_0-\epsilon t)\psi(t)dt$$

and hence the SMVP holds and by an above result the smooth function u_{ϵ} satisfies $\Delta u_{\epsilon} \ge 0$. Also, $u_{\epsilon} \to u$ pointwise a.e. Indeed, if $u_{\epsilon} \to v$ pointwise, and v > u on a set of non-zero measure, then $\lim \int u_{\epsilon} = \int v > \int u$ which is a contradiction because $u \in L^{1}_{loc}$ and hence the above results say that $u_{\epsilon} \to u$ in L^{1}_{loc} .

Hence if ϕ has compact support, $\int u\Delta\phi = \lim_{\epsilon \to 0} u_{\epsilon}\Delta\phi \ge 0.$

If $\Delta f \ge 0$, then f_{ϵ} is smooth and satisfies $\Delta f_{\epsilon} \ge 0$ (because $\Delta f \ge 0$ and $\psi \ge 0$). It is decreasing in ϵ . Indeed, double smooth f by taking $(f_{\epsilon})_{\delta} = (f_{\delta})_{\epsilon}$ which is of course decreasing in ϵ for every fixed δ . Letting $\delta > 0$, we see that f_{ϵ} is subharmonic and decreasing in ϵ . Therefore the limit gis subharmonic and is easily seen to satisfy (by the μ SMVP) that $\int (f - g)\phi = 0$ for all smooth compactly supported ϕ . Hence f = g almost everywhere.

Lemma 2.6. If a locally integrable function u satisfies $\Delta u = 0$ in the sense of distributions, then it is smooth.

Proof. Indeed, $\int u(y)\Delta_y \psi_{\epsilon}(x-y)dy = 0$ which means that $\Delta_x u_{\epsilon}(x) = 0$. By the μ -SMVP, $u_{\epsilon} = u$ which is smooth.