
MA 200 - Lecture 4

1 Recap
1. C1 implies differentiability.

2. Proved some properties of derivatives. (A few typos in the product rule but the
concepts remain the same.)

2 Derivatives
More properties.

1. If g(a) ̸= 0, then f

g
is diff at a with derivative g(a)∇f(a)− f(a)∇g(a)

g2(a)
: WLog

f = 1 (why?). Now for δ small enough, we see that for all ∥h∥ < δ, g(a+ h) ̸= 0.

| 1
g(a+h)

− 1
g(a)

+ Dga(h)
g2(a)

|
∥h∥

=
|g(a)−g(a)−Dga(h)−∆2

g(a+h)g(a)
+ Dga(h)

g2(a)
|

∥h∥

≤ |∆2|
∥h∥

1

|g(a+ h)g(a)|
+ ∥∇g(a)∥ 1

|g(a)|
| 1

g(a+ h)
− 1

g(a)
| → 0. (1)

2. If f is constant, ∇f = 0 (trivial). Conversely, if U is a connected open set and f is
differentiable on all of U with ∇f = 0 identically, then f is a constant.
Indeed, fix a ∈ U and let S = {x ∈ U | f(x) = f(a)}. By continuity of f , S is
closed in U . It is clearly not empty. If S is proven to be open, then S = U by
connectedness (why?).
S is also open: To this end, consider an open ball B around b ∈ S that is wholly
contained inU . We shall prove thatB ⊂ S. Indeed, letx ∈ B. Then b+t(x−b) ∈ B
for all t ∈ [0, 1]. The function g(t) = f(b+ t(x− b)) is continuous on [0, 1] (because
it is a composition of continuous functions). It is differentiable on (0, 1) and

g′ = 0: lim
h→0

g(t+ h)− g(t)

h
= lim

h→0

f(b+ t(x− b) + h(x− b))− f(b+ t(x− b))

h
=

∇x−bf(b+t(x−b)) = ⟨∇f(b+t(x−b)), x−b⟩ = 0. By Lagrange’s MVT, g(1) = g(0)
and hence x ∈ S.

3. If F : U ⊂ Rn → Rm is a linear map, then F is differentiable and DF (h) = F (h):
F (a+ h)− F (a)− F (h)

∥h∥
= 0 ∀ h.
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Here is a concrete example where using the definition is as efficient as blindly calculat-
ing. Prove that F : Matn×n → Matn×n given by F (A) = A2 is differentiable everywhere
and calculate its derivative: The components of F are polynomials (quadratic ones) in
the entries of A and are hence C1 and therefore differentiable. Thus, so is F . We can
calculate the derivative in two ways:

1. Blindly: (DFA(H))ij =
∑

k,l
∂Fij

∂Akl
Hkl =

∑
k,l,m

∂AimAmj

∂Akl
Hkl =

∑
δikδmlAmjHkl +

δmkδjlAimHkl =
∑

k,l AljHil + AikHkj = {H,A}ij .

2. Using the definition: F (A + H) − F (A) = (A + H)2 − A2 = {A,H} + H2 and

hence ∥F (A+H)− F (A)− {A,H}∥Frob

∥H∥Frob

≤ ∥H∥Frob → 0.

Here is another interesting example. Prove that det : Matn×n → R is differentiable
everywhere and that∇H det(I) = tr(H): The determinant is a polynomial in the entries
of the matrix and hence C1 (and differentiable). This can be proven using properties
of determinants. (Optional: A fun way to do this is to notice that det(I + tH) =
(1 + tλ1)(1 + tλ2) . . . where λi are (possibly complex) eigenvalues of H .)

We need an analogue of the chain rule to conclude that sin(x2 + y2) is differentiable
without using C1 implies differentiability. More importantly, we need a formula for
the derivative. This will help us answer two kinds of questions:

1. If a particle is zooming around in a room (whose temperature is T (x, y, z)) with
trajectory r⃗(t), then how fast does the temperature change according to it?

2. To solve partial differential equations that have radial symmetry, it helps to switch
to polar coordinates. If we know the derivatives of a function f(x, y) in Cartesian
coordinates, how can we calculate those of f̃(r, θ) = f(r cos(θ), r sin(θ)) in polar
coordinates?

Intuitively, T (x(t+ h), y(t+ h), z(t+ h)) ≈ T (x(t) + hx′(t), y(t) + hy′(t), z(t) + hz′(t)) ≈
T (x(t), y(t), z(t)) + hx′(t)∂T

∂x
+ hy′(t)∂T

∂y
+ hz′(t)∂T

∂z
. Likewise, f((r + h) cos(θ + k), (r +

h) sin(θ+k))− f̃(r, θ) ≈ f(r cos(θ)+h cos(θ)− rk sin(θ), r sin(θ)+h sin(θ)+ rk cos(θ))−
f̃(r, θ) ≈ fx(h cos(θ)− rk sin(θ)) + fy(r sin(θ) + h sin(θ) + rk cos(θ)) = h(fxxr + fyyr) +
k(fxxθ + fyyθ). In other words, we expect that Df̃ = DfDr⃗ (as matrices). This
expectation is very similar to the one-variable chain rule (f ◦ g)′(a) = f ′(g(a))g′(a).

The rigorous statement of the chain rule is as follows. (One can easily see that
the above examples and the one-variable chain rule are special cases of this general
formulation.)

Theorem 1. Let A ⊂ Rm, B ⊂ Rn and f : A → Rn, g : B → Rp with f(A) ⊂ B. Suppose
a is an interior point of A and f(a) is an interior point of B. If f is differentiable at a and g
is differentiable at b, then g ◦ f is differentiable at a. Moreover, D(g ◦ f)a = Dgf(a)Dfa (as
multiplication of matrices).

Proof. Since b = f(a) is an interior point, g(y) is defined on |y − b| < ϵ1 for some ϵ1.
Since f is diff, it is continuous. Hence, |f(x)− b| < ϵ1 for all x ∈ A such that |x−a| < δ1
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and δ1 can be chosen to be so small that |x− a| < δ1 is contained in A (because a is an
interior point too).

Let ∆1(h) = f(a + h) − f(a) − Dfa(h) and ∆2(h̃) = g(b + h̃) − g(b) − Dgbh̃. By
definition of the differentiability of g at b, we see that for every 1 > ϵ > 0 there
exists a 1 > δ1 > δ2 > 0 such that ∥∆2(h̃)∥ < ϵ

100+∥Dgb∥+∥Dfa∥+∥Dfa∥∥Dgb∥
∥h̃∥ whenever

∥h̃∥ < δ2. Now g(f(a + h)) − g(f(a)) = g(b + Dfa(h) + ∆1(h)) − g(b) = ∆2(Dfa(h) +
∆1(h)) + Dgb(Dfa(h) + ∆1(h)). Therefore, ∥g(f(a + h)) − g(f(a)) − DgbDfa(h)∥ ≤
∥∆2(Dfa(h) + ∆1(h))∥+ ∥Dgb(∆1(h))∥ ≤ ∥∆2(Dfa(h) + ∆1(h))∥+ ∥Dgb∥∥∆1(h)∥.
To be continued....
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