
MA 200 - Lecture 17

1 Recap
1. Improper integrals, their properties, criteria for integrability, and relationship

with usual integrals.

2 Improper integrals
Theorem 1. Let A ⊂ Rn be open and f : A→ R be continuous. Let U1 ⊂ U2 . . . be open sets
whose union isA. Then the improper integral exists iff

∫
UN

|f | is an existent bounded sequence.
Its limit is the improper integral.

Proof. Assume f ≥ 0 as usual. If the improper integral exists, by monotonicity
∫
UN

|f |
exists and is bounded. Moreover, its limit is ≤ the improper integral.
If the sequence exists and is bounded, then let D be a compact rectifiable subset of A.
It can be covered by one of the Ui. By monotonicity, we are done.

Here are a couple of examples.

1. Let A = {x > 1 and y > 1 and f(x, y) = 1
x2y2

. Now choose UN = (1, N) × (1, N).
Note that UN is rectifiable and f being continuous on UN is R.I and by Fubini and
FTC,

∫
N
f = (1− 1/N)2 whose limit is 1.

2. Let B = (0, 1)2 and f as before. Choose UN = (1/N, 1) × (1/N, 1). As before we
can integrate to see that the sequence is not bounded and hence the improper
integral does not exist.

3 Partitions-of-unity
Our aim is to eventually prove Green’s theorem, a special case of which is,

∫
C
(Pdx +

Qdy) =
∫
A
(Qx−Py)dAwhereA = {f < 0}where f = 0 = C is a regular level set, andC

is a smooth regular simple closed parametrised path, P,Q are smooth in a neighbour-
hood of Ā. Note that it is trivial to prove this theorem whenA is a rectangle (and in fact,
even for a triangle). In UM 102, we mumbled something about breakingA into a bunch
of triangles and rectangles, adding stuff up, and taking a limit. Instead of this strategy,
we shall still split up Ā into pieces, but rather than adding integrals, we decompose f
as a sum of compactly supported smooth functions. The pieces we shall split Ā into
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are A itself and a cover of C by coordinate charts where a neighbourhood of C looks
like the upper half-plane. Then we need to know that the integrals change correctly
under change of coordinates and so on. So we need two important ingredients now:

1. 1 =
∑

i ρi where ρi are smooth compactly supported functions such that their
supports lie in specified open sets, and every point has a neighbourhood inter-
secting only finitely many supports (So that this is a finite sum). Such functions
form a ‘partition-of-unity’.

2. A formula that tells us how integrals change when we change variables. It will
be nice to have this formula for improper integrals (to be able to integrate the
Gaussian for instance).

Later on, we shall also need to generalise Green to higher dimensions. To that end,
we need to generalise Ā to oriented manifolds-with-boundary, generalise the notion
of a “cross product" and that of the “curl". We shall define differential forms (the
integrands), the wedge product (cross product), and the exterior derivative (curl).
With this motivation, we proceed to partitions-of-unity. Before that recall that we had
already produced smooth non-negative functions with compact support inRwith sup-
port in any arbitrary closed interval. By multiplying g(x1, . . . , xn) = f1(x1)f2(x2) . . .,
we get a smooth function g with compact support in a given rectangle Q such that
g > 0 on the interior of Q.

Theorem 2. Let A = ∪j∈JAj where Aj are open subsets of Rn (and J need not be countable).
There exists a sequence ρi : Rn → R of smooth non-negative functions with compact supports
Si ⊂ Aji such that

∑
i ρi = 1 and every point in A has a neighbourhood that intersects only

finitely many Si.

Such a collection ϕi is said to be a partition-of-unity subordinate to/dominated by
the open cover {Aj j ∈ J}.

Proof. To produce such functions, we first produce a countable collection of rectan-
gles Qi ⊂ Aji such that A = ∪iInt(Qi), and every point of A has a neighbourhood
intersecting only finitely many of the Qi. Assuming the existence of such Qi, we can
complete the proof quickly: Consider the smooth functions ψi with support in Qi and
ψi > 0 on Int(Qi). The key point is that λ(x) =

∑
i ψi(x) is actually a finite sum in a

neighbourhood of x and is hence a smooth function on A. Since Qi cover A, λ(x) > 0

on A. Now define ρi = ψi(x)
λ(x)

to be done.
Now we produce the Qi. Note that even if we did not have the “local finiteness" con-
dition, it is not easy to produce them. To meet local finiteness, we take a compact
exhaustion CN of A. Let BN = CN − Int(CN−1). Then BN are compact sets such that
BN ∩CN−2 = ϕ and ∪NBN = A. For each x ∈ BN , consider a closed cube Rx ⊂ Aix and
disjoint fromCN−2. We can choose finitely many such cubesRN1, RN2, . . . , RNkN whose
interiors cover BN . The countable collection Rij of cubes is such that their interiors
cover A (because each point of A is in one of the BN ). Given any point a ∈ A, it lies
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in Int(CN) for some N . Thus it is disjoint from CN+2, . . .. Hence Int(CN) can intersect
only finitely many of the cubes Cij where i ≤ N + 1.

Now the improper Riemann integral can be written (but not calculated) in a nice
way using partitions-of-unity:

Theorem 3. Let A ⊂ Rn be open and f : A → R be continuous. Let ϕi be a (compactly
supported) partition-of-unity on A. Then the improper integral of f over A exists iff the series∑

i

∫
A
ϕi|f | converges and in this case, Improper

∫
A
f =

∑
i Improper

∫
A
ϕif .

Proof. The key point is that if a continuous function g has support in a compact subset
C, then

∫
A
g =

∫
C
g: The fact that the integral over C exists follow from the criterion

of integrability (because the subset of the boundary of C where g does not tend to 0 is
empty). Let CN be a compact rectifiable exhaustion of A. Then since we need finitely
many interiors of CN to cover C, C ⊂ CK for some K. By the same reasoning,

∫
CK

g

exists and since gCk
= gC , the integrals are equal. Applying this reasoning to |g|, we

see that
∫
A
g exists and equals

∫
C
g.

Since Improper
∫
A
f exists iff that of |f | does, assuming we have proven the result for

f ≥ 0, we see that the improper integral exists iff
∑

i

∫
ρi|f | does and since

∫
A
f =∫

A
f+ −

∫
A
f− =

∑
i

∫
A
(ϕi(f+ − f−)) =

∑
i

∫
A
(ϕif). So WLog we can assume that f ≥ 0.

Suppose CN is a rectifiable compact exhaustion ofA. Then the improper integral exists
iff

∫
CN

f ≤ E.
Suppose

∫
CN

f ≤ E:
∑K

i=1

∫
A
ρif =

∫
A
(
∑k

i=1 ρif) ≤
∫
CNk

f ≤ K for some Nk such that
CNk

contains the supports of ρ1, . . . , ρK . Thus the series converges. Moreover, this
argument also shows that

∑K
i=1

∫
A
ρif ≤ Improper

∫
A
f .

Suppose the series converges: Let D ⊂ A be a compact rectifiable subset. Then
there is an M so that for i > M , ρi vanishes on D (indeed, one can cover D by
finitely many open sets such that each intersect only finitely many supports). Thus,∫
D
f =

∫
D
(
∑M

i=1 ρif) =
∑M

i=1

∫
D
ρif ≤

∑M
i=1

∫
D∪Si

ρif =
∑M

i=1

∫
A
ρif ≤

∑∞
i=1

∫
A
ρif .

Thus we see that the improper integral exists and is ≤ the sum of the series.

3


	Recap
	Improper integrals
	Partitions-of-unity

