
MA 200 - Lecture 26

1 Recap
1. Defined the exterior derivative.

2. Defined pullbacks and proved a few properties.

2 Pullback
Here are some examples of pullbacks:

1. ω = dx ∧ dy. Let F (r, θ) = (r cos(θ), r sin(θ)). Then F ∗ω = F ∗dx ∧ F ∗dy. Now
F ∗dx(v, w) = dx(DF (v, w)) = dx(∂r cos(θ)

∂r
v + ∂r cos(θ)

∂θ
w, . . .) = cos(θ)v − r sin(θ)w =

d(r cos(θ))(v, w). Indeed, more generally, F ∗df = d(f ◦ F ) because F ∗df(v) =
df(DFv) =

∑ ∂f
∂xi

∂Fi

∂xj
vj = d(f ◦ F )(v).

2. If γ(t) = (cos(t), sin(t)), then γ∗dx = d(x◦γ) = d(cos(t)) = − sin(t)dt as we expect.

3. More generally, F ∗(dω) = d(F ∗ω): Indeed, F ∗(
∑

i dωI ∧ ϵI) =
∑

i F
∗(dωI) ∧

F ∗dxi1 ∧ . . . =
∑

i d(ωI ◦ F ) ∧ dFi1 . . .. Now d(F ∗ω) = d(
∑

I ωI ◦ FdFi1 ∧ . . .) =∑
I dF

∗ωI∧dFi1 . . .+F ∗ωId(dFi1)∧. . .+. . . but ddf = 0 and hence we are done.

4. Suppose x1, . . . , xn are coordinates in Rn, (y1, . . . , yk) in Rk, F : U ⊂ Rk → Rn is a
smooth map, and I is an increasing multi-index of sizek. ThenF ∗(ϵI)(e1, . . . , ek) =

ϵI(DFe1, . . . , DFek) = det(
∂(Fi1

,...)

∂(y1,...,yk)
). In other words, F ∗ϵI = det(

∂(Fi1
,...)

∂(y1,...,yk)
)dy1 ∧

dy2 . . . dyk.

3 Integrating top forms in Rn

Let ω be a smooth n-form field in an open subset U ⊂ Hn or Rn. Then ω =
fdx1 ∧ dx2 . . . dxn. Define

∫
U
ω =

∫
Int(U)

f as an improper integral if it exists.The
point of the definition is the following: Suppose ϕ : V → Int(U) is a smooth diffeo-
morphism (that is, a homeomorphism that is smooth and whose derivative is injective
throughout), then by the change of variables formula,

∫
Int(U)

f =
∫
Int(V )

f ◦ϕ| det(Dϕ)|.
If ϕ is orientation-preserving, then

∫
U
f =

∫
V
f ◦ ϕ det(Dϕ). However, recall that

ϕ∗(dx1 ∧ . . .) = det(Dϕ)dy1 ∧ . . .. Thus,
∫
U
ω =

∫
V
ϕ∗ω provided ϕ is orientation-

preserving. Otherwise,
∫
U
ω = −

∫
V
ϕ∗ω.
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Stokes’ theorem in Hn: Let ω be a smooth n− 1-form field with compact support in
Hn. Then

∫
Hn dω = (−1)n

∫
xn=0

i∗(ω), where i(x1, . . . , xn−1) = (x1, . . . , xn−1, 0).

Proof. Suppose ω = ω1dx2 ∧ dx3 . . . + ω2dx1 ∧ dx3 + . . .. The integral is (using Fubini’s
theorem)

∫ a

0

∫ a

−a
. . .

∑
i(−1)i−1∂iωidx1dx2 . . . dxn. Using the fundamental theorem of

calculus, we see that
∫ a

−a
∂iωidxi = 0 whenever 1 ≤ i ≤ n − 1 because ω has compact

support. For i = n, we get
∫ a

−a
. . . (−1)nωn(x1, . . . , xn−1, 0)dx1 . . ..

The same proof shows that if ω has compact support in Rn, then
∫
Rn dω = 0.

4 Differential forms on manifolds (with or without bound-
ary)

Let M ⊂ Rn be a smooth k-manifold-with-boundary. A smooth l-form field on M is
a map ω : M → ∪pΛ

l(TpM) such that ω(p) ∈ Λk(TpM) and for any smooth parametri-
sation α, the form field ω̃(x)(v1, . . . , vl) = ωα(x)(Dαv1, . . .), i.e., α∗ω is smooth. Clearly,
if ω is a smooth l-form field in an open neighbourhood U of M in Rn, then when
restricted to M , it is a smooth form field (by the chain rule). It can be proven that every
smooth l-form field can be extended to a smooth l-form field in a neighbourhood of
M . Here are examples of form-fields:

1. The 1-form field ω = xdy−ydx
x2+y2

on the unit circle. If we choose the parametrisation
of a part of the unit circle given by α(t) = (cos(t), sin(t)), then α∗(ω) = dt.

2. The 2-form field ω = z2dx ∧ dy + x2dy ∧ dz on the unit upper hemisphere. If
we parametrise a part of it using (x, y,

√
1− x2 − y2), then α∗ω = (1 − x2 − y2 +

x3√
1−x2−y2

)dx ∧ dy.
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