
MA 200 - Lecture 13

1 Recap
1. Taylor in multivariable calculus.

2. Second derivative test.

3. Started partitions of rectangles.

2 Integration in more than one-variable
Lemma 2.1. Let P be a partition of a rectangle Q and f : Q → R be a bounded function. If P ′

is a refinement of P , then L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ).

Proof. Let k be the number of points in P ′
1 − P1 plus those in P ′

2 − P2 plus so on. We
induct on k. In fact, we claim that k = 1 is enough. Indeed, if it is true for 1, 2 . . . , k− 1,
then replace P with the partition obtained by adding the k − 1 points and then apply
the k = 1 case.
For k = 1: Suppose the additional point b is in the ith component interval and in
the sub-interval [tij, tij+1]. Then the rectangles R = I1 . . . Ii−1 × [tij, tij+1] × Ii+1 . . . are
replaced by R1 = I1 . . . Ii−1 × [tij, a]× Ii+1 . . . union R2 = I1 . . . Ii−1 × [a, tij+1]× Ii+1 . . ..
The infimum increases if the size of the size is reduced (why?) and the supremum
decreases. Hence mR1 ,mR2 ≥ mR, MR1 ,MR2 ≤ MR and since v(R) = v(R1) + v(R2),
mRv(R) ≤ mR1v(R1) +mR2v(R2) and likewise for MR. Thus we are done.

Moreover, if P, P ′ are any two partitions, then L(f, P ) ≤ U(f, P ′) (and as a conse-
quence, the lower R.I is ≤ the upper one): Indeed, let C be their common refinement.
Then L(f, P ) ≤ L(f, C) ≤ U(f, C) ≤ U(f, P ′).
Def: Let f : Q → R be a bounded function and Q ⊂ Rn be a closed rectangle. Then
the lower Riemann integral

∫
Q
fdV is the supremum over all partitions of L(P, f) and

the upper Riemann integral
∫
Q
fdV is the infimum over all partitions of U(P, f). These

numbers always exist. f is said to be Riemann integrable with integral
∫
Q
fdV if these

numbers are equal and
∫
Q
fdV =

∫
Q
fdV =

∫
Q
fdV .

Example: A constant function is Riemann integrable with integral cv(Q). Indeed,
consider the trivial partition to conclude that the upper and lower Riemann sums and
hence the integrals are equal and that too to cv(Q). Now if P is any other partition,
since mR = MR = c, we see that v(Q) =

∑
R v(R) (an interesting identity).
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Example: A piecewise-constant function on Q is a partition P0 together with constants
ci1i2...in for each open subrectangle and arbitrary values on the boundaries. Piecewise-
constant functions are R.I with integral

∑
I cIv(RI) (where I is a multi-index). Indeed,

given any partition P , consider the common refinement of P0, P . Consider an even
further refinement by adding points on both sides of the points in (P0)i with distance
ϵ > 0. Now the lower and upper Riemann sums are within Cϵ of each other and∑

I cIv(RI) (why?) Hence, the upper and lower R.I are within Cϵ of each other. Since
ϵ is arbitrary, we are done.
Non-example: The Dirichlet function f(x) = 1 when x is a rational and f(x) = 0 when
x is irrational is not R.I over [0, 1].

Theorem 1. Riemann’s criterion: A bounded function f : Q → R is R.I iff for every ϵ > 0,
there is a partition Pϵ such that U(Pϵ, f)− L(Pϵ, f) < ϵ.

The proof is exactly the same as in the 1−D case.

3 Measure zero sets and integrability (from Munkres)
We proved that piecewise-constant functions are integrable. So what went wrong with
the Dirichlet function? It isn’t just that there were infinitely many discontinuities (you
will see an example in your HW). It is that probabilistically speaking, if you throw a
dart at them, you are guaranteed to hit a discontinuity (since probability is presumably
vaguely related to length, we already see a problem). Lebesgue proved a criterion that
decided Riemann integrability (based on this probabilistic intuition).
Instead of probabilities, let us try to define when a set has zero volume:
Def: Let A ⊂ Rn. It is said to have measure zero in Rn if for every ϵ > 0 there is a
cover of A by countably many closed rectangles Q1, . . . , such that

∑
i v(Qi) < ϵ. (This

is abbreviated as “the total volume of this cover is less than ϵ".)
What if A is a rectangle itself? At least if we cover a closed rectangle Q by finitely
many rectangles Q1, . . . , Qk, then is v(Q) ≤

∑k
i=1 v(Qi)? Thankfully yes: Choose a

large rectangle Q′ containing Q1, . . . , Qk. The end points of Q,Q1, . . . , Qk (and those of
Q′) form a partition of Q′. In particular, the intersection of this partition with Q or Q1

or . . . is a partition of each of them. Thus each of these rectangles is a union of some
subrectangles from the bigger partition. We conclude (using the previous results) that
v(Q) =

∑
R⊂Q v(R). Now each such R is in at least one of the Qi (because the Qi form

a cover). Thus,
∑

R⊂Q v(R) ≤
∑k

i=1

∑
R⊂Qi

v(R) (finite summations can be done in any
order by induction). Now again,

∑
R⊂Qi

v(R) = v(Qi). Hence we are done.
Here is an example of a measure zero set: The rationals in [0, 1] have measure zero:
Indeed, they are countable. So enumerate them as a1, a2, . . .. Now consider the cover
[ai − ϵ

2i
, ai +

ϵ
2i
]. The total volume is less than ϵ. In fact, this argument works for any

countable subset of R. Even more generally, suppose A is a countable subset of Rn.
Then enumerate it as before and consider the cover [ai1− ϵ

2i
, ai1+

ϵ
2i
]×[ai2− ϵ

2i
, ai2+

ϵ
2i
] . . ..

The above example indicates that we genuinely need countably many sets and cannot
do with finitely many. Indeed, rationals in [0, 1] have measure zero. If we could
cover them by finitely many rectangles whose total volume is < 1

2
, then by density of
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rationals, [0, 1] is covered by these rectangles but its volume is 1.
Here are a few properties:

1. If B ⊂ A and A has measure zero, then so does B (almost by definition).

2. Let A = ∪iAi where Ai have measure zero. Then so does A: Indeed, cover
Ai by rectangles Rij whose total volume is less than ϵ

2i
. Then the Rij cover all

of A. Now
∑

i

∑
j v(Rij) <

∑
i

ϵ
2i

< ϵ. Enumerate the rectangles Rij so that∑
n v(Qn) =

∑
i

∑
j v(Rij) (but it actually does not matter what order you use

because this series is absolutely summable).

3. The closed rectangles in the definition of measure zero can be replaced by their
interiors (i.e., open ones): Of course, if A is covered by open rectangles whose
total volume is less than ϵ, then their closures also coverA and hence we are done.
Conversely, if A is covered by closed rectangles whose total volume is less than
ϵ
10

, then enlarge the ith closed rectangle by scaling it by a factor of 2. The total
volume is still less than ϵ.
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