MA 200 - Lecture 5

1 Recap

1. Proved the quotient rule and started the proof of the chain rule.

2 Derivatives

Theorem 1. Let $A \subset \mathbb{R}^{m}, B \subset \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}^{n}, g: B \rightarrow \mathbb{R}^{p}$ with $f(A) \subset B$. Suppose a is an interior point of A and $f(a)$ is an interior point of B. If f is differentiable at a and g is differentiable at b, then $g \circ f$ is differentiable at a. Moreover, $D(g \circ f)_{a}=D g_{f(a)} D f_{a}$ (as multiplication of matrices).

Proof. We stopped at $\left\|g(f(a+h))-g(f(a))-D g_{b} D f_{a}(h)\right\| \leq\left\|\Delta_{2}\left(D f_{a}(h)+\Delta_{1}(h)\right)\right\|+$ $\left\|D g_{b}\right\|\left\|\Delta_{1}(h)\right\|$. Therefore, if $\left\|D f_{a}(h)+\Delta_{1}(h)\right\|<\delta_{2}<\delta_{1}<1$, then the first term is less than $\frac{\epsilon}{100+\left\|D g_{b}\right\|+\left\|D f_{a}\right\|+\left\|D f_{a}\right\|\left\|D g_{b}\right\|}\left\|D f_{a}(h)+\Delta_{1}(h)\right\|$. By definition of differentiability of f at a, we see that $\left\|\Delta_{1}(h)\right\|<\frac{\epsilon}{100+\left\|D g_{b}\right\|+\left\|D f_{a}\right\|+\left\|D f_{a}\right\|\left\|D g_{b}\right\|}\|h\|$ whenever $\|h\|<\delta_{3}<\delta_{2}<$ $\delta_{1}<1$. In other words,

$$
\begin{gather*}
\left\|g(f(a+h))-g(f(a))-D g_{b} D f_{a}(h)\right\| \\
\leq \frac{\epsilon}{100+\left\|D g_{b}\right\|+\left\|D f_{a}\right\|+\left\|D f_{a}\right\|\left\|D g_{b}\right\|}\left(\left\|D f_{a}(h)+\Delta_{1}(h)\right\|+\left\|D g_{b}\right\|\|h\|\right) \\
<\epsilon\|h\| . \tag{1}
\end{gather*}
$$

Why?
Using the one-variable MVT, we can prove the multivariable one:
Theorem 2. Let $U \subset \mathbb{R}^{n}$ be an open set and $a, b \in U$ be points such that the line segment $t a+(1-t) b \forall t \in[0,1]$ lies in U. Let $f: U \rightarrow \mathbb{R}$ be a differentiable function. Then $f(a)-f(b)=\langle\nabla f(\theta a+(1-\theta) b), a-b\rangle$ for some $\theta \in(0,1)$.

Caution: This theorem is false for vector-valued functions!
Since we have defined differentiability for vector-valued functions, we can ask whether the derivative function $D f$ is differentiable in its own right. We can also separately ask about each partial derivative being further partially differentiable and so on. There are examples (HW) of functions that are C^{1}, the second partials exist, but the mixed partials, i.e., $D_{i} D_{j} f=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ are not equal. To this end, we define the notion of being C^{2} : A function $f: U \rightarrow \mathbb{R}^{m}$ (where U is open) is said to be C^{2} on U if
$D f$ is C^{1} on U (and hence $D f$ is continuous and hence f is C^{1} and continuous). More generally, f is C^{r} on U if all the $r-1$ partials exist and are C^{1} (thus, the $r-1$ partials are differentiable and hence continuous. By induction, all the partials upto order r are continuous and f is r-times differentiable).
Theorem 3. (Clairaut): If $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{2} on U (and U is open), then $D_{i} D_{j} f(a)=$ $D_{j} D_{i} f(a)$ for all $i \neq j$.

By the way, it is enough for f to merely be twice-differentiable (without being C^{2}) but the proof is more complicated.

Proof. Since we are interested in two variables at a time, without loss of generality, we can assume that $f(x, y)$ is a function of merely two variables.

We first prove a second-order mean value theorem. Let $\lambda(h, k)=f(a, b)-f(a+h, b)-$ $f(a, b+k)+f(a+h, b+k)$. We shall prove that $\lambda(h, k)=D_{2} D_{1} f(p) h k=D_{1} D_{2} f(q) h k$ where p and q are two points in the rectangle with vertices $(a, b),(a+h, b),(a+h, b+$ $k),(a, b+k)$. By symmetry it is enough to prove one of these equations:
Let $\phi(s)=f(s, b+k)-f(s, b)$. Then $\lambda(h, k)=\phi(a+h)-\phi(a)=\phi^{\prime}(\theta) h=h\left(D_{1} f(\theta, b+\right.$ $\left.k)-D_{1} f(\theta, b)\right)=h k D_{2} D_{1} f\left(\theta, \theta^{\prime}\right)$.

From these equations, $D_{2} D_{1} f(p)=D_{1} D_{2} f(q)$. Taking a sequence of h, k tending to 0,0 , we see by continuity of the second partials that we are done.
Proposition 2.1. As a corollary, if f is C^{r}, then all of the mixed partials upto order r are equal.
Proof. We induct on r. $r=2$ is Clairaut. Assume truth for $2,3, \ldots, r-1$. Then $D_{i} D_{j_{1} \ldots j_{k}} f=\left(D_{i} D_{j_{1}}\right)\left(D_{j_{2}} \ldots D_{j_{k}} f\right)$. Now $\left(D_{j_{2}} \ldots D_{j_{k}} f\right)$ is C^{2} (why?) Thus by the C^{2} Clairaut, $D_{j_{1}}\left(D_{i} D_{j_{2}} \ldots f\right)$ which means that i can be permuted to whichever position we want. We are done (why?)

Here is a useful and intuitive result.
Proposition 2.2. Let $U \subset \mathbb{R}^{m}, V \subset \mathbb{R}^{n}$ be open sets. Let $f: U \rightarrow V$ and $g: V \rightarrow \mathbb{R}^{p}$ be C^{r} functions. Then $g \circ f$ is C^{r} for $0 \leq r \leq \infty$.
Proof. For $r=0$ it is a standard property. Let $r=1$. f, g are C^{1} and hence differentiable. By the chain rule, $D(g \circ f)_{x}=D g_{f(x)} D f_{x}$. By the properties of continuity, $D(g \circ f)$ is continuous and hence $g \circ f$ is C^{1}.

Assume inductively that the theorem has been proven for $1,2, \ldots, r-1$. Now $D(g \circ f)_{x}=D g_{f(x)} D f_{x}$ is C^{r-1} by the induction hypothesis (why?). Hence, $g \circ f$ is C^{r}.

If $r=\infty$, then applying the result for each finite r, we see that so $g \circ f$ is C^{∞}.
Recall that one of the points of the one-variable chain rule was to calculate the derivatives of inverses if there existed. Indeed, assuming that $\sin ^{-1}(x)$ is differentiable, since $\sin \left(\sin ^{-1}(x)\right)=x$, by the chain rule, $\cos \left(\sin ^{-1}(x)\right)\left(\sin ^{-1}(x)\right)^{\prime}=1$. Thus, $\left(\sin ^{-1}(x)\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$. Likewise,
Proposition 2.3. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be differentiable at an interior point $a \in U$. Suppose $f(a)$ is an interior point of $f(U)$ and $f: V \rightarrow f(V)$ (where V is a neighbourhood of a) is $1-1$, onto, $f(V)$ is open, and $f^{-1}: f(V) \rightarrow V$ is differentiable at $f(a)$. Then $D f(a)$ is invertible and $D f^{-1}(f(a))=(D f(a))^{-1}$.
Proof. Since $f\left(f^{-1}(x)\right)=x$, by the chain rule at $f(a),\left.\left.D f\right|_{a} D f^{-1}\right|_{f(a)}=I$. Hence we are done.

