
MA 200 - Lecture 19

1 Recap
1. Stated and proved change of variables.

2 Change of variables and volumes of parametrised man-
ifolds

As an application of change of variables, we see that if S ⊂ Rn is rectifiable and h(x) =
Ax (where A is a matrix), then v(h(S)) = | det(A)|v(S). Indeed, if A is invertible, then
h is a change of variables and hence v(h(S)) =

∫
h(S)

1 =
∫
S
1| det(A)| = v(S)| det(A)|. If

A is not invertible, then h(S) is contained in a subspace of dimension < n and hence
has measure zero.
Def: If a1, . . . , ak are linearly independent vectors in Rn, then the set x =

∑
i ciai where

0 ≤ ci ≤ 1 is called the k-dim parallelopiped formed by a1, . . . , ak.
If k = n, since h(x) = Ax takes the standard unit square to the parallelopiped, the
volume of a parallelopiped is | det(A)|. This |.| makes for an interesting definition: An
ordered basis a1, . . . , an is said to be positively oriented if det(A) > 0 and is negatively
oriented if det(A) < 0. Note that if S is a change of basis, then S preserves orientation
if det(S) > 0.
Here is another interesting observation: Let O be an orthogonal matrix (note that an
orthogonal matrix preserves inner products). Then v(OS) = v(S) because det(O) =
±1. This observation leads to a nice definition of the volume of a k-dimensional
parallelopiped where k < n:

Theorem 1. There is a unique function V : Rn × Rn . . . → R≥0 such that

1. If O is an orthogonal matrix, then V (Oa1, . . . , Oak) = V (a1, . . . , ak).

2. If a1 = (b1, 0), . . . , ak = (bk, 0) ∈ Rk × {0}, then V (a1, . . . , ak) = | det(B)|.

V vanishes iff ai are linearly independent. Moreover, V (a1, . . . , ak) =
√

det(ATA) where A is
the n× k matrix A = [a1 . . .].

Proof. Define F (A) = det(ATA). If O is an orthogonal matrix, then F (OA) = F (A).
Moreover, if ai = (bi, 0), then F (A) = det(B)2 ≥ 0 with equality iff bi (and hence (bi, 0))
are linearly dependent. Now given an arbitrary a, there exists an orthogonal matrix
such that Oa = (b, 0) (indeed, take the standard basis to an orthonormal basis that
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restricts to one on the span of a). Now V (A) =
√
F (A) satisfies the conditions of the

theorem and the argument also shows uniqueness.

Let M be a Cr parametrised manifold-without-boundary of dimension k in Rn,
i.e., M = α(D) where α : D ⊂ Rk → Rn is a Cr coordinate parametrisation. Then
the volume of M is defined as v(M) =

∫
D

√
det(DαTDα) if it exists (as an improper

integral). Justification:

1. If we take an infinitesimal rectangle in Rk with sides dxiei, then ∂α⃗
∂xi

dxiei are the
sides of the infinitesimal parallelopiped it gets mapped to. We know that the
volume of this parallelopiped is

√
det(DαTDα).

2. It is independent of parametrisation: Suppose Let α̃ : D̃ ⊂ Rk → Rn be another
Cr coordinate parametrisation (homeomorphic to its image and Dα̃ has rank k
everywhere). Then this is a reparametrisation ofα, i.e., the map ϕ = α̃−1◦α : D →
D̃ is a Cr diffeomorphism (HW). Now α̃ ◦ ϕ = α and hence Dαx = Dα̃ϕ(x)Dϕx ⇒
det((Dαx)

TDαx) = | det(Dϕ(x))|2 det((Dα̃ϕ(x))
T (Dα̃ϕ(x))). Hence by the change of

variables formula, we are done.

More generally, if we want to calculate the “charge" or “mass" of a parametrised
manifold, then if f : M → R is a continuous function (“the charge density"), the
integral of f is defined to be

∫
M
fdV =

∫
D
f ◦ α

√
det(DαTDα). The same proof shows

reparametrisation invariance.
Examples:

1. Consider α : (0, 2π) → R2: α(t) = (cos(t), sin(t)). As we have shown earlier, α is a
smooth coordinate parametrisation. The length of the circle-minus-one point is∫ 2π

0

√
|α′|2dt = 2π. (Note that morally, the one point we missed has measure zero

and shouldn’t contribute to the circumference. Soon we will define the length of
the full circle and you will easily see that indeed our expectation is correct.)

2. Suppose we have a parametrised surface, then det(DαTDα) = ∥∂α
∂u
∥2∥∂α

∂v
∥2 −

|⟨∂α
∂u
, ∂α
∂v
⟩|2 = ∥αu × αv∥2 just as in UM 102. So using this expression we can

calculate the area of the image of α : (0, π) × (0, 2π) → R3 given by α(θ, ϕ) =
(sin(θ) sin(ϕ), sin(θ) cos(ϕ), cos(θ)) to be 4π as expected.

3. α : B0(1) → R3 given by α(x, y) = (x, y,
√
1− x2 − y2). Note that α is smooth on

D but its derivatives are not bounded. Thus the integral must be made sense of as
an improper integral. Let UN = B1−1/N(0). The usual integral over UN exists and
equals

∫
UN

√
1 + x2

1−x2−y2
+ y2

1−x2−y2
=

∫
UN

1√
1−x2−y2

. We can change variables to
polar coordinates (because measure zero sets don’t make a difference) and then
use Fubini to calculate this integral and get something that converges to 2π.

What about general manifolds that cannot be covered by only one coordinate chart?
(By the way, every manifold is, up to measure zero, a parametrised one.) Firstly, given
any open cover by coordinate parametrisations, i.e., by parametrised open sets Ui ∩M
(where Ui are open in Rn), choose a partition-of-unity for ∪iUi subordinate to the open
cover. Secondly assume that M is compact and cover it with finitely many coordinate
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parametrisations - one can find finitely many functions forming a partition-of-unity
(local finiteness guarantees that actually any partition-of-unity is finite). Now sup-
pose f : M → R is a continuous function. Define

∫
M
fdV =

∑
i

∫
Di

ρifdVαi
(note that

since ρif has compact support, each summand is a usual integral). Before we prove
well-definedness, let us generalise manifolds-without-boundary to having boundary
too (that is, instead of only considering the open hemisphere, we want to consider
the closed hemisphere with its boundary circle too). After all, this sort of a notion is
necessary for Green’s theorem.
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