
MA 200 - Lecture 20

1 Recap
1. Defined surface areas/volumes of parametrised manifolds-without-boundary.

2 Manifolds-with-boundary
Consider a hemisphere. What does it look like near the boundary circle? Certainly not
like an open subset of R2 but instead like an open subset of H2 = {y ≥ 0}. So we define
as follows: A subset M ⊂ Rn is called a Cr k-dimensional manifold-with-boundary
if it can be covered with open subsets that are homeomorphic to an open subset U of
either Rk or Hk via α : U → Rn that is Cr and Dα is 1− 1 everywhere.
Recall that a function f : S ⊂ Rk → Rn is said to be Cr if it can be extended to a
Cr function on an open set containing S. This leads to a problem because a function
is Cr at a point p ∈ S if there is a neighbourhood Vp ⊂ Rn of p and a Cr function
f̃p : V → Rn such that f̃p = f on Vp ∩ S. So why is a function Cr iff it is Cr at every
point? This fact is true and can be proven using partitions-of-unity: Indeed, assume
it is Cr at every point. Now take a partition-of-unity subordinate to the cover Vp of S.
Now define f̃ =

∑
i ϕif̃pi . Of course f̃ is Cr on the open set V = ∪iVpi ⊃ S and when

q ∈ S, f̃(q) =
∑

i ϕi(q)f(q) = f(q). Note also that if a function is Cr on an open subset
of Hk, then all the partial derivatives on the boundary points are uniquely determined
(Why?)
If α, β are two coordinate parametrisations on a manifold-with-boundary, then α ◦ β−1

is a Cr injective map whose derivative is injective on the intersection of the domains:
Indeed, it is enough to show that β−1 : M ∩ β(V ) → Rk can be extended to a Cr map
on a neighbourhood. Firstly, if V ⊂ Hk, then by definition, we can extend β to β̃ on
an open subset Ṽ ⊂ Rk containing V . Now by the injective derivative theorem, after
composing with diffeos, ϕ◦ β̃ ◦ψ−1(y) = (y1, . . . , yk, 0, 0 . . .) whose inverse can certainly
be extended to an open set. Hence we are done in this case. In the case where V ⊂ Rk,
we apply this argument to β itself (as opposed to β̃).
Def: Let M ⊂ Rn be a k-dimensional manifold-with-boundary. A point p ∈ M is
said to be interior (NOT in the topological sense) if a neighbourhood of it is coordinate
parametrised by an open subset of Rk. It is said to be a boundary point otherwise. The
set of boundary points (denoted as ∂M ) is called the boundary of M .
The following criteria are useful when p ∈ V ⊂ M and α : U → V is a coordinate
parametrisation:
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1. If U ⊂ Rk, p is an interior point (by definition).

2. If U ⊂ Hk but p is in Hk
xk>0 then p is an interior point (indeed simply shrink U ).

3. If U ⊂ Hk and p is on xk = 0, then p is a boundary point (indeed, if not, then a
neighbourhood of such a point on Hk is homeomorphic to an open subset of Rk

by means of a Cr map f whose derivative is an isomorphism. But by the IFT, the
image of f−1 is open in Rk whereas the original neighbourhood in Hk isn’t).

Finally, if M is a k-dimensional manifold-with-boundary such that ∂M ̸= ϕ (typi-
cally, this condition is understood), then ∂M is a k− 1-dimensional manifold-without-
boundary in Rn: Indeed, cover ∂M by open sets αi(Ui) ∩M = Vi ∩M that are bound-
ary coordinate parametrisations for M . Now consider the maps α̃i(x1, . . . , xk−1) =
αi(x1, . . . , xk−1, 0) from Ui ∩ {xk = 0} to Vi ∩ ∂M . These are Cr bĳective maps and
Dα̃i(v1, . . . , vk−1) = Dαi(v1, . . . , vk−1, 0) which is 0 iff vj = 0 ∀ j. Moreover, α̃i are home-
omorphisms to their images because α̃−1

i are restrictions of the continuous functions
α−1
i . Hence these are coordinate parametrisations.

Lastly, here is a theorem that allows us to prove for instance that the unit disc is a
manifold-with-boundary. (Another example is the hemisphere (HW) but it does not
follow from this theorem.)

Theorem 1. Let f : Rn → R beCr. LetN = {x | f(x) ≤ 0} and let∇f ̸= 0 for every point on
f−1(0) ̸= ϕ. Then N is an n-dimensional manifold-with-boundary in Rn and ∂N = f−1(0).

Proof. Note that the set f < 0 is open (and hence a manifold-without-boundary) in
Rn. Let p ∈ f−1(0). Assume that ∂if ̸= 0. Consider the map H : Rn → Rn given by
H(x) = (x1, . . . , xi−1, xi+1, . . . , xn,−f). Now det(DH(p)) ̸= 0 and hence H is a local
diffeo from V → H(V ) near p. Moreover, Hn ≥ 0 iff f ≤ 0. Thus, α = H−1 takes
the open set H(V ) ∩Hk homeomorphically to its image and is a boundary coordinate
parametrisation. Moreover,Hn = 0 iff f = 0. Thus f−1(0) = ∂M . Lastly, the topological
boundary of f < 0 is f = 0 (why?)

We now define the integral of certain kinds of functions over manifolds with or
without boundary:
LetM be a compact manifold with nonempty or without boundary in Rn of dimension
k. Let f :M → R be continuous and compactly supported in α(U) where α : U →M is
a coordinate parametrisation. We define

∫
M
fdV =

∫
Int(U)

(f ◦ α)
√

det(DαTDα). Note
that this a priori improper integral is actually an ordinary Riemann integral (because
f ◦ α has compact support), we can assume U is bounded WLog, and the integral is
defined over Int(U) because the boundary, being possibly a subset of Hn has measure
zero anyway.
The key point is that this integral is well-defined, independent of the coordinate
parametrisation chosen: This follows from the change-of-variables formula. More-
over, linearity holds, i.e.,

∫
(af + bg) = a

∫
f + b

∫
g by the linearity of the usual integral.

Here is the general definition: Let M be a compact manifold with nonempty or with-
out boundary in Rn and f : M → R be a continuous function. Let ϕi be a (finite)
partition-of-unity subordinate to a cover by all coordinate parametrisations. Then∫
M
fdV :=

∑
i

∫
M
ϕifdV . When f = 1,

∫
M
1dV is called the surface area/volume of M .
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1. If f has support in a coordinate patch, this definition coincides with the ear-
lier one:

∑
i

∫
M
ϕifdV =

∑
i

∫
Int(U)

(ϕif) ◦ α
√

det(DαTDα) =
∫
Int(U)

∑
i ϕi ◦ αf ◦

α
√

det(DαTDα) and we are done.

2. It is independent of the partition-of-unity: If ψj is another partition-of-unity sub-
ordinate to another cover, then

∑
j

∫
M
ψjfdV =

∑
j

∫
M

∑
i ϕi(ψjf)dV =

∑
j

∑
i

∫
M
ϕiψjfdV

(by linearity) and by linearity again, this equals
∑

i

∫
M

∑
j ϕiψjfdV =

∑
i

∫
M
ϕifdV .

Linearity of this general definition is also easy to prove.
Now of course this definition is impossible to work with practically speaking. To this
end, we first define the notion of measure zero on a manifold: LetM ⊂ Rn be aCr com-
pact manifold with or without boundary. A subset D is said to have measure zero in
M if it can be covered by (the images of) countably many coordinate parametrisations
αi : Ui → Vi such thatDi = α−1

i (D∩Vi) has measure zero in Rk for each i. (Note that be-
ing measure zero in Hk is the same as that in Rk (why?).) This definition is well-defined
because a change of parametrisation preserves the notion of measure zero (because as
one of the HW exercises showed,C1 maps take measure zero sets to measure zero sets).
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