
MA 200 - Lecture 1

1 Logistics and about the course
Quizzes based on HW (20), a midterm (30), and a final (50) will form the evaluation
methods for this course. This course will cover multivariable calculus. As mentioned
in UM 102, life depends on multivariable calulus (the solution of Schrödinger equation
for big molecules tells us about properties of materials for instance, building an aircraft
depends on solving partial differential equations, optimising revenues of companies
involves several variables, studying the molecules of air in a room depends on many
variables, etc). Even in pure mathematics, there are theorems that can be stated purely
using polynomials and algebra (algebraic geometry), that need multivariable analysis
methods for their proofs. Analytic number theory needs complex analysis, which
in turn needs multivariable calculus. To study the geometry of curved objects, we
need multivariable calculus. So we need to generalise all of our usual calculus tools
- functions, limits, continuity, derivatives, maxima and minima, Taylor’s theorem,
integrals, and even the fundamental theorem of calculus to more several variables.
Essentially, we will first go over differential calculus (some of which has been done in
UM 102 but it will be done in greater detail), and then integral calculus (this part was
completely glossed over in UM 102). To state the fundamental theorem of calculus
in higher dimensions (in UM 102, the Stokes, Green, and Divergence theorems were
stated with very little rigour), one would have to use the language of manifolds. If
time permits, we can do more interesting things (like an analysis of gradient descent,
abstract manifolds, de Rham cohomology, etc).

2 Review of (real) linear algebra
Linear functions are the simplest examples of functions. So linear algebra is like
multivariable calculus-lite.
Recall that a real vector spaceV is a set where you can add elements and multiply by real
numbers. These operations satisfy the usual properties (commutativity, distributivity,
axioms about zero, etc). A fundamental example of a vector space is Rn and we shall
deal almost exclusively with it. A finite-dimensional vector space is one where there
exists a finite set of vectors such that every element is a linear combination of these
finitely many vectors. A finite-dimensional vector space has a basis: A set of linearly
independent vectors spanning the space. Every such set has the same size called the
dimension of V . In fact, any linearly independent set of dim(V ) vectors is a basis.
A subspace is a subset of the vector space that is closed under addition and scalar
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multiplication. Any basis for a subspace can be extended to a basis of the entire vector
space.

A linear map T : V → W is a function such that T (av + bw) = aT (v) + bT (w).
Examples are dilations, and rotations. Given bases ei and fj of V,W , we get a matrix [T ]:
Tei =

∑
j[T ]jifj . If vi are the components of a vector v =

∑
i viei in V , then w = T (v) =∑

j wjfj has components wj =
∑

i[T ]jivi, i.e., w⃗ = [T ]v⃗. Crucially, composition of linear
maps translates into multiplying the corresponding matrices. Matrix multiplication
satisfies the usual properties. Also, (AB)T = BTAT .

Linear maps take squares to parallelograms. Translations are not linear maps.
Linear maps that are also bĳections are called linear isomorphisms. Secretly, every f.d.
vector space is linearly isomorphic to Rn (using a basis).

Recall that the row rank of a matrix A is the number of linearly independent rows.
Likewise, the column rank is the number of linearly independent columns. One can
prove that the row rank=column rank and hence the notion of rank of a matrix is
well-defined. It can be easily calculated by bringing to the row-reduced echelon form
(by the Gauss-Jordan elimination algorithm). A square matrix is invertible iff it has
full rank iff the RREF is Identity. Invertibility can also be tested by calculating the
“volume of" (will make this precise later) an n-dimensional parallelopiped formed out
of the columns and checking if it is zero or not. This motivates the definition of the
determinant det(A) as an alternating multilinear normalised function of the columns.
It turns out that det(AT ) = det(A) and det(AB) = det(A) det(B). Moreover, det of an
upper-triangular matrix is the product of the diagonal entries. In general, one has a
recursive expansion of a determinant along any row or column. Lastly, a matrix is
invertible iff its determinant is non-zero.

Inner products: A function ⟨, ⟩ : V × V → R is an inner product if it is symmetric,
bilinear, and satisfies ⟨v, v⟩ ≥ 0 with equality iff v = 0. The usual inner product on Rn

is ⟨x, y⟩ =
∑

i xiyi. Every f.d vector space with an inner product has an orthonormal
basis, i.e., a basis such that ⟨ei, ej⟩ = δij . In this basis, the inner product (in terms of
components) is precisely the usual one in Rn. Define ∥x∥2 = ⟨x, x⟩. Crucially, we have
the Cauchy-Schwarz inequality: |⟨x, y⟩| ≤ ∥x∥∥y∥. Using this inequality we can show
the triangle inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥. (We also see that ∥x∥ ≤ ∥x − y∥ + ∥y∥.
Reversing x, y we see the reverse triangle inequality: ∥x− y∥ ≥ |∥x∥ − ∥y∥|.)

Norms: A function ∥.∥ : V → R≥0 is called a norm (a distance function/a metric
if you will) if ∥v∥ = 0 iff v = 0, ∥cv∥ = |c|∥v∥ and ∥x + y∥ ≤ ∥x∥ + ∥y∥. An inner
product defines a norm ∥.∥l2 (but not all norms arise out of inner products). The
function ∥v∥l1 =

∑
i |vi| is a norm as is ∥v∥l∞ = maxi |v|i. Note that ∥v∥l∞ ≤ ∥v∥l1 ≤√

n
√

⟨v, v⟩ ≤ n∥v∥l∞ . Two norms are said to be equivalent if c∥v∥2 ≤ ∥v∥1 ≤ C∥v∥2
for some constants c, C (independent of v). As an exercise you will show that any two
norms on a f.d. vector space are equivalent. Here are two (of course equivalent) norms
on the space of matrices:

1. The operator norm: ∥A∥op := sup∥x∥l2=1 ∥Ax∥l2 . (Why is this a norm?) Note
that if A is diagonalisable with orthonormal eigenvectors ei forming a basis, then
∥Ax∥l2 = ∥

∑
i λixiei∥ =

√∑
i |λi|2x2

i ≤ maxi |λi|. In this case, the operator norm
is maxi |λi|. In general, it may not be the case even if A is diagonalisable! For

instance, take A =

[
1 1
0 0

]
.
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2. The Frobenius/Hilbert-Schmidt norm: ∥A∥2HS :=
∑

i,j ||aij|2 = tr(ATA). This
norm is the usual inner product norm pretending that the space of matrices is
Rmn.

Both of these matrix norms satisfy ∥AB∥ ≤ ∥A∥∥B∥. As a consequence, ifA is invertible,
1 ≤ ∥A∥∥A−1∥.
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