MA 200 - Lecture 28

1 Recap

1. Differential forms on manifolds and exterior derivative.
2. Integration of forms on manifolds.
3. Generalised Stokes' theorem and its proof.

2 The generalised Stokes theorem

Using this version of Stokes, we can recover our UM 102 theorems:

1. Green: Let $\Omega \subset \mathbb{R}^{2}$ be an open set whose topological boundary is a collection of simple closed bounded parametrised smooth curves that are smooth compact 1-manifolds. Then $\bar{\Omega}$ is a smooth manifold-with-boundary (whose boundary is the topological boundary) - HW. Let P, Q be smooth functions on $\bar{\Omega}$. Then $\int_{C}(P d x+Q d y)=\int_{\Omega} d(P d x+Q d y)=\int_{\Omega}\left(Q_{x}-P_{y}\right) d x d y$ provided C is oriented with the restricted orientation, i.e., in the UM 102 way.
2. Stokes: Let $M \subset \mathbb{R}^{3}$ be a smooth compact oriented surface-with-boundary. Let \vec{F} be a smooth vector field on M. Then let $\omega=F_{1} d x+F_{2} d y+F_{3} d z$. Stokes implies $\int_{M} d \omega=\int_{\partial M} \omega$. Now suppose α is an orientation-compatible parametrisation of the interior. Then $\alpha^{*}(d \omega)=\alpha^{*}\left((\nabla \times \vec{F})_{1} d y \wedge d z+\ldots\right)=(\nabla \times \vec{F})_{1} \circ \alpha\left(\partial_{u} \alpha_{2} \partial_{v} \alpha_{3}-\right.$ $\left.\partial_{u} \alpha_{3} \partial_{v} \alpha_{2}\right)+\ldots$ which corresponds to $(\nabla \times \vec{F}) \cdot d \vec{A}$.
3. Divergence: Let $\Omega \subset \mathbb{R}^{3}$ be an open set whose topological boundary is a collection of smooth compact surfaces. Then $\bar{\Omega}$ is a smooth compact 3 -manifold-withboundary whose boundary is the topological boundary) - HW. Now let \vec{F} be a smooth vector field on $\bar{\Omega}$. Consider the 2-form $\omega=F_{1} d y \wedge d z+\ldots$. Then $d \omega=\nabla \cdot \vec{F} d x \wedge d y \wedge d z$. Thus the generalised Stokes theorem gives us what we want.

3 Poincaré lemma

An open set $U \subset \mathbb{R}^{n}$ is called star-shaped if there is a point $y \in U$ such that for every point $x \in U$, the line segment $t x+(1-t) y$ (where $0 \leq t \leq 1$) lies entirely within U. For
instance, an open ball is star-shaped. Here is an elementary point from vector calculus in \mathbb{R}^{3} : Suppose $U \subset \mathbb{R}^{3}$ is star-shaped, then whenever $\nabla \times \vec{F}=\overrightarrow{0}, \vec{F}=\nabla f$. Indeed, one prove it by identifying the "potential function" f by calculating the "work" done by \vec{F}. Indeed, define $f(b)=\int_{0}^{1} \vec{F}(t b+(1-t) y) \cdot(b-y) d t$. We would like to say that

$$
\begin{gather*}
\frac{\partial f}{\partial x}=\int_{0}^{1}\left(F_{1}(t x+(1-t) y)+t \frac{\partial F_{1}}{\partial x}(t b+(1-t) y)\left(b_{1}-y_{1}\right)\right. \\
\left.+t \frac{\partial F_{2}}{\partial x}(t b+(1-t) y)\left(b_{2}-y_{2}\right)+t \frac{\partial F_{3}}{\partial x}(t b+(1-t) y)\left(b_{3}-y_{3}\right)\right) d t \tag{1}
\end{gather*}
$$

Now we can use the curl condition, the chain rule, and the fundamental theorem of calculus to complete the proof (how?) This "proof" raises a few questions:

1. Why can we differentiate inside the integral sign? (This is a theorem that should have been proven in UM 204.)
2. Does this work for general differential forms? (Yes. This is called Poincaré 's lemma.)

For the first question, here is a theorem.
Theorem 1. Let $Q \subset \mathbb{R}^{n}$ be a closed bounded rectangle. Let $f: Q \times[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then the function $F(x)=\int_{a}^{b} f(x, t) d t$ is continuous on Q. Moreover, if $\frac{\partial f}{\partial x_{j}}$ is continuous on $Q \times[a, b]$, then $\frac{\partial F}{\partial x_{j}}$ exists and equals $\int_{a}^{b} \frac{\partial f}{\partial x_{j}}(x, t) d t$.
Proof. Indeed since f is uniformly continuous, there is δ such that if $\|(x, a)-(y, b)\|<\delta$, then $|f(x, a)-f(y, b)|<\frac{\epsilon}{b-a}$ for all $(x, a),(y, b) \in Q \times[a, b]$. Thus, $|F(x)-F(y)|<$ $\int_{a}^{b}|f(x, t)-f(y, t)| d t<\epsilon$ if $\|x-y\|<\delta$. Thus F is continuous.
Wlog $n=1$ (why?) Let $G(x)=\int_{a}^{b} \frac{\partial f}{\partial x}(x, t) d t$ for $x \in[c, d]$. Since we know that the partial of f is continuous, by Fubini and FTC, $\int_{c}^{x_{0}} G(x)=\int_{c}^{x_{0}} \int_{a}^{b} \frac{\partial f}{\partial x}(x, t) d t d x=$ $\int_{a}^{b}\left(f\left(x_{0}, t\right)-f(c, t)\right) d t=F\left(x_{0}\right)-F(c)$. Thus by FTC (we know that G is continuous by the earlier step), $F^{\prime}(x)=G(x)$.

Now we can state and prove Poincaré 's lemma.
Theorem 2. If $U \subset \mathbb{R}^{n}$ is open and star-shaped, then every closed form on U is exact.
 $d x_{i_{a-1}} \wedge d x_{i_{a+1}} \ldots$. Note that η is smooth by the previous result and induction. We claim that $d \eta=\omega$. Indeed,

$$
\begin{equation*}
d \eta=l \int_{0}^{1} t^{l-1} \omega(y+t(x-y)) d t+\sum_{I} \sum_{a=1}^{l}(-1)^{a-1} \int_{0}^{1} t^{l}\left(x_{i_{a}}-y_{i_{a}}\right) d \omega_{I}(y+t(x-y)) \wedge d x_{i_{1}} \ldots . \tag{2}
\end{equation*}
$$

We claim that the above expression is $\int_{0}^{1} \frac{d\left(t^{l} \omega(y+t(x-y))\right)}{d t} d t=\omega(x)$. Indeed, the first term of the product rule (after differentiating inside the integral sign) matches up. (This is
the reason for t^{l} as opposed to t as in the case of a conservative force.) As for the second term (i.e., $\sum_{i} \int_{0}^{1} t^{l} \frac{\partial \omega}{\partial x_{i}}(y+t(x-y))\left(x_{i}-y_{i}\right) d t$), it is somewhat complicated. There is a neat trick here. Consider the map $F: U \times[0,1] \rightarrow U$ given by $F(x, t)=y+t(x-y)$. Note that $F^{*} \omega$ is closed. Now

$$
\begin{gather*}
F^{*} \omega=t^{l} \sum_{I} \omega_{I}(F(x, t)) d x_{i_{1}} \ldots \\
+\sum_{I} \sum_{a} t^{l-1}(-1)^{a-1}\left(x_{i_{a}}-y_{i_{a}}\right) \omega_{I}(F(x, t)) d t d x_{i_{1}} \wedge \ldots d x_{i_{a-1}} \wedge d x_{i_{a}} \ldots \\
\Rightarrow 0=d F^{*} \omega=d_{t} t^{l} \sum_{I} \omega_{I}(F(x, t)) d x_{i_{1}} \ldots+d_{x} t^{l} \sum_{I} \omega_{I}(F(x, t)) d x_{i_{1}} \ldots+ \\
d_{t} \sum_{I} \sum_{a} t^{l-1}(-1)^{a-1}\left(x_{i_{a}}-y_{i_{a}}\right) \omega_{I}(F(x, t)) d t d x_{i_{1}} \wedge \ldots d x_{i_{a-1}} \wedge d x_{i_{a}} \ldots \\
+d_{x} \sum_{I} \sum_{a} t^{l-1}(-1)^{a-1}\left(x_{i_{a}}-y_{i_{a}}\right) \omega_{I}(F(x, t)) d t d x_{i_{1}} \wedge \ldots d x_{i_{a-1}} \wedge d x_{i_{a}} \ldots \\
=\frac{\partial\left(t^{l} \omega(F(t, x))\right)}{d t}(-1)^{l} \wedge d t+0+0 \\
+(-1)^{l-1} d_{x} \sum_{I} \sum_{a} t^{l-1}(-1)^{a-1}\left(x_{i_{a}}-y_{i_{a}}\right) \omega_{I}(F(x, t)) d x_{i_{1}} \wedge \ldots d x_{i_{a-1}} \wedge d x_{i_{a}} \wedge d t \tag{3}
\end{gather*}
$$

Now integrating with respect to t, we see that $d \eta=\omega$.

