
MA 200 - Lecture 28

1 Recap
1. Differential forms on manifolds and exterior derivative.

2. Integration of forms on manifolds.

3. Generalised Stokes’ theorem and its proof.

2 The generalised Stokes theorem
Using this version of Stokes, we can recover our UM 102 theorems:

1. Green: Let Ω ⊂ R2 be an open set whose topological boundary is a collection
of simple closed bounded parametrised smooth curves that are smooth compact
1-manifolds. Then Ω̄ is a smooth manifold-with-boundary (whose boundary
is the topological boundary) - HW. Let P,Q be smooth functions on Ω̄. Then∫
C
(Pdx + Qdy) =

∫
Ω
d(Pdx + Qdy) =

∫
Ω
(Qx − Py)dxdy provided C is oriented

with the restricted orientation, i.e., in the UM 102 way.

2. Stokes: Let M ⊂ R3 be a smooth compact oriented surface-with-boundary. Let F⃗
be a smooth vector field on M . Then let ω = F1dx+ F2dy + F3dz. Stokes implies∫
M
dω =

∫
∂M

ω. Now suppose α is an orientation-compatible parametrisation of
the interior. Then α∗(dω) = α∗((∇× F⃗ )1dy ∧ dz + . . .) = (∇× F⃗ )1 ◦α(∂uα2∂vα3 −
∂uα3∂vα2) + . . . which corresponds to (∇× F⃗ ).dA⃗.

3. Divergence: LetΩ ⊂ R3 be an open set whose topological boundary is a collection
of smooth compact surfaces. Then Ω̄ is a smooth compact 3-manifold-with-
boundary whose boundary is the topological boundary) - HW. Now let F⃗ be
a smooth vector field on Ω̄. Consider the 2-form ω = F1dy ∧ dz + . . .. Then
dω = ∇.F⃗ dx ∧ dy ∧ dz. Thus the generalised Stokes theorem gives us what we
want.

3 Poincaré lemma
An open set U ⊂ Rn is called star-shaped if there is a point y ∈ U such that for every
point x ∈ U , the line segment tx+ (1− t)y (where 0 ≤ t ≤ 1) lies entirely within U . For
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instance, an open ball is star-shaped. Here is an elementary point from vector calculus
in R3: Suppose U ⊂ R3 is star-shaped, then whenever ∇ × F⃗ = 0⃗, F⃗ = ∇f . Indeed,
one prove it by identifying the “potential function" f by calculating the “work" done
by F⃗ . Indeed, define f(b) =

∫ 1

0
F⃗ (tb+ (1− t)y).(b− y)dt. We would like to say that

∂f

∂x
=

∫ 1

0

(
F1(tx+ (1− t)y) + t

∂F1

∂x
(tb+ (1− t)y)(b1 − y1)

+t
∂F2

∂x
(tb+ (1− t)y)(b2 − y2) + t

∂F3

∂x
(tb+ (1− t)y)(b3 − y3)

)
dt. (1)

Now we can use the curl condition, the chain rule, and the fundamental theorem of
calculus to complete the proof (how?) This “proof" raises a few questions:

1. Why can we differentiate inside the integral sign? (This is a theorem that should
have been proven in UM 204.)

2. Does this work for general differential forms? (Yes. This is called Poincaré ’s
lemma.)

For the first question, here is a theorem.

Theorem 1. Let Q ⊂ Rn be a closed bounded rectangle. Let f : Q × [a, b] → R be a
continuous function. Then the function F (x) =

∫ b

a
f(x, t)dt is continuous on Q. Moreover, if

∂f
∂xj

is continuous on Q× [a, b], then ∂F
∂xj

exists and equals
∫ b

a
∂f
∂xj

(x, t)dt.

Proof. Indeed since f is uniformly continuous, there is δ such that if ∥(x, a)−(y, b)∥ < δ,
then |f(x, a) − f(y, b)| < ϵ

b−a
for all (x, a), (y, b) ∈ Q × [a, b]. Thus, |F (x) − F (y)| <∫ b

a
|f(x, t)− f(y, t)|dt < ϵ if ∥x− y∥ < δ. Thus F is continuous.

Wlog n = 1 (why?) Let G(x) =
∫ b

a
∂f
∂x
(x, t)dt for x ∈ [c, d]. Since we know that

the partial of f is continuous, by Fubini and FTC,
∫ x0

c
G(x) =

∫ x0

c

∫ b

a
∂f
∂x
(x, t)dtdx =∫ b

a
(f(x0, t)− f(c, t))dt = F (x0)− F (c). Thus by FTC (we know that G is continuous by

the earlier step), F ′(x) = G(x).

Now we can state and prove Poincaré ’s lemma.

Theorem 2. If U ⊂ Rn is open and star-shaped, then every closed form on U is exact.

Proof. Let η =
∑

i1<i2<...

∑l
a=1(−1)a−1(xia − yia)

∫ 1

0
tl−1ωI(y + t(x− y))dtdxi1 ∧ dxi2 . . .∧

dxia−1 ∧dxia+1 . . .. Note that η is smooth by the previous result and induction. We claim
that dη = ω. Indeed,

dη = l

∫ 1

0

tl−1ω(y + t(x− y))dt+
∑
I

l∑
a=1

(−1)a−1

∫ 1

0

tl(xia − yia)dωI(y + t(x− y)) ∧ dxi1 . . . .

(2)

We claim that the above expression is
∫ 1

0
d(tlω(y+t(x−y)))

dt
dt = ω(x). Indeed, the first term

of the product rule (after differentiating inside the integral sign) matches up. (This is
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the reason for tl as opposed to t as in the case of a conservative force.) As for the second
term (i.e.,

∑
i

∫ 1

0
tl ∂ω

∂xi
(y + t(x − y))(xi − yi)dt), it is somewhat complicated. There is a

neat trick here. Consider the map F : U × [0, 1] → U given by F (x, t) = y + t(x − y).
Note that F ∗ω is closed. Now

F ∗ω = tl
∑
I

ωI(F (x, t))dxi1 . . .

+
∑
I

∑
a

tl−1(−1)a−1(xia − yia)ωI(F (x, t))dtdxi1 ∧ . . . dxia−1 ∧ dxia . . .

⇒ 0 = dF ∗ω = dtt
l
∑
I

ωI(F (x, t))dxi1 . . .+ dxt
l
∑
I

ωI(F (x, t))dxi1 . . .+

dt
∑
I

∑
a

tl−1(−1)a−1(xia − yia)ωI(F (x, t))dtdxi1 ∧ . . . dxia−1 ∧ dxia . . .

+dx
∑
I

∑
a

tl−1(−1)a−1(xia − yia)ωI(F (x, t))dtdxi1 ∧ . . . dxia−1 ∧ dxia . . .

=
∂(tlω(F (t, x)))

dt
(−1)l ∧ dt+ 0 + 0

+(−1)l−1dx
∑
I

∑
a

tl−1(−1)a−1(xia − yia)ωI(F (x, t))dxi1 ∧ . . . dxia−1 ∧ dxia ∧ dt. (3)

Now integrating with respect to t, we see that dη = ω.

3


	Recap
	The generalised Stokes theorem
	Poincaré lemma

