
MA 200 - Lecture 14

1 Recap
1. Basic properties of integration.

2. Define measure zero sets and proved a few properties (about unions and so on).

2 Measure zero sets and integrability (and everything
else from Munkres)

Here are a few properties:

1. If Q is a rectangle (not a point) in Rn, then the boundary has measure 0 but Q
does not: For each boundary face, enlarge it by ϵ

4n
. The sum of the volumes

of these enlarged rectangles is less than ϵ and covers the boundary. (These are
finitely many rectangles. To get a countable collection, simply choose the other
rectangles to be points.)
As forQnot having measure 0, if it did, cover it with finitely many open rectangles
(by compactness and the previous step) whose total volume is less than v(Q). This
is a contradiction.

Now we have enough machinery to prove Lebesgue’s theorem:

Theorem 1. Let Q ⊂ Rn be a closed rectangle and f : Q → R be a bounded function. Let
D ⊂ Q be the set of discontinuities of f . Then f is R.I iff D has measure zero in Rn.

Proof. Let |f(x)| ≤ M ∀ x ∈ Q.

1. If D has measure 0: Roughly speaking, we shall cover D with countably many
rectangles of small total volume, and we shall cover the other points by rectangles
where MR − mR is small. Since Q is compact, only finitely many of all of these
rectangles are necessary and using the endpoints of these finitely many rectangles,
we shall produce a partition P such that U(P, f)− L(P, f) < ϵ.
Cover D by open rectangles Int(Q1), . . . of total volume less than ϵ′ (which we
shall see later ought to be chosen to be ϵ

2M+2v(Q)
). If a is a point where f is

continuous, choose an open rectangle Int(Qa) containing a such that |f(x) −
f(a)| < ϵ′ when x ∈ Qa ∩ Q (the closed rectangle). Then Int(Qi), Int(Qa) cover
Q. Since Q is compact, a finite subcollection (that we shall relabel if necessary)
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Int(Q1), . . . , Int(Qk), Int(Qa1), . . . Int(Qal) cover Q (these need not cover all the
discontinuities or all continuities). Replace Qaj and Qi by their intersections with
Q. Take a partition P given by the endpoints of each component interval of Qi

and Qaj . Then each closed rectangle is a union of sub-rectangles of this partition.
Now every sub-rectangle R is either in Qi or in Qaj . If it is in the former, then
(MR − mR)v(R) ≤ 2Mv(R) and if it is in the latter, (MR − mR)v(R) < 2ϵ′v(R).
Thus, U(P, f)− L(P, f) ≤ 2Mϵ′ + 2ϵ′v(Q) = (2M + 2v(Q))ϵ′ = ϵ if ϵ′ = ϵ

2M+2v(Q)
.

2. If f is R.I: The idea is that if U(P, f) − L(P, f) =
∑

R(MR − mR)v(R) < ϵ, then
the rectangles that cover discontinuities ought to have a relatively large MR − vR.
(If so, then their total volume is small and we are done.) This is not quite true
(because MR − vR can still be O(ϵ) for some such rectangles for instance). So we
shall quantify the amount of discontinuity at every point:
The oscillation of f at a point a ∈ Q is defined as o(f, a) = infδ>0(Mδf − mδf)
where Mδ(f) = sup|x−a|<δ f(x) and mδ(f) = inf |x−a|<δ f(x). It is easy to see that
o(f, a) = 0 iff f is continuous at a (why?).
Let Dm be the set of all x ∈ Q such that o(f, x) ≥ 1

m
. Clearly, D = ∪m∈Z>0Dm.

If prove that each Dm has measure zero, we are done. Indeed, since f is R.I,
given ϵ > 0, there is a partition P such that

∑
R(MR −mR)v(R) < ϵ

2m
. Now every

point in Dm is either in the boundary of a closed rectangle R or in the interior
of one. The collection of all the ones in the boundary have measure 0 (because
the boundaries of each of these countably many rectangles has measure 0) and
hence can be covered by countably many closed rectangles of total measure ϵ

2
.

Suppose Int(Ri1), . . . , Int(Rik) are the rectangles containing all the other points of
Dm. Then 1

m

∑
k v(Rik)

∑
k(MRik

−m(Rik))v(Rik) <
ϵ

2m
and hence

∑
k v(Rik) <

ϵ
2
.

Thus we are done.

As a consequence, piecewise continuous functions (with finitely many pieces) are
R.I. Moreover,

Theorem 2. Assume f is integrable over Q.

1. If f = 0 everywhere except on a set E of measure 0 (vanishes “almost everywhere"), then∫
Q
f = 0.

2. If f ≥ 0 and
∫
Q
f = 0, then f vanishes almost everywhere.

Proof. 1. Let P be a partition. If R is any subrectangle, R is not contained in E and
hence has a point where f vanishes. Thus, mR ≤ 0 and MR ≥ 0. Thus, the L.I is
≤ 0 and the U.I ≥ 0. Since they coincide, the integral is 0.

2. Since the integral exists, f is continuous almost everywhere. At all these points of
continuity, we claim that f = 0. Indeed, if f(a) > 0 at some a, then f(x) ≥ c > 0
for all |x − a| < δ. Now, choose a partition P of mesh < δ. For any rectangle
containing a, mR(f) ≥ c. Thus, L(f, P ) ≥ v(R0)c > 0. But L(f, P ) ≤

∫
Q
f = 0.
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3 Evaluation of integrals
Recall the fundamental theorem of calculus.

Theorem 3. If f : [a, b] → R is continuous,

1. then F (x) =
∫ x

a
f(t)dt is differentiable and F ′(x) = f(x) ∀ x ∈ [a, b].

2. and if F (x) is an antiderivative of f on [a, b], i.e., F ′(x) = f(x) ∀ x ∈ [a, b], then
F (b)− F (a) =

∫ b

a
f(x)dx .

What about multiple integrals? How can we evaluate them?

Theorem 4 (Fubini). Let Q = A × B where A ⊂ Rk and B ⊂ Rn are rectangles. Let
f : Q → R be a bounded function. If f is R.I overQ, then

∫
y∈Bf(x, y)dy and

∫
y∈Bf(x, y)dy are

integrable over A and
∫
Q
f =

∫
x∈A

∫
y∈Bf(x, y)dydx =

∫
x∈A

∫
y∈Bf(x, y)dydx. (In particular,

if f is continuous, then the iterated integral exists and equals the multiple integral in any order.)

Proof. An easy comparison of sums over partitions (using of course, v(RA × RB) =
v(RA)v(RB), and the finite-sum version of Fubini).

Now we can integrate say, x2y + 4x3z2 over a rectangle explicitly.
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