MA 200 - Lecture 14

1 Recap

- 1. Basic properties of integration.
- 2. Define measure zero sets and proved a few properties (about unions and so on).

2 Measure zero sets and integrability (and everything else from Munkres)

Here are a few properties:

1. If Q is a rectangle (not a point) in \mathbb{R}^n , then the boundary has measure 0 but Q does not: For each boundary face, enlarge it by $\frac{\epsilon}{4^n}$. The sum of the volumes of these enlarged rectangles is less than ϵ and covers the boundary. (These are finitely many rectangles. To get a countable collection, simply choose the other rectangles to be points.)

As for Q not having measure 0, if it did, cover it with finitely many open rectangles (by compactness and the previous step) whose total volume is less than v(Q). This is a contradiction.

Now we have enough machinery to prove Lebesgue's theorem:

Theorem 1. Let $Q \subset \mathbb{R}^n$ be a closed rectangle and $f : Q \to \mathbb{R}$ be a bounded function. Let $D \subset Q$ be the set of discontinuities of f. Then f is R.I iff D has measure zero in \mathbb{R}^n .

Proof. Let $|f(x)| \leq M \forall x \in Q$.

1. If *D* has measure 0: Roughly speaking, we shall cover *D* with countably many rectangles of small total volume, and we shall cover the other points by rectangles where $M_R - m_R$ is small. Since *Q* is compact, only finitely many of all of these rectangles are necessary and using the endpoints of these finitely many rectangles, we shall produce a partition *P* such that $U(P, f) - L(P, f) < \epsilon$.

Cover *D* by open rectangles $Int(Q_1), \ldots$ of total volume less than ϵ' (which we shall see later ought to be chosen to be $\frac{\epsilon}{2M+2v(Q)}$). If *a* is a point where *f* is continuous, choose an open rectangle $Int(Q_a)$ containing *a* such that $|f(x) - f(a)| < \epsilon'$ when $x \in Q_a \cap Q$ (the closed rectangle). Then $Int(Q_i), Int(Q_a)$ cover *Q*. Since *Q* is compact, a finite subcollection (that we shall relabel if necessary)

 $Int(Q_1), \ldots, Int(Q_k), Int(Q_{a_1}), \ldots Int(Q_{a_l})$ cover Q (these need not cover all the discontinuities or all continuities). Replace Q_{a_j} and Q_i by their intersections with Q. Take a partition P given by the endpoints of each component interval of Q_i and Q_{a_j} . Then each closed rectangle is a union of sub-rectangles of this partition. Now every sub-rectangle R is either in Q_i or in Q_{a_j} . If it is in the former, then $(M_R - m_R)v(R) \leq 2Mv(R)$ and if it is in the latter, $(M_R - m_R)v(R) < 2\epsilon'v(R)$. Thus, $U(P, f) - L(P, f) \leq 2M\epsilon' + 2\epsilon'v(Q) = (2M + 2v(Q))\epsilon' = \epsilon$ if $\epsilon' = \frac{\epsilon}{2M + 2v(Q)}$.

2. If *f* is R.I: The idea is that if $U(P, f) - L(P, f) = \sum_{R} (M_R - m_R)v(R) < \epsilon$, then the rectangles that cover discontinuities ought to have a relatively large $M_R - v_R$. (If so, then their total volume is small and we are done.) This is not quite true (because $M_R - v_R$ can still be $O(\epsilon)$ for some such rectangles for instance). So we shall quantify the amount of discontinuity at every point:

The oscillation of f at a point $a \in Q$ is defined as $o(f, a) = \inf_{\delta > 0} (M_{\delta}f - m_{\delta}f)$ where $M_{\delta}(f) = \sup_{|x-a| < \delta} f(x)$ and $m_{\delta}(f) = \inf_{|x-a| < \delta} f(x)$. It is easy to see that o(f, a) = 0 iff f is continuous at a (why?).

Let D_m be the set of all $x \in Q$ such that $o(f, x) \geq \frac{1}{m}$. Clearly, $D = \bigcup_{m \in \mathbb{Z}_{>0}} D_m$. If prove that each D_m has measure zero, we are done. Indeed, since f is R.I, given $\epsilon > 0$, there is a partition P such that $\sum_R (M_R - m_R)v(R) < \frac{\epsilon}{2m}$. Now every point in D_m is either in the boundary of a closed rectangle R or in the interior of one. The collection of all the ones in the boundary have measure 0 (because the boundaries of each of these countably many rectangles has measure 0) and hence can be covered by countably many closed rectangles of total measure $\frac{\epsilon}{2}$. Suppose $Int(R_{i_1}), \ldots, Int(R_{i_k})$ are the rectangles containing all the other points of D_m . Then $\frac{1}{m} \sum_k v(R_{i_k}) \sum_k (M_{R_{i_k}} - m(R_{i_k}))v(R_{i_k}) < \frac{\epsilon}{2m}$ and hence $\sum_k v(R_{i_k}) < \frac{\epsilon}{2}$. Thus we are done.

As a consequence, piecewise continuous functions (with finitely many pieces) are R.I. Moreover,

Theorem 2. Assume f is integrable over Q.

- 1. If f = 0 everywhere except on a set E of measure 0 (vanishes "almost everywhere"), then $\int_{\Omega} f = 0$.
- 2. If $f \ge 0$ and $\int_{\Omega} f = 0$, then f vanishes almost everywhere.
- *Proof.* 1. Let *P* be a partition. If *R* is any subrectangle, *R* is not contained in *E* and hence has a point where *f* vanishes. Thus, $m_R \leq 0$ and $M_R \geq 0$. Thus, the L.I is ≤ 0 and the $U.I \geq 0$. Since they coincide, the integral is 0.
 - 2. Since the integral exists, f is continuous almost everywhere. At all these points of continuity, we claim that f = 0. Indeed, if f(a) > 0 at some a, then $f(x) \ge c > 0$ for all $|x a| < \delta$. Now, choose a partition P of mesh $< \delta$. For any rectangle containing a, $m_R(f) \ge c$. Thus, $L(f, P) \ge v(R_0)c > 0$. But $L(f, P) \le \int_Q f = 0$.

3 Evaluation of integrals

Recall the fundamental theorem of calculus.

Theorem 3. If $f : [a, b] \to \mathbb{R}$ is continuous,

- 1. then $F(x) = \int_a^x f(t)dt$ is differentiable and $F'(x) = f(x) \ \forall x \in [a, b]$.
- 2. and if F(x) is an antiderivative of f on [a, b], i.e., $F'(x) = f(x) \forall x \in [a, b]$, then $F(b) F(a) = \int_a^b f(x) dx$.

What about multiple integrals? How can we evaluate them?

Theorem 4 (Fubini). Let $Q = A \times B$ where $A \subset \mathbb{R}^k$ and $B \subset \mathbb{R}^n$ are rectangles. Let $f: Q \to \mathbb{R}$ be a bounded function. If f is R.I over Q, then $\int_{y \in B} f(x, y) dy$ and $\overline{\int_{y \in B}} f(x, y) dy$ are integrable over A and $\int_Q f = \int_{x \in A} \int_{y \in B} f(x, y) dy dx = \int_{x \in A} \overline{\int_{y \in B}} f(x, y) dy dx$. (In particular, if f is continuous, then the iterated integral exists and equals the multiple integral in any order.)

Proof. An easy comparison of sums over partitions (using of course, $v(R_A \times R_B) = v(R_A)v(R_B)$, and the finite-sum version of Fubini).

Now we can integrate say, $x^2y + 4x^3z^2$ over a rectangle explicitly.