MA 200 - Lecture 14

1 Recap

1. Basic properties of integration.
2. Define measure zero sets and proved a few properties (about unions and so on).

2 Measure zero sets and integrability (and everything else from Munkres)

Here are a few properties:

1. If Q is a rectangle (not a point) in \mathbb{R}^{n}, then the boundary has measure 0 but Q does not: For each boundary face, enlarge it by $\frac{\epsilon}{4^{n}}$. The sum of the volumes of these enlarged rectangles is less than ϵ and covers the boundary. (These are finitely many rectangles. To get a countable collection, simply choose the other rectangles to be points.)
As for Q not having measure 0 , if it did, cover it with finitely many open rectangles (by compactness and the previous step) whose total volume is less than $v(Q)$. This is a contradiction.

Now we have enough machinery to prove Lebesgue's theorem:
Theorem 1. Let $Q \subset \mathbb{R}^{n}$ be a closed rectangle and $f: Q \rightarrow \mathbb{R}$ be a bounded function. Let $D \subset Q$ be the set of discontinuities of f. Then f is R.I iff D has measure zero in \mathbb{R}^{n}.

Proof. Let $|f(x)| \leq M \forall x \in Q$.

1. If D has measure 0 : Roughly speaking, we shall cover D with countably many rectangles of small total volume, and we shall cover the other points by rectangles where $M_{R}-m_{R}$ is small. Since Q is compact, only finitely many of all of these rectangles are necessary and using the end points of these finitely many rectangles, we shall produce a partition P such that $U(P, f)-L(P, f)<\epsilon$.
Cover D by open rectangles $\operatorname{Int}\left(Q_{1}\right), \ldots$ of total volume less than ϵ^{\prime} (which we shall see later ought to be chosen to be $\frac{\epsilon}{2 M+2 v(Q)}$). If a is a point where f is continuous, choose an open rectangle $\operatorname{Int}\left(Q_{a}\right)$ containing a such that $\mid f(x)-$ $f(a) \mid<\epsilon^{\prime}$ when $x \in Q_{a} \cap Q$ (the closed rectangle). Then $\operatorname{Int}\left(Q_{i}\right), \operatorname{Int}\left(Q_{a}\right)$ cover Q. Since Q is compact, a finite subcollection (that we shall relabel if necessary)
$\operatorname{Int}\left(Q_{1}\right), \ldots, \operatorname{Int}\left(Q_{k}\right), \operatorname{Int}\left(Q_{a_{1}}\right), \ldots \operatorname{Int}\left(Q_{a_{l}}\right)$ cover Q (these need not cover all the discontinuities or all continuities). Replace $Q_{a_{j}}$ and Q_{i} by their intersections with Q. Take a partition P given by the endpoints of each component interval of Q_{i} and $Q_{a_{j}}$. Then each closed rectangle is a union of sub-rectangles of this partition. Now every sub-rectangle R is either in Q_{i} or in $Q_{a_{j}}$. If it is in the former, then $\left(M_{R}-m_{R}\right) v(R) \leq 2 M v(R)$ and if it is in the latter, $\left(M_{R}-m_{R}\right) v(R)<2 \epsilon^{\prime} v(R)$. Thus, $U(P, f)-L(P, f) \leq 2 M \epsilon^{\prime}+2 \epsilon^{\prime} v(Q)=(2 M+2 v(Q)) \epsilon^{\prime}=\epsilon$ if $\epsilon^{\prime}=\frac{\epsilon}{2 M+2 v(Q)}$.
2. If f is R.I: The idea is that if $U(P, f)-L(P, f)=\sum_{R}\left(M_{R}-m_{R}\right) v(R)<\epsilon$, then the rectangles that cover discontinuities ought to have a relatively large $M_{R}-v_{R}$. (If so, then their total volume is small and we are done.) This is not quite true (because $M_{R}-v_{R}$ can still be $O(\epsilon)$ for some such rectangles for instance). So we shall quantify the amount of discontinuity at every point:
The oscillation of f at a point $a \in Q$ is defined as $o(f, a)=\inf _{\delta>0}\left(M_{\delta} f-m_{\delta} f\right)$ where $M_{\delta}(f)=\sup _{|x-a|<\delta} f(x)$ and $m_{\delta}(f)=\inf _{|x-a|<\delta} f(x)$. It is easy to see that $o(f, a)=0$ iff f is continuous at a (why?).
Let D_{m} be the set of all $x \in Q$ such that $o(f, x) \geq \frac{1}{m}$. Clearly, $D=\cup_{m \in \mathbb{Z}}^{>0} D_{m}$. If prove that each D_{m} has measure zero, we are done. Indeed, since f is R.I, given $\epsilon>0$, there is a partition P such that $\sum_{R}\left(M_{R}-m_{R}\right) v(R)<\frac{\epsilon}{2 m}$. Now every point in D_{m} is either in the boundary of a closed rectangle R or in the interior of one. The collection of all the ones in the boundary have measure 0 (because the boundaries of each of these countably many rectangles has measure 0) and hence can be covered by countably many closed rectangles of total measure $\frac{\epsilon}{2}$. Suppose $\operatorname{Int}\left(R_{i_{1}}\right), \ldots, \operatorname{Int}\left(R_{i_{k}}\right)$ are the rectangles containing all the other points of D_{m}. Then $\frac{1}{m} \sum_{k} v\left(R_{i_{k}}\right) \sum_{k}\left(M_{R_{i_{k}}}-m_{(}\left(R_{i_{k}}\right)\right) v\left(R_{i_{k}}\right)<\frac{\epsilon}{2 m}$ and hence $\sum_{k} v\left(R_{i_{k}}\right)<\frac{\epsilon}{2}$. Thus we are done.

As a consequence, piecewise continuous functions (with finitely many pieces) are R.I. Moreover,

Theorem 2. Assume f is integrable over Q.

1. If $f=0$ everywhere except on a set E of measure 0 (vanishes "almost everywhere"), then $\int_{Q} f=0$.
2. If $f \geq 0$ and $\int_{Q} f=0$, then f vanishes almost everywhere.

Proof. 1. Let P be a partition. If R is any subrectangle, R is not contained in E and hence has a point where f vanishes. Thus, $m_{R} \leq 0$ and $M_{R} \geq 0$. Thus, the L.I is ≤ 0 and the $U . I \geq 0$. Since they coincide, the integral is 0 .
2. Since the integral exists, f is continuous almost everywhere. At all these points of continuity, we claim that $f=0$. Indeed, if $f(a)>0$ at some a, then $f(x) \geq c>0$ for all $|x-a|<\delta$. Now, choose a partition P of mesh $<\delta$. For any rectangle containing $a, m_{R}(f) \geq c$. Thus, $L(f, P) \geq v\left(R_{0}\right) c>0$. But $L(f, P) \leq \int_{Q} f=0$.

3 Evaluation of integrals

Recall the fundamental theorem of calculus.
Theorem 3. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous,

1. then $F(x)=\int_{a}^{x} f(t) d t$ is differentiable and $F^{\prime}(x)=f(x) \forall x \in[a, b]$.
2. and if $F(x)$ is an antiderivative of f on $[a, b]$, i.e., $F^{\prime}(x)=f(x) \forall x \in[a, b]$, then $F(b)-F(a)=\int_{a}^{b} f(x) d x$.

What about multiple integrals? How can we evaluate them?
Theorem 4 (Fubini). Let $Q=A \times B$ where $A \subset \mathbb{R}^{k}$ and $B \subset \mathbb{R}^{n}$ are rectangles. Let $f: Q \rightarrow \mathbb{R}$ be a bounded function. If f is R.I over Q, then $\underline{\int_{y \in B}} f(x, y) d y$ and $\int_{y \in B} f(x, y) d y$ are integrable over A and $\int_{Q} f=\int_{x \in A} \underline{\int_{y \in B}} f(x, y) d y d x=\int_{x \in A} \int_{y \in B} f(x, y) d y d x$. (In particular, if f is continuous, then the iterated integral exists and equals the multiple integral in any order.)

Proof. An easy comparison of sums over partitions (using of course, $v\left(R_{A} \times R_{B}\right)=$ $v\left(R_{A}\right) v\left(R_{B}\right)$, and the finite-sum version of Fubini).

Now we can integrate say, $x^{2} y+4 x^{3} z^{2}$ over a rectangle explicitly.

