MA 200 - Lecture 6

1 Recap

1. Proved the chain rule.
2. Defined higher order derivatives and proved Clairaut.

3. Assuming local differentiable inverses exist, found a formula for the derivative
of such an inverse.

2 Inverse Function Theorem

This is great but how did we conclude that sin~' (z) was differentiable in the first place?
That was a non-trivial result. More generally, if f'(a) # 0, could we have concluded
that not only was f invertible but also f~! was differentiable? As such, this is a silly
question. Of course even sin(x) : R — [—1, 1] is not invertible! However, if we restrict
ourselves to a small region like (—7/2,7/2), then yes it is invertible. So perhaps we
should ask whether f (assumed to be C' from R to R) is locally invertible near a if
f'(a) # 0 and whether the local inverse f~! is differentiable. Indeed, if f'(a) # 0,
[ is monotonic near a and hence locally invertible (and the image of f of a small
neighbourhood is open by the intermediate value theorem).

The image f(U) is open and hence f~! is continuous near f(a). (wWhy?)

What about f~! being differentiable near f(a)? w =k = ﬁ — f%(b) Using
the formula for the derivative, one can show that f~!is C*. H
Can we generalise this theorem to multivariable calculus? Other than differentiability
of the inverse, is there any other point? The answers are 'yes’. But before that, if f is
not C, this theorem is false. For instance, f(x) = = + 22%sin(1/z) when = # 0 and
f(0) = 01is not locally invertible near 0.

Theorem 1. Inverse function theorem Let f : U C R™ — R" be a C" (0o > r > 1) function
on an open set U. If D f, is invertible, then there is a neighbourhood V' of a such that f(V') is
open, f:V — f(V)is1-1, onto,and f~' : f(V) = VisC".

What is the point? Well, even in one-variable, here is an argument to show that for

all ¢ sufficiently close to 1, there exists an z such that z + ;1" — %)(01) = c. Not

that f(z) = z + ;45 — % satisfies f(1) = 1 and f'(1) = 1+ t55¢( cos(1) # 0.
Hence by IFT, f is locally invertible and we are done. In higher dimensions, basically,

if we want to solve a nonlinear system of equations (same number of variables and
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unknowns) near f(zy) = yo, then the ability to solve upto first order (that is, linear
equations) is enough (roughly speaking)!

Proof. Let us first prove the theorem for r = 1:

Proof. 1. fislocally 1 — 1: Basically, f is locally like multiplication by an invertible
matrix and hence 1 — 1. We can make this precise by proving a stronger result
that there exists an o > 0 such that | f(zo) — f(z1)| > a|zg — 24| for all y, z; in an
open ball centred at a. (Why does this result imply local injectivity?) Zeroethly,
why is this true even if f(z) = Ax where A is an invertible matrix? This is
because, f(zg) — f(z1) = A(xo — z1) and hence A7 (f(xg) — f(x1)) = 7o — z; and

thus = ———]xo — z1] < |f(zo) — f(z1)|. Indeed, firstly choose some open ball

B, (r) (and we will shrink this ball if necessary). Now f(z1+h)—f(x1) = D f,, h+A

where 1,z +h € B,(r). Choose the open ball to be so small that D f, is invertible

throughout the open ball and ||Df; || < C (why is this possible?) throughout
the ball (and call the radius of the shrunk ball to be r abusing notation). Thus

DfM(F(@i+h)— f(21)) = h+ Df5 A, Thus [|h+Df1A| < CllF(z+h) - f(a)]|.

Now choose r to be so small that || + D f; 'Al| > 1M for all ||h]| < 2r (HW - why

can this be done?). Thus we are done (why?). [J(Another

way to do this is to take H(z) = f(z) — Df,(x) and use the mean-value-theorem

for each component of H.)

2. The image of a neighbourhood of f is open: We wish to prove that every point
near f(a) lies in the image of f, i.e., the image of f contains an open ball B (r’).
Then f~!(By)(r')) N B,(r) = U will be the desired neighbourhood whose image
is open (and one where f is 1 — 1). That is, we want to produce an ' > 0 such
that for every b € By, (1), we can solve f(z) = b to get an =. There are two ways
of doing this (one of them is the usual way and the other is in the textbook):

(a) Iteration/contraction mapping principle: We can try Newton’s method for
finding a “root" of the equation f(x) = b, i.e., we choose an initial guess
x1 = a, and try the iterative scheme x,, 1 = x, — D f(z,) ' (f(z,) — b) if the
later makes sense. Firstly, recall that on B,(r), ||(Df)™}|| < C. If we choose
" (which is > || f(a) — b||) to be small enough, we claim that all the z,, belong
to B,(r") where " < r and that f(z,) € B,(r’). The rough idea is that
flzny1) —b=~ (f(x,)—0b)—(f(x,) —b) = 0 and hence less than r’. (Moreover,
Tnt1 — Tn, ~ 0 and hence the geometric series sum will show that z,, is close
to a for all n.)

Firstly, there exists v < r and (how? - HW exercise) y, z € B,(r"), we have
IDf(y)(Df)""(2) = I||Frobenius < € = 3. (The choice of this ¢ comes from
hindsight rather than foresight.)

Secondly, zo = a — (D f(a))*(f(a) — b) and hence ||z3 — al| < C||f(a) —b|| <
Cr' <r"iftr’ = % (again from hindsight).

We shall inductively prove that ||z,+1 — | < 23;% and || f(z,) — 0] <
1 f(za—1 — b): Moreover, by the mean-value-theorem applied to each com-
ponent of f(z), fi(xs) = f:(a) — ((Vf)ousas1oses (DF(0)) " (F(a) — b))-
Thus (how again?) ||f(z2) — b|| < €||f(a) — b||]. Assume inductively for



(b)

i=1,2,...,nthat | f(z;) = b|| <e€||f(xi—1) — b]|, and that z; € B,(r").

Now fori =n+ 1, ||z,1 — x| < Ol f(zn) — || < Ce"||f(a) — b||. Thus,
|zns1 —al| < 2C| f(a) —b|| < 2Cr" < r". Thus z,41 € B,(r"). Now the same
mean-value-trick as in the base case shows that || f(z,41) — b|| < €| f(z,.) —b]|.
To summarise, we have shown thatif || f(a)—b|| < 7’ = %,then |Tnr1— 2| <
2;‘% and that || f(z,) — b|| < 2{—11 Thus this sequence is Cauchy (why?) and
hence converges to some z.. Since f is continuous, f(x,) — f(z.). Now
| f(zn) — b|| converges to 0 and hence f(z,) = b.

We can also phrase this entire business in terms of the contraction mapping
principle applied to the function g(x) = = — (D f,) (f(z) — b) (from a closed
ball around a to itself. This is in Rudin’s book).

Maxima/Minima (in the text): First we need an elementary result: Let
¢ : U C R" — R be differentiable on the open set U. If has a local with —¢,
this works for local maxima too) at z, (by the way, U does not have to be
open. All we need is for z, to be an interior point), then D¢,, = 0. Indeed,
consider the one-variable function ¢(t) = ¢(zo + tv) on t € (—¢,€). This
function has a local min at ¢ = 0 (why?) and hence by one-variable calculus,
g'(0) =0 = V,¢(z0). Since this is true for all v, we are done.

Given f(a), we want to show that By(,)(r’) is in the image for some ' > 0,
i.e., given ¢ € By(,), we want to find 2’ € B,(r) such that f(2') = c. The idea
is to minimise the function g(z) = || f(z) — ¢||* over an appropriate domain
() and show that the minimum is 0. Indeed, choose a closed rectangle (or
if you like a closed ball) that contains a and lies entirely within B,(r) and
such that Df, is invertible when z € @) (how is this possible?). Then Q) is
compact and hence g(z) does attain a minimum. Choose and 7’ so that the
ball By,)(2r') does not intersect f(Bd(Q)) (why is this possible? because f
is 1 —1). Now the minimum of g cannot be attained on Bd(Q) (why?) Hence
it is attained at an interior point z’. By the above, Vg(z') = 0 which means
that Df,/(f(x) — ¢) = 0. By invertibility, f(z) = c.



