MA 200 - Lecture 6

1 Recap

1. Proved the chain rule.
2. Defined higher order derivatives and proved Clairaut.
3. Assuming local differentiable inverses exist, found a formula for the derivative of such an inverse.

2 Inverse Function Theorem

This is great but how did we conclude that $\sin ^{-1}(x)$ was differentiable in the first place? That was a non-trivial result. More generally, if $f^{\prime}(a) \neq 0$, could we have concluded that not only was f invertible but also f^{-1} was differentiable? As such, this is a silly question. Of course even $\sin (x): \mathbb{R} \rightarrow[-1,1]$ is not invertible! However, if we restrict ourselves to a small region like $(-\pi / 2, \pi / 2)$, then yes it is invertible. So perhaps we should ask whether f (assumed to be C^{1} from \mathbb{R} to \mathbb{R}) is locally invertible near a if $f^{\prime}(a) \neq 0$ and whether the local inverse f^{-1} is differentiable. Indeed, if $f^{\prime}(a) \neq 0$, f is monotonic near a and hence locally invertible (and the image of f of a small neighbourhood is open by the intermediate value theorem).
The image $f(U)$ is open and hence f^{-1} is continuous near $f(a)$. (why?)
What about f^{-1} being differentiable near $f(a) ? \frac{f^{-1}(f(b)+h)-b}{h}=\frac{k}{h}=\frac{1}{f^{\prime}(\theta)} \rightarrow \frac{1}{f^{\prime}(b)}$. Using the formula for the derivative, one can show that f^{-1} is C^{1}.
Can we generalise this theorem to multivariable calculus? Other than differentiability of the inverse, is there any other point? The answers are 'yes'. But before that, if f is not C^{1}, this theorem is false. For instance, $f(x)=x+2 x^{2} \sin (1 / x)$ when $x \neq 0$ and $f(0)=0$ is not locally invertible near 0 .

Theorem 1. Inverse function theorem Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a $C^{r}(\infty \geq r \geq 1)$ function on an open set U. If $D f_{a}$ is invertible, then there is a neighbourhood V of a such that $f(V)$ is open, $f: V \rightarrow f(V)$ is 1-1, onto, and $f^{-1}: f(V) \rightarrow V$ is C^{r}.

What is the point? Well, even in one-variable, here is an argument to show that for all c sufficiently close to 1 , there exists an x such that $x+\frac{1}{100} e^{\sin (x)}-\frac{e^{\sin (1)}}{100}=c$. Not that $f(x)=x+\frac{1}{100} e^{\sin (x)}-\frac{e^{\sin (1)}}{100}$ satisfies $f(1)=1$ and $f^{\prime}(1)=1+\frac{1}{100} e^{\sin (1)} \cos (1) \neq 0$. Hence by IFT, f is locally invertible and we are done. In higher dimensions, basically, if we want to solve a nonlinear system of equations (same number of variables and
unknowns) near $f\left(x_{0}\right)=y_{0}$, then the ability to solve upto first order (that is, linear equations) is enough (roughly speaking)!

Proof. Let us first prove the theorem for $r=1$:
Proof. 1. f is locally $1-1$: Basically, f is locally like multiplication by an invertible matrix and hence $1-1$. We can make this precise by proving a stronger result that there exists an $\alpha>0$ such that $\left|f\left(x_{0}\right)-f\left(x_{1}\right)\right| \geq \alpha\left|x_{0}-x_{1}\right|$ for all x_{0}, x_{1} in an open ball centred at a. (Why does this result imply local injectivity?) Zeroethly, why is this true even if $f(x)=A x$ where A is an invertible matrix? This is because, $f\left(x_{0}\right)-f\left(x_{1}\right)=A\left(x_{0}-x_{1}\right)$ and hence $A^{-1}\left(f\left(x_{0}\right)-f\left(x_{1}\right)\right)=x_{0}-x_{1}$ and thus $\frac{1}{\left\|A^{-1}\right\|_{\text {Frobenius }}}\left|x_{0}-x_{1}\right| \leq\left|f\left(x_{0}\right)-f\left(x_{1}\right)\right|$. Indeed, firstly choose some open ball $B_{a}(r)$ (and we will shrink this ball if necessary). Now $f\left(x_{1}+h\right)-f\left(x_{1}\right)=D f_{x_{1}} h+\Delta$ where $x_{1}, x_{1}+h \in B_{a}(r)$. Choose the open ball to be so small that $D f_{x}$ is invertible throughout the open ball and $\left\|D f_{x}^{-1}\right\| \leq C$ (why is this possible?) throughout the ball (and call the radius of the shrunk ball to be r abusing notation). Thus $D f_{x_{1}}^{-1}\left(f\left(x_{1}+h\right)-f\left(x_{1}\right)\right)=h+D f_{x_{1}}^{-1} \Delta$. Thus $\left\|h+D f_{x_{1}}^{-1} \Delta\right\| \leq C\left\|f\left(x_{1}+h\right)-f\left(x_{1}\right)\right\|$. Now choose r to be so small that $\left\|h+D f_{x_{1}}^{-1} \Delta\right\| \geq \frac{\|h\|}{2}$ for all $\|h\|<2 r$ (HW - why can this be done?). Thus we are done (why?). \square (Another way to do this is to take $H(x)=f(x)-D f_{a}(x)$ and use the mean-value-theorem for each component of H.)
2. The image of a neighbourhood of f is open: We wish to prove that every point near $f(a)$ lies in the image of f, i.e., the image of f contains an open ball $B_{f(a)}\left(r^{\prime}\right)$. Then $f^{-1}\left(B_{f(a)}\left(r^{\prime}\right)\right) \cap B_{a}(r)=U$ will be the desired neighbourhood whose image is open (and one where f is $1-1$). That is, we want to produce an $r^{\prime}>0$ such that for every $b \in B_{f(a)}\left(r^{\prime}\right)$, we can solve $f(x)=b$ to get an x. There are two ways of doing this (one of them is the usual way and the other is in the textbook):
(a) Iteration/contraction mapping principle: We can try Newton's method for finding a "root" of the equation $f(x)=b$, i.e., we choose an initial guess $x_{1}=a$, and try the iterative scheme $x_{n+1}=x_{n}-D f\left(x_{n}\right)^{-1}\left(f\left(x_{n}\right)-b\right)$ if the later makes sense. Firstly, recall that on $B_{a}(r),\left\|(D f)^{-1}\right\| \leq C$. If we choose r^{\prime} (which is $\left.>\|f(a)-b\|\right)$ to be small enough, we claim that all the x_{n} belong to $B_{a}\left(r^{\prime \prime}\right)$ where $r^{\prime \prime}<r$ and that $f\left(x_{n}\right) \in B_{b}\left(r^{\prime}\right)$. The rough idea is that $f\left(x_{n+1}\right)-b \approx\left(f\left(x_{n}\right)-b\right)-\left(f\left(x_{n}\right)-b\right)=0$ and hence less than r^{\prime}. (Moreover, $x_{n+1}-x_{n} \approx 0$ and hence the geometric series sum will show that x_{n} is close to a for all n.)
Firstly, there exists $r^{\prime \prime}<r$ and (how? - HW exercise) $y, z \in B_{a}\left(r^{\prime \prime}\right)$, we have $\left\|D f(y)(D f)^{-1}(z)-I\right\|_{\text {Frobenius }}<\epsilon=\frac{1}{2}$. (The choice of this ϵ comes from hindsight rather than foresight.)
Secondly, $x_{2}=a-(D f(a))^{-1}(f(a)-b)$ and hence $\left\|x_{2}-a\right\| \leq C\|f(a)-b\|<$ $C r^{\prime}<r^{\prime \prime}$ if $r^{\prime}=\frac{r^{\prime \prime}}{4 C}$ (again from hindsight).
We shall inductively prove that $\left\|x_{n+1}-x_{n}\right\| \leq \frac{r^{\prime \prime}}{2^{n+1}}$ and $\left\|f\left(x_{n}\right)-b\right\|<$ $\frac{1}{2} \| f\left(x_{n-1}-b\right)$: Moreover, by the mean-value-theorem applied to each component of $f(x), f_{i}\left(x_{2}\right)=f_{i}(a)-\left\langle\left(\nabla f_{i}\right)_{\theta_{i, 1} a+\left(1-\theta_{i, 1}\right) x_{2}},(D f(a))^{-1}(f(a)-b)\right\rangle$. Thus (how again?) $\left\|f\left(x_{2}\right)-b\right\|<\epsilon\|f(a)-b\|$. Assume inductively for
$i=1,2, \ldots, n$ that $\left\|f\left(x_{i}\right)-b\right\|<\epsilon\left\|f\left(x_{i-1}\right)-b\right\|$, and that $x_{i} \in B_{a}\left(r^{\prime \prime}\right)$. Now for $i=n+1,\left\|x_{n+1}-x_{n}\right\| \leq C\left\|f\left(x_{n}\right)-b\right\| \leq C \epsilon^{n-1}\|f(a)-b\|$. Thus, $\left\|x_{n+1}-a\right\| \leq 2 C\|f(a)-b\|<2 C r^{\prime}<r^{\prime \prime}$. Thus $x_{n+1} \in B_{a}\left(r^{\prime \prime}\right)$. Now the same mean-value-trick as in the base case shows that $\left\|f\left(x_{n+1}\right)-b\right\|<\epsilon\left\|f\left(x_{n}\right)-b\right\|$. To summarise, we have shown that if $\|f(a)-b\|<r^{\prime}=\frac{r^{\prime \prime}}{4 C}$, then $\left\|x_{n+1}-x_{n}\right\| \leq$ $\frac{r^{\prime \prime}}{2^{n+1}}$ and that $\left\|f\left(x_{n}\right)-b\right\|<\frac{r^{\prime}}{2^{n-1}}$. Thus this sequence is Cauchy (why?) and hence converges to some x_{*}. Since f is continuous, $f\left(x_{n}\right) \rightarrow f\left(x_{*}\right)$. Now $\left\|f\left(x_{n}\right)-b\right\|$ converges to 0 and hence $f\left(x_{*}\right)=b$.
We can also phrase this entire business in terms of the contraction mapping principle applied to the function $g(x)=x-\left(D f_{a}\right)^{-1}(f(x)-b)$ (from a closed ball around a to itself. This is in Rudin's book).
(b) Maxima/Minima (in the text): First we need an elementary result: Let $\phi: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable on the open set U. If has a local with $-\phi$, this works for local maxima too) at x_{0} (by the way, U does not have to be open. All we need is for x_{0} to be an interior point), then $D \phi_{x_{0}}=0$. Indeed, consider the one-variable function $g(t)=\phi\left(x_{0}+t v\right)$ on $t \in(-\epsilon, \epsilon)$. This function has a local min at $t=0$ (why?) and hence by one-variable calculus, $g^{\prime}(0)=0=\nabla_{v} \phi\left(x_{0}\right)$. Since this is true for all v, we are done.
Given $f(a)$, we want to show that $B_{f(a)}\left(r^{\prime}\right)$ is in the image for some $r^{\prime}>0$, i.e., given $c \in B_{f(a)}$, we want to find $x^{\prime} \in B_{a}(r)$ such that $f\left(x^{\prime}\right)=c$. The idea is to minimise the function $g(x)=\|f(x)-c\|^{2}$ over an appropriate domain Q and show that the minimum is 0 . Indeed, choose a closed rectangle (or if you like a closed ball) that contains a and lies entirely within $B_{a}(r)$ and such that $D f_{x}$ is invertible when $x \in Q$ (how is this possible?). Then Q is compact and hence $g(x)$ does attain a minimum. Choose and r^{\prime} so that the ball $B_{f(a)}\left(2 r^{\prime}\right)$ does not intersect $f(B d(Q))$ (why is this possible? because f is $1-1$). Now the minimum of g cannot be attained on $B d(Q)$ (why?) Hence it is attained at an interior point x^{\prime}. By the above, $\nabla g\left(x^{\prime}\right)=0$ which means that $D f_{x^{\prime}}(f(x)-c)=0$. By invertibility, $f(x)=c$.

