MA 200 - Lecture 6

1 Recap

- 1. Proved the chain rule.
- 2. Defined higher order derivatives and proved Clairaut.
- 3. Assuming local differentiable inverses exist, found a formula for the derivative of such an inverse.

2 Inverse Function Theorem

This is great but how did we conclude that $\sin^{-1}(x)$ was differentiable in the first place? That was a non-trivial result. More generally, if $f'(a) \neq 0$, could we have concluded that not only was f invertible but also f^{-1} was differentiable? As such, this is a silly question. Of course even $\sin(x) : \mathbb{R} \to [-1, 1]$ is not invertible! However, if we restrict ourselves to a small region like $(-\pi/2, \pi/2)$, then yes it is invertible. So perhaps we should ask whether f (assumed to be C^1 from \mathbb{R} to \mathbb{R}) is *locally* invertible near a if $f'(a) \neq 0$ and whether the *local* inverse f^{-1} is differentiable. Indeed, if $f'(a) \neq 0$, f is monotonic near a and hence locally invertible (and the image of f of a small neighbourhood is open by the intermediate value theorem).

The image f(U) is open and hence f^{-1} is continuous near f(a). (why?)

What about f^{-1} being differentiable near f(a)? $\frac{f^{-1}(f(b)+h)-b}{h} = \frac{k}{h} = \frac{1}{f'(\theta)} \rightarrow \frac{1}{f'(b)}$. Using the formula for the derivative, one can show that f^{-1} is C^1 .

Can we generalise this theorem to multivariable calculus? Other than differentiability of the inverse, is there any other point? The answers are 'yes'. But before that, if f is not C^1 , this theorem is false. For instance, $f(x) = x + 2x^2 \sin(1/x)$ when $x \neq 0$ and f(0) = 0 is not locally invertible near 0.

Theorem 1. Inverse function theorem Let $f : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a C^r ($\infty \ge r \ge 1$) function on an open set U. If Df_a is invertible, then there is a neighbourhood V of a such that f(V) is open, $f : V \to f(V)$ is 1-1, onto, and $f^{-1} : f(V) \to V$ is C^r .

What is the point? Well, even in one-variable, here is an argument to show that for all *c* sufficiently close to 1, there exists an *x* such that $x + \frac{1}{100}e^{\sin(x)} - \frac{e^{\sin(1)}}{100} = c$. Not that $f(x) = x + \frac{1}{100}e^{\sin(x)} - \frac{e^{\sin(1)}}{100}$ satisfies f(1) = 1 and $f'(1) = 1 + \frac{1}{100}e^{\sin(1)}\cos(1) \neq 0$. Hence by IFT, *f* is locally invertible and we are done. In higher dimensions, basically, if we want to solve a *nonlinear* system of equations (same number of variables and

unknowns) near $f(x_0) = y_0$, then the ability to solve upto first order (that is, *linear* equations) is enough (roughly speaking)!

Proof. Let us first prove the theorem for r = 1:

- Proof. 1. *f* is locally 1 - 1: Basically, *f* is locally like multiplication by an invertible matrix and hence 1 - 1. We can make this precise by proving a stronger result that there exists an $\alpha > 0$ such that $|f(x_0) - f(x_1)| > \alpha |x_0 - x_1|$ for all x_0, x_1 in an open ball centred at a. (Why does this result imply local injectivity?) Zeroethly, why is this true even if f(x) = Ax where A is an invertible matrix? This is because, $f(x_0) - f(x_1) = A(x_0 - x_1)$ and hence $A^{-1}(f(x_0) - f(x_1)) = x_0 - x_1$ and thus $\frac{1}{\|A^{-1}\|_{Frobenius}}|x_0-x_1| \le |f(x_0)-f(x_1)|$. Indeed, firstly choose some open ball $B_a(r)$ (and we will shrink this ball if necessary). Now $f(x_1+h)-f(x_1)=Df_{x_1}h+\Delta$ where $x_1, x_1 + h \in B_a(r)$. Choose the open ball to be so small that Df_x is invertible throughout the open ball and $||Df_x^{-1}|| \leq C$ (why is this possible?) throughout the ball (and call the radius of the shrunk ball to be r abusing notation). Thus $Df_{x_1}^{-1}(f(x_1+h)-f(x_1)) = h + Df_{x_1}^{-1}\Delta. \text{ Thus } \|h + Df_{x_1}^{-1}\Delta\| \le C\|f(x_1+h) - f(x_1)\|.$ Now choose r to be so small that $||h + Df_{x_1}^{-1}\Delta|| \ge \frac{||h||}{2}$ for all ||h|| < 2r (HW - why can this be done?). Thus we are done (why?). □(Another way to do this is to take $H(x) = f(x) - Df_a(x)$ and use the mean-value-theorem for each component of *H*.)
 - 2. The image of a neighbourhood of f is open: We wish to prove that every point near f(a) lies in the image of f, i.e., the image of f contains an open ball $B_{f(a)}(r')$. Then $f^{-1}(B_{f(a)}(r')) \cap B_a(r) = U$ will be the desired neighbourhood whose image is open (and one where f is 1 1). That is, we want to produce an r' > 0 such that for every $b \in B_{f(a)}(r')$, we can solve f(x) = b to get an x. There are two ways of doing this (one of them is the usual way and the other is in the textbook):
 - (a) Iteration/contraction mapping principle: We can try Newton's method for finding a "root" of the equation f(x) = b, i.e., we choose an initial guess $x_1 = a$, and try the iterative scheme $x_{n+1} = x_n Df(x_n)^{-1}(f(x_n) b)$ if the later makes sense. Firstly, recall that on $B_a(r)$, $||(Df)^{-1}|| \le C$. If we choose r' (which is > ||f(a) b||) to be small enough, we claim that all the x_n belong to $B_a(r'')$ where r'' < r and that $f(x_n) \in B_b(r')$. The rough idea is that $f(x_{n+1}) b \approx (f(x_n) b) (f(x_n) b) = 0$ and hence less than r'. (Moreover, $x_{n+1} x_n \approx 0$ and hence the geometric series sum will show that x_n is close to a for all n.)

Firstly, there exists r'' < r and (how? - HW exercise) $y, z \in B_a(r'')$, we have $\|Df(y)(Df)^{-1}(z) - I\|_{Frobenius} < \epsilon = \frac{1}{2}$. (The choice of this ϵ comes from hindsight rather than foresight.)

Secondly, $x_2 = a - (Df(a))^{-1}(f(a) - b)$ and hence $||x_2 - a|| \le C||f(a) - b|| < Cr' < r''$ if $r' = \frac{r''}{4C}$ (again from hindsight).

We shall inductively prove that $||x_{n+1} - x_n|| \leq \frac{r''}{2^{n+1}}$ and $||f(x_n) - b|| < \frac{1}{2}||f(x_{n-1} - b)$: Moreover, by the mean-value-theorem applied to each component of f(x), $f_i(x_2) = f_i(a) - \langle (\nabla f_i)_{\theta_{i,1}a+(1-\theta_{i,1})x_2}, (Df(a))^{-1}(f(a) - b) \rangle$. Thus (how again?) $||f(x_2) - b|| < \epsilon ||f(a) - b||$. Assume inductively for i = 1, 2, ..., n that $||f(x_i) - b|| < \epsilon ||f(x_{i-1}) - b||$, and that $x_i \in B_a(r'')$. Now for i = n + 1, $||x_{n+1} - x_n|| \le C ||f(x_n) - b|| \le C \epsilon^{n-1} ||f(a) - b||$. Thus, $||x_{n+1} - a|| \le 2C ||f(a) - b|| < 2Cr' < r''$. Thus $x_{n+1} \in B_a(r'')$. Now the same mean-value-trick as in the base case shows that $||f(x_{n+1}) - b|| < \epsilon ||f(x_n) - b||$. To summarise, we have shown that if $||f(a) - b|| < r' = \frac{r''}{4C}$, then $||x_{n+1} - x_n|| \le \frac{r''}{2^{n+1}}$ and that $||f(x_n) - b|| < \frac{r'}{2^{n-1}}$. Thus this sequence is Cauchy (why?) and hence converges to some x_* . Since f is continuous, $f(x_n) \to f(x_*)$. Now $||f(x_n) - b||$ converges to 0 and hence $f(x_*) = b$.

We can also phrase this entire business in terms of the contraction mapping principle applied to the function $g(x) = x - (Df_a)^{-1}(f(x) - b)$ (from a closed ball around *a* to itself. This is in Rudin's book).

(b) Maxima/Minima (in the text): First we need an elementary result: Let $\phi : U \subset \mathbb{R}^n \to \mathbb{R}$ be differentiable on the open set U. If has a local with $-\phi$, this works for local maxima too) at x_0 (by the way, U does not have to be open. All we need is for x_0 to be an interior point), then $D\phi_{x_0} = 0$. Indeed, consider the one-variable function $g(t) = \phi(x_0 + tv)$ on $t \in (-\epsilon, \epsilon)$. This function has a local min at t = 0 (why?) and hence by one-variable calculus, $g'(0) = 0 = \nabla_v \phi(x_0)$. Since this is true for all v, we are done.

Given f(a), we want to show that $B_{f(a)}(r')$ is in the image for some r' > 0, i.e., given $c \in B_{f(a)}$, we want to find $x' \in B_a(r)$ such that f(x') = c. The idea is to minimise the function $g(x) = ||f(x) - c||^2$ over an appropriate domain Q and show that the minimum is 0. Indeed, choose a closed rectangle (or if you like a closed ball) that contains a and lies entirely within $B_a(r)$ and such that Df_x is invertible when $x \in Q$ (how is this possible?). Then Q is compact and hence g(x) does attain a minimum. Choose and r' so that the ball $B_{f(a)}(2r')$ does not intersect f(Bd(Q)) (why is this possible? because fis 1-1). Now the minimum of g cannot be attained on Bd(Q) (why?) Hence it is attained at an interior point x'. By the above, $\nabla g(x') = 0$ which means that $Df_{x'}(f(x) - c) = 0$. By invertibility, f(x) = c.

	-	-	-	
1			1	
			1	
			1	

-	-	-	