
MA 200 - Lecture 6

1 Recap
1. Proved the chain rule.

2. Defined higher order derivatives and proved Clairaut.

3. Assuming local differentiable inverses exist, found a formula for the derivative
of such an inverse.

2 Inverse Function Theorem
This is great but how did we conclude that sin−1(x) was differentiable in the first place?
That was a non-trivial result. More generally, if f ′(a) ̸= 0, could we have concluded
that not only was f invertible but also f−1 was differentiable? As such, this is a silly
question. Of course even sin(x) : R → [−1, 1] is not invertible! However, if we restrict
ourselves to a small region like (−π/2, π/2), then yes it is invertible. So perhaps we
should ask whether f (assumed to be C1 from R to R) is locally invertible near a if
f ′(a) ̸= 0 and whether the local inverse f−1 is differentiable. Indeed, if f ′(a) ̸= 0,
f is monotonic near a and hence locally invertible (and the image of f of a small
neighbourhood is open by the intermediate value theorem).
The image f(U) is open and hence f−1 is continuous near f(a). (why?)
What about f−1 being differentiable near f(a)? f−1(f(b)+h)−b

h
= k

h
= 1

f ′(θ)
→ 1

f ′(b)
. Using

the formula for the derivative, one can show that f−1 is C1.
Can we generalise this theorem to multivariable calculus? Other than differentiability
of the inverse, is there any other point? The answers are ’yes’. But before that, if f is
not C1, this theorem is false. For instance, f(x) = x + 2x2 sin(1/x) when x ̸= 0 and
f(0) = 0 is not locally invertible near 0.

Theorem 1. Inverse function theorem Let f : U ⊂ Rn → Rn be a Cr (∞ ≥ r ≥ 1) function
on an open set U . If Dfa is invertible, then there is a neighbourhood V of a such that f(V ) is
open, f : V → f(V ) is 1-1, onto, and f−1 : f(V ) → V is Cr.

What is the point? Well, even in one-variable, here is an argument to show that for
all c sufficiently close to 1, there exists an x such that x + 1

100
esin(x) − esin(1)

100
= c. Not

that f(x) = x + 1
100

esin(x) − esin(1)

100
satisfies f(1) = 1 and f ′(1) = 1 + 1

100
esin(1) cos(1) ̸= 0.

Hence by IFT, f is locally invertible and we are done. In higher dimensions, basically,
if we want to solve a nonlinear system of equations (same number of variables and
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unknowns) near f(x0) = y0, then the ability to solve upto first order (that is, linear
equations) is enough (roughly speaking)!

Proof. Let us first prove the theorem for r = 1:

Proof. 1. f is locally 1− 1: Basically, f is locally like multiplication by an invertible
matrix and hence 1 − 1. We can make this precise by proving a stronger result
that there exists an α > 0 such that |f(x0)− f(x1)| ≥ α|x0 − x1| for all x0, x1 in an
open ball centred at a. (Why does this result imply local injectivity?) Zeroethly,
why is this true even if f(x) = Ax where A is an invertible matrix? This is
because, f(x0)− f(x1) = A(x0 − x1) and hence A−1(f(x0)− f(x1)) = x0 − x1 and
thus 1

∥A−1∥Frobenius
|x0−x1| ≤ |f(x0)− f(x1)|. Indeed, firstly choose some open ball

Ba(r) (and we will shrink this ball if necessary). Now f(x1+h)−f(x1) = Dfx1h+∆
where x1, x1+h ∈ Ba(r). Choose the open ball to be so small thatDfx is invertible
throughout the open ball and ∥Df−1

x ∥ ≤ C (why is this possible?) throughout
the ball (and call the radius of the shrunk ball to be r abusing notation). Thus
Df−1

x1
(f(x1+h)−f(x1)) = h+Df−1

x1
∆. Thus ∥h+Df−1

x1
∆∥ ≤ C∥f(x1+h)−f(x1)∥.

Now choose r to be so small that ∥h+Df−1
x1

∆∥ ≥ ∥h∥
2

for all ∥h∥ < 2r (HW - why
can this be done?). Thus we are done (why?). (Another
way to do this is to take H(x) = f(x)−Dfa(x) and use the mean-value-theorem
for each component of H .)

2. The image of a neighbourhood of f is open: We wish to prove that every point
near f(a) lies in the image of f , i.e., the image of f contains an open ball Bf(a)(r

′).
Then f−1(Bf(a)(r

′))∩Ba(r) = U will be the desired neighbourhood whose image
is open (and one where f is 1 − 1). That is, we want to produce an r′ > 0 such
that for every b ∈ Bf(a)(r

′), we can solve f(x) = b to get an x. There are two ways
of doing this (one of them is the usual way and the other is in the textbook):

(a) Iteration/contraction mapping principle: We can try Newton’s method for
finding a “root" of the equation f(x) = b, i.e., we choose an initial guess
x1 = a, and try the iterative scheme xn+1 = xn −Df(xn)

−1(f(xn) − b) if the
later makes sense. Firstly, recall that on Ba(r), ∥(Df)−1∥ ≤ C. If we choose
r′ (which is > ∥f(a)− b∥) to be small enough, we claim that all the xn belong
to Ba(r

′′) where r′′ < r and that f(xn) ∈ Bb(r
′). The rough idea is that

f(xn+1)− b ≈ (f(xn)− b)− (f(xn)− b) = 0 and hence less than r′. (Moreover,
xn+1 − xn ≈ 0 and hence the geometric series sum will show that xn is close
to a for all n.)
Firstly, there exists r′′ < r and (how? - HW exercise) y, z ∈ Ba(r

′′), we have
∥Df(y)(Df)−1(z) − I∥Frobenius < ϵ = 1

2
. (The choice of this ϵ comes from

hindsight rather than foresight.)
Secondly, x2 = a− (Df(a))−1(f(a)− b) and hence ∥x2 − a∥ ≤ C∥f(a)− b∥ <
Cr′ < r′′ if r′ = r′′

4C
(again from hindsight).

We shall inductively prove that ∥xn+1 − xn∥ ≤ r′′

2n+1 and ∥f(xn) − b∥ <
1
2
∥f(xn−1 − b): Moreover, by the mean-value-theorem applied to each com-

ponent of f(x), fi(x2) = fi(a) − ⟨(∇fi)θi,1a+(1−θi,1)x2 , (Df(a))−1(f(a) − b)⟩.
Thus (how again?) ∥f(x2) − b∥ < ϵ∥f(a) − b∥. Assume inductively for
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i = 1, 2, . . . , n that ∥f(xi)− b∥ < ϵ∥f(xi−1)− b∥, and that xi ∈ Ba(r
′′).

Now for i = n + 1, ∥xn+1 − xn∥ ≤ C∥f(xn) − b∥ ≤ Cϵn−1∥f(a) − b∥. Thus,
∥xn+1 − a∥ ≤ 2C∥f(a)− b∥ < 2Cr′ < r′′. Thus xn+1 ∈ Ba(r

′′). Now the same
mean-value-trick as in the base case shows that ∥f(xn+1)−b∥ < ϵ∥f(xn)−b∥.
To summarise, we have shown that if ∥f(a)−b∥ < r′ = r′′

4C
, then ∥xn+1−xn∥ ≤

r′′

2n+1 and that ∥f(xn)− b∥ < r′

2n−1 . Thus this sequence is Cauchy (why?) and
hence converges to some x∗. Since f is continuous, f(xn) → f(x∗). Now
∥f(xn)− b∥ converges to 0 and hence f(x∗) = b.
We can also phrase this entire business in terms of the contraction mapping
principle applied to the function g(x) = x− (Dfa)

−1(f(x)− b) (from a closed
ball around a to itself. This is in Rudin’s book).

(b) Maxima/Minima (in the text): First we need an elementary result: Let
ϕ : U ⊂ Rn → R be differentiable on the open set U . If has a local with −ϕ,
this works for local maxima too) at x0 (by the way, U does not have to be
open. All we need is for x0 to be an interior point), then Dϕx0 = 0. Indeed,
consider the one-variable function g(t) = ϕ(x0 + tv) on t ∈ (−ϵ, ϵ). This
function has a local min at t = 0 (why?) and hence by one-variable calculus,
g′(0) = 0 = ∇vϕ(x0). Since this is true for all v, we are done.
Given f(a), we want to show that Bf(a)(r

′) is in the image for some r′ > 0,
i.e., given c ∈ Bf(a), we want to find x′ ∈ Ba(r) such that f(x′) = c. The idea
is to minimise the function g(x) = ∥f(x) − c∥2 over an appropriate domain
Q and show that the minimum is 0. Indeed, choose a closed rectangle (or
if you like a closed ball) that contains a and lies entirely within Ba(r) and
such that Dfx is invertible when x ∈ Q (how is this possible?). Then Q is
compact and hence g(x) does attain a minimum. Choose and r′ so that the
ball Bf(a)(2r

′) does not intersect f(Bd(Q)) (why is this possible? because f
is 1−1). Now the minimum of g cannot be attained on Bd(Q) (why?) Hence
it is attained at an interior point x′. By the above, ∇g(x′) = 0 which means
that Dfx′(f(x)− c) = 0. By invertibility, f(x) = c.
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