
MA 200 - Lecture 21

1 Recap
1. Defined manifolds-with-boundary, gave an example (unit disc), interior and

boundary points.

2. Defined integrals of continuous functions over compact manifolds-with-boundary.

3. Defined measure zero on manifolds.

2 Manifolds-with-boundary
Theorem 1. Let M ⊂ Rn be a compact Cr k-manifold with or without boundary. Let
f : M → R be a continuous function. Suppose αi : Ai → Mi are (finitely many) coordinate
parametrisations (where Ai are open subsets of either Rk or Hk), and M is the disjoint union of
the open sets Mi and a set K of measure zero in M . Then∫

fdV =
∑
i

Improper

∫
Int(Ai)

(f ◦ αi)
√

det(DαT
i Dαi). (1)

Proof. Since both sides are linear in f , WLOG, we can assume that the support of
f is contained in a bounded single coordinate parametrisation α : U → V . Then∫
M
fdV =

∫
U
(f ◦ α)

√
det(DαTDα). Let Wi = α−1(Mi ∩ V ) and L = α−1(K ∩ V ).

Then Wi are open sets in Rk or Hk and L has measure zero in Rk. Moreover, U is
the disjoint union of Wi and L. Note that Improper

∑
i

∫
Int(Wi)

(f ◦ α)
√
det(DαTDα)

exist as usual integrals (why?) and by additivity and the fact that L has measure zero,
this sum is

∫
Int(U)

(f ◦ α)
√

det(DαTDα) =
∫
M
fdV . Now we claim that the integral of

F = (f ◦ α)
√

det(DαTDα) over Int(Wi) is the integral of Fi = (f ◦ αi)
√

det(DαT
i Dαi)

over Int(Ai). By the change of variables formula, the integral of F over Int(Wi) is the
improper integral of Fi over the interior of Bi = α−1

i (Mi ∩ V ). This follows from the
additivity property for improper integrals.

As a consequence, we can calculate the surface area of a sphere using the usual
parametrisation by polar coordinates.
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3 A sketch of proof of Green’s theorem
A version of Green: Let Ω ⊂ R2 be a compact set, f : Ω → R a smooth function,
f = 0 is a regular level set, and f ≥ 0 is Ω. Suppose ∂Ω can be parametrised-
upto-measure zero by a single patch γ : (0, 1) → R2 such that ∇f × γ′ points in
the k̂ direction throughout γ(0, 1). Let P,Q : Ω → R be smooth functions. Then∫ 1

0
((P ◦ γ)γ′

1 + (Q ◦ γ)γ′
2)dt =

∫
Int(Ω)

(Qx − Py).

Proof. Cover the boundary by boundary coordinate patchesUi (of the form α−1(x, y) →
(x, f) (when fy > 0) or (−y, f) (when fx > 0), etc). Note that these changes of variables
have positive Jacobians) and the interior by the usual patch V . Choose a partition-of-
unity ρj subordinate to this cover. By linearity, we can assume WLog that P,Q have
supports in one of these coordinate patches. If that patch is V , then the RHS is zero
(because it is trivial to prove Green for rectangles) and so is the LHS. If it is one of the
Ui, then by change of variables, we can reduce to a rectangle and be done. Now the fact
that the integral can be calculated by only one patch γ(0, 1) follows from the measure
zero business. The key point is that the direction of γ′ is the right one for the Green
theorem over a rectangle.

4 Orientability of manifolds
In the above sketch of proof, it appears crucial that the integral be such that it changes
by the Jacobian upon change of variables and that we have successfully covered the
manifold-with-boundary by coordinate patches where the change of patch Jacobian
is positive. We generalise the latter property into a definition as follows. (The former
property will also have to be generalised to higher dimensions.)
Let g : A ⊂ Rk → B ⊂ Rk be a diffeo. It is said to be orientation-preserving if
det(Dg) > 0 everywhere. It is said to be orientation-reversing if det(Dg) < 0 every-
where. (Note that if A is connected, then only one of these possibilities occurs.)
Let M ⊂ Rn be a k-dimensional manifold with nonempty or without boundary.
Given two coordinate parametrisations αi : Ui → Vi, we say that they are orientation-
compatible with each other if the transition functionsαi◦α−1

j are orientation-preserving.
If k ≥ 2, and M can be covered with coordinate patches that are mutually orientation-
compatible with each other, then M is said to be orientable and the given collection of
compatible coordinate patches, augmented with all possible coordinate patches that
are compatible with the given ones, is said to be an orientation of M .
Given a parametrisation α, we can reverse its orientation: β = (−α1, α2, . . .). Now
α ◦ β−1(x1, x2, . . . , xk) = (−x1, . . . , xk), which is an orientation-reversing diffeo. Thus,
given an oriented manifold, we can reverse all the orientation-compatible parametri-
sations and produce another orientation called the opposite orientation.

1. An oriented 1-manifold M (according to the k ≥ 2 definition) has a Cr-varying
unit-speed tangent vector field, i.e., a function T : M → Rn such that T (p) ∈
TpM ∀ p ∈ M (note that TpM is the span of ∂α

∂xi
(p) for an parametrisation), for any

parametrisationα, T ◦α is aCr function, and ∥T (p)∥ = 1 ∀ p. Indeed, coverM with
orientation-compatible coordinate parametrisations. Then define T (p) =

α′
i(t)

∥α′
i(t)∥

.
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This definition is independent of i.
However, the converse is not true in the case of k = 1. The problem is that
[0, 1] ⊂ R is not “orientable": Indeed, if there is such a T : [0, 1] → R that is
compatible with orientation-preserving charts, then suppose the usual interior
coordinate chart is orientation-compatible on R. The boundary charts near 1 and
0 “point" in opposite directions and hence we have a problem. Thus we define
orientation for 1-manifolds to simply be the existence of a Cr-varying unit-speed
tangent vector field (the opposite orientation comes from simply −T ).

2. Here is a lemma that produces several examples: Let M be an n− 1-dimensional
(where n − 1 ≥ 2) manifold in Rn. A Cr-varying unit normal vector field on M
is a function n : M → Rn such that for any coordinate patch α, n ◦ α is Cr (by
the chain rule, this can be accomplished by making sure such is the case for some
collection of patches that cover M ), n(p) ⊥ TpM ∀ p. Now M is orientable iff it
has a Cr-varying unit normal vector field:

3. A Möbius strip is not orientable (a challenging exercise).
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