
MA 200 - Lecture 8

1 Recap
1. Inverse function theorem (

Theorem 1. Let f : U ⊂ Rn → Rn be a Cr (∞ ≥ r ≥ 1) function on an open set
U . If Dfa is invertible, then there is a neighbourhood V of a such that f(V ) is open,
f : V → f(V ) is 1-1, onto, and f−1 : f(V ) → V is Cr.

)

2 Implicit function theorem
Recall that one of the points of the IFT is to solve certain systems of n nonlinear equations
with n unknowns f(x) = b where b is near f(a). The IFT shows that not only do
solutions exist near a, but also, they vary nicely (in a Cr manner) as the RHS varies.
What if (like in linear algebra) we want to solve m equations with n unknowns? (where
m ≤ n), then just like in linear algebra, if the equations are “independent" in some
sense, then we ought to have n − m “free parameters". Let’s look at an example:
x2 + y2 = 1. Of course y = ±

√
1− x2. This example tells us that

1. The solution need not be unique.

2. Locally, one can hope for a unique solution. But even this need not be true at
some points (like x = 1).

3. The solution can fail to be differentiable at some points.

4. It might be prudent to interchange the roles of the “independent/free variables"
and the “dependent variables", i.e., x = ±

√
1− y2 makes more sense near y = 0.

Here is another example: x2 + y2 + ey
4
sin2(x3) = 1. Obviously it is hard to solve for

(if it is possible at all) for one variable in terms of another. Even if we manage to do
so, let’s say y = g(x), this function is not going to be as explicit (that is, a combination
of known functions) as the previous one (one can attempt to make this sort of a thing
precise using Galois theory). Note that when x = 0, y = ±1. Near (0, 1), the “bad term"
is roughly of the order of x6 and hence it is not shocking to claim that we can perhaps
solve for y in terms of x near (0, 1) in perhaps a smooth manner.

So we arrive at this question: Suppose f(x, y) : U ⊂ R2 → R is a C1 function, and
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f(a, b) = c, then when can we expect that y can locally (near (a, b)) be solved for in
a C1 manner in terms of x? The answer as usual is obtained by looking at the linear
approximation of f : f(x, y) ≈ f(a, b)+(x−a)fx(a, b)+(y−b)fy(a, b). That is, f(x, y) = c
when (x−a)fx(a, b)+(y−b)fy(a, b) ≈ 0. Thus, if fy(a, b) ̸= 0, we expect y to be solvable
in terms of x. Here is an easy proposition (Chain rule) that fortifies this expectation:

Theorem 2. Let f : U ⊂ R2 → R be aC1 function (andU be an open set). Suppose f(a, b) = c.
Assume that there is a C1 function g : (a − ϵ, a + ϵ) → R such that (x, g(x)) ∈ U ∀ x such
that f(x, g(x)) = c ∀ x. Also assume that fy(a, b) ̸= 0. Then g′(x) = −fx(x,g(x))

fy(x,g(x))
.

This technique is called implicit differentiation. However, the drawback is that we
already needed to know that g(x) existed. Ideally, we would want an IFT-type existence
theorem:

Theorem 3 (Implicit function theorem in two variables). Let f : U ⊂ R2 → R be a C1

function (and U be an open set). Suppose f(a, b) = c and fy(a, b) ̸= 0. Then there exists
a neighbourhood (a − ϵ, a + ϵ) of a and a C1 function g : (a − ϵ, a + ϵ) → R such that
(x, g(x)) ∈ U ∀ x and f(x, g(x)) = c ∀ x.

Proof. Basically, given x, we want to solve for y from f(x, y) = c. Recall that the IFT
does something like this but the RHS is allowed to change in IFT (not the LHS). So what
if we want to convert it into two equations by not fixing x but solving for it trivially?
That is, consider h(x, y) = (x, f(x, y)). IFT then states that if Dh(a,b) is invertible, then h
is a local C1 diffeomorphism, that is, (x, f(x, y)) = (p, c) can be solved for x, y in terms
of p and c in a C1 manner locally. Since x = p, we see that y is a local C1 function of
x, c. (In particular, if you fix c, it is a C1 function of x.) (So why is Dha,b invertible?)

More generally, we have

Theorem 4 (Implicit function theorem). Let f(x, y) : Ũ ⊂ Rn × Rm → Rm be a Cr

function (and Ũ be an open set). Suppose f(a, b) = c and Dyfa,b is invertible. Then there exists
a connected neighbourhood A of a and a connected neighbourhood B of b such that A×B ⊂ Ũ ,
and a unique Cr function g : A → Rm such that f(x, y) = c and (x, y) ∈ A× B if and only
if y = g(x).

Proof. As before, consider H(x, y) = (x, f(x, y)). This function is also Cr (why?).

Moreover, DH(a,b) =

(
I 0

Dxfa,b Dyfa,b

)
. This is invertible (why?) Now H(a, b) = (a, c).

The IFT shows that there are (connected) neighbourhoods U × V ⊂ Ũ and W of (a, b)
and (a, c) respectively such that H : U × V → W is a Cr diffeomorphism. This means
that H−1(p, q) : W → U × V exists and is a Cr map. Thus x = h1(p, q) and y = h2(p, q)
such that H(h1, h2) = (p, q), i.e., h1(p, q) = p and f(h1(p, q), h2(p, q)) = q. So consider
small enough neighbourhoods (which are connected) A ⊂ U of a, B of b, C of c such
that A × C ⊂ W , and B ⊂ h2(A × C). Now y = h2(x, c) does the job. (In fact, it also
shows that y is Cr function of x, c taken together.)
Uniqueness is straightforward because of the existence of H−1.

Remark: There is nothing special about the last few coordinates. You are allowed to
permute them, i.e., solve for some in terms of the others.
Examples/Non-examples:
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1. Let f(x, y) = x2 − y3. Then ∇f(0, 0) = (0, 0). Therefore, it appears that the origin
is a problematic point. (The graph looks rather singular.) Indeed, there is no C1

way to solve for x in terms of y or vice-versa (we can solve for y in terms of x
uniquely but the expression is not C1!)

2. f(x, y) = y2 − x4. Here, we cannot solve for y in terms of x uniquely, but the two
solutions are smooth. Elsewhere, there is no such problem.

3. If A ∈ Mat2×2(R), when is there B such that B2 = A? The answer is NO in
general even if the eigenvalues are non-negative (standard non-diagonalisable
matrix). On the other hand, there exists a neighbourhood of the identity such
that every matrix in this neighbourhood has a square root: F (A) = A2 is C1 and
DFI(H) = 2H , which is invertible and hence by IFT, we are done.

3


	Recap
	Implicit function theorem

