MA 200 - Lecture 23

1 Recap

1. Orientations for 1-manifolds through unit tangent vector fields.
2. Orientations for hypersurfaces through unit normal vector fields.

3. Restrictions of orientations from M to dM produce orientations for oM. A
standard orientation for 0 is the restriction if dim(M ) is even, and the opposite
of the restriction when dim(M) is odd.

2 Differential forms, wedge products, and form-fields in
]RTL

We want to generalise the notion of a cross product (because that will also help
us generalise the notion of curl). Naively, if a,b € R?, then a x b ought to have
components a;b; — a;b; where 7 # j. Even if we demand i < j (because anyway,
abj —a;b; = —(a;b; —a;b;),ie., a x b = —b x a), the number of components is 6. So a x b
cannot be a vector in R*! (On the other hand, a x b x ¢ in this naive prescription will
have only 4 components!) So we need to extend our definitions from vectors to other
beasts. Whatever this naive a x bis, each component is certainly multilinear in a, b and
antisymmetric. That motivates the following definitions.

Let V be a f.d real vector space. We will almost always consider V = R* or T, M for
some manifold-with-boundary. We know what a multilinearmap 7' : V. xV x... = R
is (what is it?) Multilinear maps from V™" to R are also called m-tensors. An example
is T'(v,w) = det(v W) where v, € R% Another is p(v, W) = viw; + vawy = (v, w).
The set of m-tensors forms a vector space. We can find a nice basis for this vec-
tor space: Given an m-multiindex I = (i1, ...,%,) and a basis ey, ...,e,, the tensors
¢r(v1, ..., 0m) = (v1)i, (V2)s, - . . form a basis (so the dimension is n™ where n = dim(V)).
By the way, for a single index, the 1-tensors ¢; are called the dual basis of e;. 1-tensors
are also called linear functionals, or as we shall call them later, 1-forms. (By the 0-forms
are simply real numbers.)

A neat way of phrasing this statement is through the definition of the tensor product
of two tensors: Suppose S, T are k and [ tensors respectively. The map S ® T' defined
as S T (vy,...,v5wy,...,w) = S(v)T(w)isa (k+ [)-tensor called the tensor product
of S and 7. Note that ¢; = ¢;;, ® ¢;,.... This tensor product obeys some standard
properties, namely, associativity and linearity.



Given a linear map 7' : V. — W, there is a ‘dual’ linear map denoted as 7" from
k-tensors on W to those on V: T*L(vy,...,v;) = L(Twv,...,Tv;). This dual map
obeys some (easy to verify) properties: 7™ is linear on the space of k-tensors on W,
T*(feg)=T"feT*gand (SoT)* =T* o S*.

What we want to study are tensors that are antisymmetric or alternating (akin to our
example of determinants, or cross products):

Def: A k-tensor is said to be symmetric if f(vy,...,vp) = f(vr,..., 1,04, ...), L€,
interchanging adjacent arguments doesn’t change the value. By a finite number of ad-
jacent interchanges, one can see that interchanging any two arguments keeps the value
invariant. Since every permutation o € S is a product of transpositions (hopefully
you did this in UM 205), the value is invariant under any permutation of the arguments.
A k-tensoris said to be antisymmetric oralternating f(vy, ..., vg) = —f(v1, ..., Vis1, 0, . . .).
Such tensors are also called k-forms and they form a vector space that is denoted as AFV.
(For k = 1, every tensor is trivially alternating.) They are also called k-forms. Clearly, if
v; = v; for some i # j, the value of f is zero on such a tuple (if |j — i| = 1, this is trivial.
Now induct on |j — ¢|). Moreover, if a tensor is such that it is zero whenever adjacent
arguments coincide, then it is alternating: 0 = f(v1,...,v; + Vis1, Vi + Vig1, Vigo, .. ).
Now use multi-linearity and the vanishing property again to be done.

Inner products are examples of symmetric 2-tensors and the determinant an example
of A"(R"). In fact, we can produce alternating 3-tensors in R* using the determinant
as (u,v,w) — det(e; u v w) and so on. So what is the dimension of A*V? Sup-
pose ey, ..., e, is a basis of V. Define the following alternating k-tensors for a given
k-multiindex I = (iq,..., )

er(vi, ..., vx) = det(Ar) where (Ar)j = (vp)s;. (1)
Here are examples:
1. When k = 1, ¢; form the dual basis for V* = A'V.

2. Suppose k = 2 and I = (2,3), vy = (a,b,¢), v2 = («,,7) then e(v,v5) =
b B\ _
det(c y ) = by — cf.

3. Suppose i; = i3. Then ¢; = 0 (why?) More generally, when two indices coincide,
€ = 0.

4. Recall that the sign of a permutation o € Sj, is simply the determinant of the
corresponding permutation matrix. Now we define o(I) = (i,q),...). (For
instance, if £ = 3, and 0 = (12), then 0(2,3,1) = (3,2,1). Then e,y = sgn(o)e;
by the properties of determinants.

Now we consider the multiindices [ such thati; < is < ... < i;. There are (Z) of these
indices. We claim that such ¢; form a basis for A*(V). Indeed,

1. These ¢, are linearly independent: Suppose ) | crer = 0. Thenif j; < jo <

<j]g,o = ZCI€I(€j17~"7€jk) =CyJ (Wh}ﬁ)

11 <...<i



2. They span A¥(V): Let w € A*(V). Then consider @ = > w(e;,,...,e;, )er. Note
that to prove that @ = w, it is enough to show that they are equal on (e;,, ..., €, )
for all increasing multiindices J (why? Because of multilinearity, and the facts
that if two indices coincide, we get zero and if we change the ordering, we pick
up the sign of the permutation). Now @w(e;) = > w(es)er(es) = w(es) (Where we
abuse notation by denoting a tuple (w;,, . ..) by wy).

Note that when k£ = n, A" has dimension 1 and is generated by ¢;5_,,. These forms are
also called ‘top forms’. When k = 0, again the dimension is 1. For n = 3, Al and A?
have exactly the same dimension equal to 3 (which is also the dimension of V'!) So we
can identify a vector v € R?® with a 1-form w = vi€; + v9€s + v3¢3 and with a 2-form
v1€23 + U2€31 + v3€12 (Why this weird identification? Because we want to think of €5 as
1% j =k).

We are now in a position to define the generalisation of the cross product. Instead of
defining it for vectors, we define the wedge product A of forms. We want to try the
following naive definition: Let w € A¥(V) and n € AY(V). Then w Ay € A*(V) is
definedaswAn =32, _ _;, . _i wrery, ie., wedefine e; A€y as €7y and extend this
definition linearly.
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