MA 200 - Lecture 23

1 Recap

1. Orientations for 1-manifolds through unit tangent vector fields.
2. Orientations for hypersurfaces through unit normal vector fields.
3. Restrictions of orientations from M to ∂M produce orientations for ∂M. A standard orientation for ∂M is the restriction if $\operatorname{dim}(M)$ is even, and the opposite of the restriction when $\operatorname{dim}(M)$ is odd.

2 Differential forms, wedge products, and form-fields in

 \mathbb{R}^{n}We want to generalise the notion of a cross product (because that will also help us generalise the notion of curl). Naively, if $a, b \in \mathbb{R}^{4}$, then $a \times b$ ought to have components $a_{i} b_{j}-a_{j} b_{i}$ where $i \neq j$. Even if we demand $i<j$ (because anyway, $a_{i} b_{j}-a_{j} b_{i}=-\left(a_{j} b_{i}-a_{i} b_{j}\right)$, i.e., $\left.a \times b=-b \times a\right)$, the number of components is 6 . So $a \times b$ cannot be a vector in \mathbb{R}^{4} ! (On the other hand, $a \times b \times c$ in this naive prescription will have only 4 components!) So we need to extend our definitions from vectors to other beasts. Whatever this naive $a \times b$ is, each component is certainly multilinear in a, b and antisymmetric. That motivates the following definitions.
Let V be a f.d real vector space. We will almost always consider $V=\mathbb{R}^{k}$ or $T_{p} M$ for some manifold-with-boundary. We know what a multilinear map $T: V \times V \times \ldots \rightarrow \mathbb{R}$ is (what is it?) Multilinear maps from V^{m} to \mathbb{R} are also called m-tensors. An example is $T(\vec{v}, \vec{w})=\operatorname{det}(\vec{v} \vec{w})$ where $\vec{v}, \vec{w} \in \mathbb{R}^{2}$. Another is $p(\vec{v}, \vec{w})=v_{1} w_{1}+v_{2} w_{2}=\langle v, w\rangle$. The set of m-tensors forms a vector space. We can find a nice basis for this vector space: Given an m-multiindex $I=\left(i_{1}, \ldots, i_{m}\right)$ and a basis e_{1}, \ldots, e_{n}, the tensors $\phi_{I}\left(v_{1}, \ldots, v_{m}\right)=\left(v_{1}\right)_{i_{1}}\left(v_{2}\right)_{i_{2}} \ldots$ form a basis (so the dimension is n^{m} where $n=\operatorname{dim}(V)$). By the way, for a single index, the 1-tensors ϕ_{i} are called the dual basis of e_{j}. 1-tensors are also called linear functionals, or as we shall call them later, 1 -forms. (By the 0 -forms are simply real numbers.)
A neat way of phrasing this statement is through the definition of the tensor product of two tensors: Suppose S, T are k and l tensors respectively. The map $S \otimes T$ defined as $S \otimes T\left(v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{l}\right)=S(v) T(w)$ is a $(k+l)$-tensor called the tensor product of S and T. Note that $\phi_{I}=\phi_{i_{1}} \otimes \phi_{i_{2}} \ldots$. This tensor product obeys some standard properties, namely, associativity and linearity.

Given a linear map $T: V \rightarrow W$, there is a 'dual' linear map denoted as T^{*} from k-tensors on W to those on $V: T^{*} L\left(v_{1}, \ldots, v_{k}\right)=L\left(T v_{1}, \ldots, T v_{k}\right)$. This dual map obeys some (easy to verify) properties: T^{*} is linear on the space of k-tensors on W, $T^{*}(f \otimes g)=T^{*} f \otimes T^{*} g$ and $(S \circ T)^{*}=T^{*} \circ S^{*}$.
What we want to study are tensors that are antisymmetric or alternating (akin to our example of determinants, or cross products):
Def: A k-tensor is said to be symmetric if $f\left(v_{1}, \ldots, v_{k}\right)=f\left(v_{1}, \ldots, v_{i+1}, v_{i}, \ldots\right)$, i.e., interchanging adjacent arguments doesn't change the value. By a finite number of adjacent interchanges, one can see that interchanging any two arguments keeps the value invariant. Since every permutation $\sigma \in S_{k}$ is a product of transpositions (hopefully you did this in UM 205), the value is invariant under any permutation of the arguments. A k-tensor is said to be antisymmetric or alternating $f\left(v_{1}, \ldots, v_{k}\right)=-f\left(v_{1}, \ldots, v_{i+1}, v_{i}, \ldots\right)$. Such tensors are also called k-forms and they form a vector space that is denoted as $\Lambda^{k} V$. (For $k=1$, every tensor is trivially alternating.) They are also called k-forms. Clearly, if $v_{i}=v_{j}$ for some $i \neq j$, the value of f is zero on such a tuple (if $|j-i|=1$, this is trivial. Now induct on $|j-i|$). Moreover, if a tensor is such that it is zero whenever adjacent arguments coincide, then it is alternating: $0=f\left(v_{1}, \ldots, v_{i}+v_{i+1}, v_{i}+v_{i+1}, v_{i+2}, \ldots\right)$. Now use multi-linearity and the vanishing property again to be done.
Inner products are examples of symmetric 2-tensors and the determinant an example of $\Lambda^{n}\left(\mathbb{R}^{n}\right)$. In fact, we can produce alternating 3 -tensors in \mathbb{R}^{4} using the determinant as $(u, v, w) \rightarrow \operatorname{det}\left(e_{1} u v w\right)$ and so on. So what is the dimension of $\Lambda^{k} V$? Suppose e_{1}, \ldots, e_{n} is a basis of V. Define the following alternating k-tensors for a given k-multiindex $I=\left(i_{1}, \ldots, i_{k}\right)$:

$$
\begin{equation*}
\epsilon_{I}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(A_{I}\right) \text { where }\left(A_{I}\right)_{j l}=\left(v_{l}\right)_{i_{j}} . \tag{1}
\end{equation*}
$$

Here are examples:

1. When $k=1, \epsilon_{i}$ form the dual basis for $V^{*}=\Lambda^{1} V$.
2. Suppose $k=2$ and $I=(2,3), v_{1}=(a, b, c), v_{2}=(\alpha, \beta, \gamma)$ then $\epsilon_{I}\left(v_{1}, v_{2}\right)=$ $\operatorname{det}\left(\begin{array}{ll}b & \beta \\ c & \gamma\end{array}\right)=b \gamma-c \beta$.
3. Suppose $i_{1}=i_{3}$. Then $\epsilon_{I}=0$ (why?) More generally, when two indices coincide, $\epsilon_{I}=0$.
4. Recall that the sign of a permutation $\sigma \in S_{k}$ is simply the determinant of the corresponding permutation matrix. Now we define $\sigma(I)=\left(i_{\sigma(1)}, \ldots\right.$). (For instance, if $k=3$, and $\sigma=(12)$, then $\sigma(2,3,1)=(3,2,1)$. Then $\epsilon_{\sigma(I)}=\operatorname{sgn}(\sigma) \epsilon_{I}$ by the properties of determinants.

Now we consider the multiindices I such that $i_{1}<i_{2}<\ldots<i_{k}$. There are $\binom{n}{k}$ of these indices. We claim that such ϵ_{I} form a basis for $\Lambda^{k}(V)$. Indeed,

1. These ϵ_{I} are linearly independent: Suppose $\sum_{i_{1}<\ldots<i_{k}} c_{I} \epsilon_{I}=0$. Then if $j_{1}<j_{2}<$ $\ldots<j_{k}, 0=\sum c_{I} \epsilon_{I}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=c_{J}$ (why?)
2. They span $\Lambda^{k}(V)$: Let $\omega \in \Lambda^{k}(V)$. Then consider $\tilde{\omega}=\sum \omega\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) \epsilon_{I}$. Note that to prove that $\tilde{\omega}=\omega$, it is enough to show that they are equal on $\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)$ for all increasing multiindices J (why? Because of multilinearity, and the facts that if two indices coincide, we get zero and if we change the ordering, we pick up the sign of the permutation). Now $\tilde{\omega}\left(e_{J}\right)=\sum \omega\left(e_{I}\right) \epsilon_{I}\left(e_{J}\right)=\omega\left(e_{J}\right)$ (where we abuse notation by denoting a tuple $\left(w_{i_{1}}, \ldots\right)$ by $\left.w_{I}\right)$.

Note that when $k=n, \Lambda^{n}$ has dimension 1 and is generated by $\epsilon_{12 \ldots n}$. These forms are also called 'top forms'. When $k=0$, again the dimension is 1 . For $n=3, \Lambda^{1}$ and Λ^{2} have exactly the same dimension equal to 3 (which is also the dimension of V !) So we can identify a vector $v \in \mathbb{R}^{3}$ with a 1-form $\omega=v_{1} \epsilon_{1}+v_{2} \epsilon_{2}+v_{3} \epsilon_{3}$ and with a 2-form $v_{1} \epsilon_{23}+v_{2} \epsilon_{31}+v_{3} \epsilon_{12}$ (why this weird identification? Because we want to think of ϵ_{12} as $\hat{i} \times \hat{j}=\hat{k})$.
We are now in a position to define the generalisation of the cross product. Instead of defining it for vectors, we define the wedge product \wedge of forms. We want to try the following naive definition: Let $\omega \in \Lambda^{k}(V)$ and $\eta \in \Lambda^{l}(V)$. Then $\omega \wedge \eta \in \Lambda^{k+l}(V)$ is defined as $\omega \wedge \eta=\sum_{i_{1}<\ldots<i_{k}, j_{1}<\ldots<j_{l}} \omega_{I} \eta_{J} \epsilon_{I J}$, i.e., we define $\epsilon_{I} \wedge \epsilon_{J}$ as $\epsilon_{I J}$ and extend this definition linearly.

