
MA 200 - Lecture 23

1 Recap
1. Orientations for 1-manifolds through unit tangent vector fields.

2. Orientations for hypersurfaces through unit normal vector fields.

3. Restrictions of orientations from M to ∂M produce orientations for ∂M . A
standard orientation for ∂M is the restriction if dim(M) is even, and the opposite
of the restriction when dim(M) is odd.

2 Differential forms, wedge products, and form-fields in
Rn

We want to generalise the notion of a cross product (because that will also help
us generalise the notion of curl). Naively, if a, b ∈ R4, then a × b ought to have
components aibj − ajbi where i ̸= j. Even if we demand i < j (because anyway,
aibj −ajbi = −(ajbi−aibj), i.e., a× b = −b×a), the number of components is 6. So a× b
cannot be a vector in R4! (On the other hand, a × b × c in this naive prescription will
have only 4 components!) So we need to extend our definitions from vectors to other
beasts. Whatever this naive a× b is, each component is certainly multilinear in a, b and
antisymmetric. That motivates the following definitions.
Let V be a f.d real vector space. We will almost always consider V = Rk or TpM for
some manifold-with-boundary. We know what a multilinear map T : V ×V × . . . → R
is (what is it?) Multilinear maps from V m to R are also called m-tensors. An example
is T (v⃗, w⃗) = det(v⃗ w⃗) where v⃗, w⃗ ∈ R2. Another is p(v⃗, w⃗) = v1w1 + v2w2 = ⟨v, w⟩.
The set of m-tensors forms a vector space. We can find a nice basis for this vec-
tor space: Given an m-multiindex I = (i1, . . . , im) and a basis e1, . . . , en, the tensors
ϕI(v1, . . . , vm) = (v1)i1(v2)i2 . . . form a basis (so the dimension is nm where n = dim(V )).
By the way, for a single index, the 1-tensors ϕi are called the dual basis of ej . 1-tensors
are also called linear functionals, or as we shall call them later, 1-forms. (By the 0-forms
are simply real numbers.)
A neat way of phrasing this statement is through the definition of the tensor product
of two tensors: Suppose S, T are k and l tensors respectively. The map S ⊗ T defined
as S ⊗ T (v1, . . . , vk, w1, . . . , wl) = S(v)T (w) is a (k + l)-tensor called the tensor product
of S and T . Note that ϕI = ϕi1 ⊗ ϕi2 . . .. This tensor product obeys some standard
properties, namely, associativity and linearity.
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Given a linear map T : V → W , there is a ‘dual’ linear map denoted as T ∗ from
k-tensors on W to those on V : T ∗L(v1, . . . , vk) = L(Tv1, . . . , T vk). This dual map
obeys some (easy to verify) properties: T ∗ is linear on the space of k-tensors on W ,
T ∗(f ⊗ g) = T ∗f ⊗ T ∗g and (S ◦ T )∗ = T ∗ ◦ S∗.
What we want to study are tensors that are antisymmetric or alternating (akin to our
example of determinants, or cross products):
Def: A k-tensor is said to be symmetric if f(v1, . . . , vk) = f(v1, . . . , vi+1, vi, . . .), i.e.,
interchanging adjacent arguments doesn’t change the value. By a finite number of ad-
jacent interchanges, one can see that interchanging any two arguments keeps the value
invariant. Since every permutation σ ∈ Sk is a product of transpositions (hopefully
you did this in UM 205), the value is invariant under any permutation of the arguments.
Ak-tensor is said to be antisymmetric or alternating f(v1, . . . , vk) = −f(v1, . . . , vi+1, vi, . . .).
Such tensors are also called k-forms and they form a vector space that is denoted asΛkV .
(For k = 1, every tensor is trivially alternating.) They are also called k-forms. Clearly, if
vi = vj for some i ̸= j, the value of f is zero on such a tuple (if |j − i| = 1, this is trivial.
Now induct on |j − i|). Moreover, if a tensor is such that it is zero whenever adjacent
arguments coincide, then it is alternating: 0 = f(v1, . . . , vi + vi+1, vi + vi+1, vi+2, . . .).
Now use multi-linearity and the vanishing property again to be done.
Inner products are examples of symmetric 2-tensors and the determinant an example
of Λn(Rn). In fact, we can produce alternating 3-tensors in R4 using the determinant
as (u, v, w) → det(e1 u v w) and so on. So what is the dimension of ΛkV ? Sup-
pose e1, . . . , en is a basis of V . Define the following alternating k-tensors for a given
k-multiindex I = (i1, . . . , ik):

ϵI(v1, . . . , vk) = det(AI) where (AI)jl = (vl)ij . (1)

Here are examples:

1. When k = 1, ϵi form the dual basis for V ∗ = Λ1V .

2. Suppose k = 2 and I = (2, 3), v1 = (a, b, c), v2 = (α, β, γ) then ϵI(v1, v2) =

det

(
b β
c γ

)
= bγ − cβ.

3. Suppose i1 = i3. Then ϵI = 0 (why?) More generally, when two indices coincide,
ϵI = 0.

4. Recall that the sign of a permutation σ ∈ Sk is simply the determinant of the
corresponding permutation matrix. Now we define σ(I) = (iσ(1), . . .). (For
instance, if k = 3, and σ = (12), then σ(2, 3, 1) = (3, 2, 1). Then ϵσ(I) = sgn(σ)ϵI
by the properties of determinants.

Now we consider the multiindices I such that i1 < i2 < . . . < ik. There are
(
n
k

)
of these

indices. We claim that such ϵI form a basis for Λk(V ). Indeed,

1. These ϵI are linearly independent: Suppose
∑

i1<...<ik
cIϵI = 0. Then if j1 < j2 <

. . . < jk, 0 =
∑

cIϵI(ej1 , . . . , ejk) = cJ (why?)
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2. They span Λk(V ): Let ω ∈ Λk(V ). Then consider ω̃ =
∑

ω(ei1 , . . . , eik)ϵI . Note
that to prove that ω̃ = ω, it is enough to show that they are equal on (ej1 , . . . , ejk)
for all increasing multiindices J (why? Because of multilinearity, and the facts
that if two indices coincide, we get zero and if we change the ordering, we pick
up the sign of the permutation). Now ω̃(eJ) =

∑
ω(eI)ϵI(eJ) = ω(eJ) (where we

abuse notation by denoting a tuple (wi1 , . . .) by wI).

Note that when k = n, Λn has dimension 1 and is generated by ϵ12...n. These forms are
also called ‘top forms’. When k = 0, again the dimension is 1. For n = 3, Λ1 and Λ2

have exactly the same dimension equal to 3 (which is also the dimension of V !) So we
can identify a vector v ∈ R3 with a 1-form ω = v1ϵ1 + v2ϵ2 + v3ϵ3 and with a 2-form
v1ϵ23 + v2ϵ31 + v3ϵ12 (why this weird identification? Because we want to think of ϵ12 as
î× ĵ = k̂).
We are now in a position to define the generalisation of the cross product. Instead of
defining it for vectors, we define the wedge product ∧ of forms. We want to try the
following naive definition: Let ω ∈ Λk(V ) and η ∈ Λl(V ). Then ω ∧ η ∈ Λk+l(V ) is
defined as ω ∧ η =

∑
i1<...<ik,j1<...<jl

ωIηJϵIJ , i.e., we define ϵI ∧ ϵJ as ϵIJ and extend this
definition linearly.
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