
MA 200 - Lecture 9

1 Recap
1. Implicit function theorem, proof, and examples.

2 Implicit function theorem
Examples

1. Consider a C1 function f : U ⊂ Rn → R. Suppose ∇f(a) 6= ~0 and f(a) = 0.
Then ∂f

∂x1
(a) 6= 0 WLOG. Therefore, by the implicit function theorem, near a, we

can solve f(x) = 0 for x1 = g(x2, . . . , xn) in a C1 manner (what does this mean
precisely?) Suppose γ(t) : I ⊂ R→ U is a C1 map such that f(γ(t)) = 0 ∀ t. Then
〈∇f(a), γ′(0)〉 = 0. Moreover, given any vector v such that 〈∇f(a), v〉 = 0, we see
that γ(t) = (g(a2 + v2t, a3 + v3t, . . .), a2 + v2t, . . .) is C1, lies on the level set, and
γ′(0) = v (why?). Hence, ∇f(a) is in a reasonable sense, a “normal" to the level
set. The tangent plane at a is 〈∇f(a), ~r − ~a〉 = 0. This definition coincides with
the definition given earlier for a graph when f(x) = x1 − g(x2, . . . , xn) (why?).

2. More generally, consider k ≤ n C1 functions, fi : U → R. Suppose ∇fi(a) are all
linearly independent. Then we can locally (near a) solve for k variables in terms
of the others. Moreover, the vectors∇fi(a) are all normals at a to the resulting set
(in the same sense as before). The tangent space is the intersection of the planes
〈∇fi(a), ~r − ~a〉 = 0.

3. Going by the philosophy that diffeomorphisms represent change of coordi-
nates/frames of reference, one may ask what f would “look like" in the “new
coordinates" (y, b) (obtained by solving f(y, x) = b for x in terms of y, b), that is,

Theorem 1 (The surjective derivative theorem). Let U ⊂ Rn be an open set and
f : U → Rp be a Cr function (1 ≤ r ≤ ∞, 1 ≤ p ≤ n). Suppose f(a) = 0 and
Dfa has rank p, i.e., it is a surjective linear map. Then there is an open neighbourhood
A ⊂ U of a and a Cr-diffeomorphism h : A → h(A) such that f ◦ h(x1, . . . , xn) =
(xn−p+1 − an−p+1, . . . , xn − an).

Proof. WLOG a = 0 (by means of a translation). If Dfa is a surjective linear map,
then by permuting the coordinates, we can assume WLOG that the rank of the
last p × p minor to be full. Then the proof of the implicit function theorem kicks
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in to show that we can solve f(y) = b for the last p coordinates yn−p+1, . . . in
terms of the first n − p ones y1, . . . , yn−p and b in a Cr manner. Now consider
h(y1, . . . , yn−p, b) = (y1, . . . , yn−p, yn−p+1(y, b), . . .). Now f ◦ h((y, b)) = b. The
function h is a local diffeomorphism because det(Dh)(0) 6= 0 (why?) (Hint: Use
the chain rule on the identity f(y) = b.)

That is, “upto diffeomorphisms (change of coordinates)", secretly every map
whose derivative is surjective is simply a projection.

3 Global extrema
Let U ⊂ Rn be an open set such that Ū is compact. Suppose f : Ū → R is a continuous
function. Then it assumes a global maximum and a global minimum. Our task is to
find them (this kind of a question arises in optimisation, in proving inequalities, etc).
We have already seen one lemma that helps us: If an extremum occurs at an interior
point p, and f is differentiable at p, then ∇f(p) = 0. (This motivates a definition: An
interior point p is called a local minimum/maximum if there exists a neighbourhood of
p such that f restricted to that neighbourhood assumes a global min/max at p.) Thus,
“all" we have to do is to find the ‘critical points’ (interior points where either f fails to
be differentiable or has zero gradient) and look at the extrema of f on the boundary to
deduce the global extrema. Here is an example:
Let f(x, y) = xy on x2 + y2 ≤ 1. Firstly, the domain is compact (why?) and
the function is continuous (in fact, it is smooth on all of R2). The derivative is
∇f = (y, x) = (0, 0) precisely at the origin (where f(0, 0) = 0). On the boundary,
i.e., x2 + y2 = 1, f(x, y) = g(θ) = cos(θ) sin(θ) over [0, 2π]. We can find the global
extrema of this function (either by using calculus systematically or by cleverness):
−1

2
= g(3π/4) ≤ g(θ) ≤ 1

2
= g(π/4).

In other words, finding the global extrema involves constrained optimisation, i.e., op-
timising over level sets g = 0. Of course, one can attempt to solve the constraints
and therefore reduce the number of variables and inductively attempt to reduce the
problem to one dimension (as we did in the example above). However, this sort of a
strategy will not always work simply because we cannot always solve the constraints
explicitly. But what if we know that there is an implicit solution?

Theorem 2. Let f, g : U ⊂ Rn → R be C1 functions (on an open set U ). Assume that a ∈ U
is a point of global max/min of f subject to the constraint g = 0. Suppose ∇g(a) 6= 0. Then
∇f(a) = λ∇g(a) for some λ ∈ R (called a Lagrange multiplier).
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