MA 200 - Lecture 15

1 Recap

1. Lebesgue’s theorem

2. Fubini’s theorem and evaluation of integrals.

2 Integration over a bounded set

Let S € R™ be a bounded set and f : S — R be a bounded function. We define the
characteristic function ys : R* — R of S as xys(z) = 1if x € S and 0 if z € S°. Then
we say that f is Riemann integrable over S with integral |. ¢ fdV if fxs is Riemann
integrable over any rectangle () containing S and define [ fdV = |, o fxsdV.

Lemma 2.1. Let ), Q" C R™ be two rectangles. Suppose f : R™ — R is a bounded function
that vanishes outside Q N Q', then [, fdV exists iff [, fdV does and they are both equal to
each other.

Proof. We shall prove that [, f = [, f

Suppose |, o fdV exists: Choose P (and refine it so that the vertices of Q@ N Q' belong
to it and refine it even more by adding all points on edges at a distance of € from the
vertices) so that U(P, f) — L(P, f) < e. The partition P induces a partition P’ of Q N Q)"
Thus, U(P', f) — L(P', f) < € + 2Ce because U (P, f) differs from U(P, f) by at most
Ce. Hence meQ, fdV exists and equals fQ fav.

Suppose |, ong /dV exists: Choose P’ and extend to a partition P of () by adding vertices
at a distance of € on all sides of P'. The previous argument goes through. O

Let f,g : S C R" — R be two bounded functions. If f, g are continuous at a € S,
then it is easy to see that max(f,¢) and min(f,g) are so too. Likewise, if f, g are
Riemann-integrable over S, using Lebesgue’s theorem it is easy to see that max(f, g)
and min(f, g) are Riemann integrable over S. The Riemann integral satisfies a number
of familiar properties:

1. Linearity ([(af +bg) existsif [ f and [, g exist and equals their linear combina-
tion): We can assume WLOG that S is a rectangle. On it, by Lebesgue, we see that
af + bg is R.I. Assume first that a,b > 0. For any partition, by linearity of sums,
a [ f+b [ gliesbetween L(P,af + bg) and U(P,af +b). So does [ (af +bg) . By
refining partitions, we are done in this case. If we prove that — [ f = [(—f), we
are done in general. Indeed, a simple partition argument does the job.
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2. Comparison (If f < g, then [ f < [ g) and estimation | [ f| < [ |f]): For rectan-
gles it is easy. For |f|, note that | f| = max(f, —f).

3. Monotonicity (If 7' C S'and f > 0, then [ f < [ f assuming they exist): Note
that fr < fs and hence by comparison we are done.

4. Additivity (If S = S; U S;, and f is R.I over S, S,, then it is so over S = S; U
So, T =SiNSyand [g o [ = [g [+ [g [~ [sng [: Note thatif f > 0, then
fs = max(fs,, fs,) and fr = min(fs,, fs,). So theseare R.I. If f isnot non-negative,
then f, = max(f,0) and f_ = max(—f,0) are R.I and moreover f = f, — f_. So
we are done. The additivity formula follows from fs = fs, + fs, — fr.

As a corollary, if S; N S; has measure zero for all i # j, then [o f = [o [+ [o [+ ...
When is a continuous function f R.I over a bounded set S? The answer is provided by
the following theorem.

Theorem 1. Let S C R" be a bounded set and f : S — R be a bounded continuous function.
Let E C Bd(S) be the set of points o such that lim,_,,, f(x) = 0 fails to hold. Then if E has
measure 0, f is R.I over S. (In particular, if Bd(S) has measure zero - such domains are called
rectifiable, a continuous bounded function is R.I over S.)

Proof. Note thatif z € E*, theneither x € Int(S) (in which case x is a point of continuity
of f) or x € Bd(S) but lim,_,,, f(z) = 0 where = approaches from points in S. Now
fs(zo) = 01if g € S (by continuity) or if z, is outside S by definition. Hence, for such
points, |f(z)| < € whenever |z — 29| < § and z € S (by assumption) or x € S° (by
definition). [

Of course, coming up with rectifiable domains does not appear to be trivial. Fortu-
nately, your HW gives you a way to do so (the unit disc for instance). Lastly, Lebesgue’s
theorem and similar reasoning as above shows that

Theorem 2. If f : S — R is bounded continuous (and S bounded), then if f is R.I over S, it
is R.I over Int(S) and the integrals are equal.
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