
MA 200 - Lecture 10

1 Recap
1. Proved that given any vector v perpendicular to ∇f(a) (assuming it is non-zero),

we can find a path lying on the level set whose velocity at a is v.

2. Surjective derivative theorem.

3. Example of global extrema (and the lemma that interior extrema must be critical
points). Stated Lagrange multipliers.

2 Global Extrema
Theorem 1. Let f, g : U ⊂ Rn → R be C1 functions (on an open set U ). Assume that a ∈ U
is a point of global max/min of f subject to the constraint g = 0. Suppose ∇g(a) ̸= 0. Then
∇f(a) = λ∇g(a) for some λ ∈ R (called a Lagrange multiplier).

Proof. WLOG ∂g
∂xn

(a) ̸= 0. By the implicit function theorem, , there exists a neighbour-
hood W of (a1, . . . , an−1) in Rn−1, a neighbourhood V = W × (an − ϵ, an + ϵ) ⊂ U of a,
and a C1 function h(x1, . . . , xn−1) : W → R such that g(x) = 0 iff xn = h(x1, . . . , xn−1)
on V .
The function s(x) = f(x1, . . . , xn−1, h) attains a local extremum at a1, . . . , an−1. Thus,
∂s
∂xi

= ∂f
∂xi

+ ∂f
∂xn

∂h
∂xi

= 0 at a1, . . . , an−1. Moreover, since g is identically zero, ∂g
∂xi

+ ∂g
∂xn

∂h
∂xi

=
0 at a1, . . . , an−1. Thus, we are done (why?).

Here is an example: Prove that for non-negative numbers x1, . . . , xn, AM ≥ GM
with equality holding precisely when they are all equal to each other.
Consider f(x) = x1 . . . xn and g(x) = x1+x2+ . . .+xn− c (where c ≥ 0). f and g are C1

on all of Rn. We want to find the global maximum of f subject to g = 0. Firstly, since
g = 0, we see that 0 ≤ xi ≤ c ∀ i. Hence we consider the compact rectangle Q = [0, c]n

and f restricted to Q (subject to g = 0) achieves a global maximum at some point a
(why?) Now either that point lies on the boundary of Q: irrelevant (why?) or it lies in
the interior. If it lies in the interior, then since ∇g ̸= 0, we can use LM. Thus ∇f = λ∇g
and we are done (why?)
What we really needed in the above proof of Lagrange’s multipliers is simply the
reduction of the problem to an unconstrained problem of fewer variables. For instance,
the following theorem can be proven too:
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Theorem 2. Let f, g : U ⊂ Rn → R beC1 functions on an open setU . Letα : V ⊂ Rn−1 → U
be a 1 − 1 C1 function such that g(y) = 0 on U if and only if y = α(x). Suppose a ∈ U is a
point of global max/min of f when restricted to g = 0. Assume that Dαα−1(a) is an injective
linear map. Then ∇f(a) and ∇g(a) are parallel.

Proof. The point α−1(a) is a point of local extremum of h = f ◦ α on V . Thus
∇h(α−1(a)) = 0 = DfaDαα−1(a). Moreover, since g◦α = 0 identically onV ,DgaDαα−1(a) =
0. By the nullity-rank theorem, the dimension of the row-space is also n− 1. Thus, the
kernel of v → vDαα−1(a) is one-dimensional. Since ∇f(a) and ∇g(a) are in the kernel,
they are parallel.

In the HW, you will see a generalisation of this method to more than one constraint.
It appears that the key to make the method of Lagrange’s multipliers work is the

ability to parametrise the level set in a nice way near the extremum. Can we always
parametrise level sets like this? Unfortunately this cannot be done in C∞ manner.
For instance, consider the level set x2 − y3 = 0. Suppose we could regularly smoothly
parametrise (x(t), y(t)) this level set near 0. Then 2xx′ = 3y2y′ = 3x4/3y′ ⇒ 2x′ =
3x1/3y′. Suppose x′ ̸= 0. Then we have a contradiction near the origin. Suppose
y′ ̸= 0 near the origin. Then taking two derivatives enables us to come up with a
contradiction.
The following result is useful to understand the hypotheses of the theorem better.

Theorem 3 (The injective derivative theorem). Let U ⊂ Rn be an open set and f : U → Rp

be a Cr function (1 ≤ r ≤ ∞, n ≤ p). Suppose Dfa is an injective linear map. Then there exist
open setsC ⊂ Rn, a ∈ A ⊂ Rn, f(a) ∈ B ⊂ Rp, andCr-diffeomorphisms h : C → h(A) = A,
g : B → g(B) such that g ◦ f ◦ h(x1, . . . , xn) = (x1 − a1, . . . , xn − an, 0, 0, . . .) when x ∈ A.

Proof. By means of translations, we can assume that a = 0, f(a) = 0 WLOG. By
means of permuting the coordinates, since Dfa is injective, WLOG, we can assume
that ∂(f1,...,fn)

∂(x1,...,xn)
(a) is invertible (why?).

Now by IFT (how), the map G(x, y) = (f1(x), . . . , fn(x), fn+1(x) − y1, fn+2(x) − y2, . . .)
is a local Cr diffeomorphisms where y ∈ Rp−n. Now G−1 ◦ f = (x1, . . . , xn, 0, 0 . . .).

That is, “upto diffeomorphisms (change of coordinates)", secretly, every map f
whose derivative is injective is simply the inclusion of the coordinate axes.

There is one subtle point though: If you consider g(y) = 0 as a ‘figure-8’, and
α : R → R2 with image as the figure-8, then α cannot be a homeomorphism to its
image (why not?) We want to avoid such weird level sets (simply to be able to say
“near every point, the level set looks like an open subset of Rn).

3 Manifolds in Rn

Now we want to make a definition at this point (which will be the right kind of level
sets to consider for things like Lagrange’s multipliers).
Definition of and-dimensionalCr-manifold-without-boundary or simply, d-dimensional
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Cr-manifold1: It is a subset M ⊂ Rn such that for every p ∈ M , there exists an open
subset V of M , an open subset U ⊂ Rd and a Cr map α : U → Rn such that α(U) = V ,
α is a homeomorphism, and Dαx has rank d for each x ∈ U . The pair (α, U) is called
a coordinate parametrisation (or coordinate chart or a coordinate patch. However, it is more
common to call (α−1, V ) as a coordinate chart, but whatever).
Note that the same subset can be studied using different parametrisations (and that is
the key point of defining manifolds: that the choice of coordinate parametrisations is
upto our convenience/caprice).
Examples and non-examples:

1. The letter T (as a subset of R2) is not a manifold. Indeed, if it were, then it would
have been locally homeomorphic to an open ball in Rn even near the point of
intersection of three lines. If you throw out that point, you get three connected
components on one side and at most 2 on the other side, a contradiction.

1Caution: when you grow big and strong, you will call this beast an embedded submanifold of Rn

without boundary. Fortunately, just as every group is secretly a subgroup of Sn, every abstractly defined
manifold-without-boundary is secretly an embedded submanifold-without-boundary of some RN
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