MA 200 - Lecture 24

1 Recap

1. Defined tensors, symmetric tensors, alternating tensors, tensor products.
2. Proved that the dim of $\Lambda^{k}(V)$ was $\binom{n}{k}$ by introducing the basis ϵ_{I}.
3. Tried a naive definition of the wedge product.

2 Wedge product (Spivak's book)

Is the naive definition ($\epsilon_{I} \wedge \epsilon_{J}=\epsilon_{I J}$ extended linearly) well-defined? That is, is it independent of the basis chosen? Yes. But this is rather painful to deal with. Nonetheless, assuming it is well-defined, here is a bunch of properties it satisfies.

1. $f \wedge(g \wedge h)=(f \wedge g) \wedge h$: Denote by $I_{\text {inc }}$ the increasing order version of the multiindex $I . f \wedge\left(\sum_{J K} g_{J} h_{K} \epsilon_{J K}\right)$. Now $\epsilon_{J K}=\epsilon_{(J K)_{\text {inc }}} \operatorname{sgn}\left(\sigma_{\left.J K \rightarrow(J K)_{\text {inc }}\right)}\right)$ and $f \wedge(g \wedge h)=\sum_{I, J, K} f_{I} g_{J} h_{K} \epsilon_{I(J K)_{\text {inc }}} \operatorname{sgn}\left(\sigma_{J K \rightarrow(J K)_{\text {inc }}}\right)=\sum f_{I} g_{J} h_{K} \epsilon_{I J K}$. Likewise, $(f \wedge g) \wedge h$ is also given by the same expression.
2. $f \wedge g=(-1)^{k l} g \wedge f$ (So in particular, if f is a 1-form, $f \wedge f=0$. Not necessarily true if f is a 2 -form!): $f \wedge g=\sum f_{I} g_{J} \epsilon_{I J}=\sum g_{J} f_{I} \epsilon_{J I} \operatorname{sgn}(I J \rightarrow J I)$. Now to take $I J$ to $J I$, we need to "slide" i_{k} past $l, j^{\prime} s$ and hence pick up $(-1)^{l}$. Likewise, for i_{k-1} and so on. Thus we get $(-1)^{k l}$.
3. If I is an increasing multi-index, then $\epsilon_{I}=\epsilon_{i_{1}} \wedge \epsilon_{i_{2}} \wedge \ldots$ (by induction and the first property). In fact, by the previous property, this is true for non-increasing multi-indices too.
4. $(c f) \wedge g=c(f \wedge g)=f \wedge(c g)$: Easy.
5. $(f+g) \wedge h=f \wedge h+g \wedge h$ and $f \wedge(g+h)=f \wedge g+f \wedge h$: Easy.

Suppose $T: V \rightarrow W$ is a linear map, then the linear map $T^{*}: \Lambda^{k} W \rightarrow \Lambda^{k} V$ is defined as $T^{*}(S)\left(v_{1}, \ldots, v_{k}\right)=S\left(T v_{1}, \ldots, T v_{k}\right)$ for $k \geq 1$. We shall now define a wedge product that satisfies the above properties and $T^{*}(f \wedge g)=T^{*} f \wedge T^{*} g$. Let us prove the existence of the wedge product (satisfying the properties we want). Firstly, taking cue from $2 A=\left(A+A^{T}\right)+\left(A-A^{T}\right)$, we define the following operation:
Let T be a k-tensor on V. Then $\operatorname{Alt}(T)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) T\left(v_{\sigma(1)}, \ldots\right)$.
So if T is a 2-tensor, then $\operatorname{Alt}(T)(v, w)=\frac{1}{2}(T(v, w)-T(w, v))$, that is, our familiar antisymmetrisation operation. In general, we have the following result.

Theorem 1. 1. $\operatorname{Alt}(T) \in \Lambda^{k}(V)$
2. If ω is a k-form, then $\operatorname{Alt}(\omega)=\omega$
3. $\operatorname{Alt}(\operatorname{Alt}(T))=\operatorname{Alt}(T)$

Proof. 1. $k!\operatorname{Alt}(T)\left(v_{\tau(1)}, \ldots\right)=\sum_{\sigma} \operatorname{sgn}(\sigma) T\left(v_{\tau(\sigma(1))}, \ldots\right)=\operatorname{sgn}(\tau) \sum_{\sigma} \operatorname{sgn}\left(\sigma^{\prime}=\tau \circ\right.$ $\sigma) T\left(v_{\sigma^{\prime}(1)}, \ldots\right)$. But $\sigma \rightarrow \sigma^{\prime}$ is an isomorphism and hence the summation over σ is the same as the summation over σ^{\prime}. Hence we are done.
2. $\operatorname{Alt}(\omega)\left(v_{1}, \ldots\right)=\frac{1}{k!} \sum_{\sigma} \operatorname{sgn}(\sigma) \omega\left(v_{\sigma(1)}, \ldots\right)=\frac{1}{k!} \sum_{\sigma} \operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma) \omega\left(v_{1}, \ldots\right)=\omega\left(v_{1}, \ldots\right)$.
3. Trivially from the first two properties.

Def: We define the wedge product $\omega \wedge \eta$ as $\frac{(k+l)!}{k!l!} \operatorname{Alt}(\omega \otimes \eta)$.
It satisfies the following properties:

1. Bilinearity in f, g : Easy (because the tensor product is so).
2. $T^{*}(\omega \wedge \eta)=T^{*} \omega \wedge T^{*} \eta: \frac{(k+l)!}{k!l!} \sum \operatorname{sgn}(\sigma) \omega \otimes \eta\left(T v_{\sigma(1)}, \ldots\right)=\frac{(k+l)!}{k!!!} \sum \operatorname{sgn}(\sigma) \omega\left(T v_{\sigma(1)}, \ldots\right) \eta\left(T v_{\sigma(k+1)}\right.$, $T^{*} \omega \wedge T^{*} \eta$.
3. $f \wedge(g \wedge h)=(f \wedge g) \wedge h$.
4. $f \wedge g=(-1)^{k l} g \wedge h$.
5. $\epsilon_{I}=\epsilon_{i_{1}} \wedge \ldots$: The properties above follow from the observation that $\omega \wedge \eta=$ $\sum \omega_{I} \eta_{J} \epsilon_{I} \wedge \epsilon_{J}$ and the fact that $\epsilon_{I} \wedge \epsilon_{J}=\epsilon_{I J}: \epsilon_{I} \wedge \epsilon_{J}\left(e_{\alpha_{1}}, \ldots\right)=0$ if α_{1}, \ldots is not a permutation of $I J$ (why?). If it is a permutation, then $\epsilon_{I} \wedge \epsilon_{J}\left(e_{\alpha_{1}}, \ldots\right)=$ $\frac{1}{k!!!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \epsilon_{I}\left(e_{\alpha_{\sigma(1)}}, \ldots\right) \epsilon_{J}\left(e_{\alpha_{\sigma(k+1)}}, \ldots\right)$. Since we know that the wedge product produces $k+l$ forms, the α_{i} are all distinct (otherwise we will get zero anyway). Likewise, we can assume WLOG that $\left(\alpha_{1}, \ldots, \alpha_{k}\right)=I$ and $\left(\alpha_{k+1}, \ldots\right)=J$. Moreover, only those permutations survive in the summation that are of the form $\sigma=\sigma_{1} \sigma_{2}$ where σ_{1} permutes only the I indices and σ_{2} only the J-indices (in particular, if I and J have indices in common, $\epsilon_{I} \wedge \epsilon_{J}$ is 0). Thus, $\epsilon_{I} \wedge \epsilon_{J}\left(e_{\alpha_{1}}, \ldots\right)=\frac{1}{k!!!} \sum_{\sigma_{1}, \sigma_{2}} 1=1$ which is exactly $\epsilon_{I J}\left(e_{i_{1}}, \ldots, e_{j_{1}}, \ldots\right)$.

3 Form fields in \mathbb{R}^{n}

Just as there are vector fields on \mathbb{R}^{n} (basically, nicely varying collections of vectors, one for each point, like the electric and magnetic fields - and not like the BS fields of "positive" and "negative" "energy" spouted by pseudoscientists), we can define tensor fields and form fields:
Def: A smooth k-tensor field T on a set $S \subset \mathbb{R}^{n}$ is simply a tensor for every point $x \in S$ such that $T(x)=\sum_{I} c_{I}(x) \phi_{I}$ where $c_{I}(x)$ are smooth functions on S. A k form field ω, or sometimes a differential k-form, or sometimes, fondly (if you have nothing else to be fond of), a smooth k-form is simply a k-form for every point $x \in S$ such that $\omega(x)=\sum_{i_{1}<i_{2}<\ldots} \omega_{I}(x) \epsilon_{I}$ where $\omega_{I}(x)$ are smooth functions on S.

For instance, $\omega=x^{2} \epsilon_{12}+e^{y z} \epsilon_{23}+\sin (\sin (\cos (x z w))) \epsilon_{14}$ is a 2 -form field on \mathbb{R}^{4}.
We can define the wedge product of these differential forms: $\omega \wedge \eta(x):=\omega(x) \wedge \eta(x)$. When $k=0$, we are talking about a number for every point x that varies smoothly, i.e., a smooth 0 -form is simply a smooth function.

