
MA 200 - Lecture 24

1 Recap
1. Defined tensors, symmetric tensors, alternating tensors, tensor products.

2. Proved that the dim of Λk(V ) was
(
n
k

)
by introducing the basis ϵI .

3. Tried a naive definition of the wedge product.

2 Wedge product (Spivak’s book)
Is the naive definition (ϵI ∧ ϵJ = ϵIJ extended linearly) well-defined? That is, is
it independent of the basis chosen? Yes. But this is rather painful to deal with.
Nonetheless, assuming it is well-defined, here is a bunch of properties it satisfies.

1. f ∧ (g ∧ h) = (f ∧ g) ∧ h: Denote by Iinc the increasing order version of the
multiindex I . f ∧ (

∑
JK gJhKϵJK). Now ϵJK = ϵ(JK)inc

sgn(σJK→(JK)inc
) and

f ∧ (g ∧ h) =
∑

I,J,K fIgJhKϵI(JK)inc
sgn(σJK→(JK)inc

) =
∑

fIgJhKϵIJK . Likewise,
(f ∧ g) ∧ h is also given by the same expression.

2. f ∧ g = (−1)klg ∧ f (So in particular, if f is a 1-form, f ∧ f = 0. Not necessarily
true if f is a 2-form!): f ∧ g =

∑
fIgJϵIJ =

∑
gJfIϵJIsgn(IJ → JI). Now to take

IJ to JI , we need to “slide" ik past l, j′s and hence pick up (−1)l. Likewise, for
ik−1 and so on. Thus we get (−1)kl.

3. If I is an increasing multi-index, then ϵI = ϵi1 ∧ ϵi2 ∧ . . . (by induction and the
first property). In fact, by the previous property, this is true for non-increasing
multi-indices too.

4. (cf) ∧ g = c(f ∧ g) = f ∧ (cg): Easy.

5. (f + g) ∧ h = f ∧ h+ g ∧ h and f ∧ (g + h) = f ∧ g + f ∧ h: Easy.

Suppose T : V → W is a linear map, then the linear map T ∗ : ΛkW → ΛkV is
defined as T ∗(S)(v1, . . . , vk) = S(Tv1, . . . , T vk) for k ≥ 1. We shall now define a wedge
product that satisfies the above properties and T ∗(f ∧ g) = T ∗f ∧T ∗g. Let us prove the
existence of the wedge product (satisfying the properties we want). Firstly, taking cue
from 2A = (A+ AT ) + (A− AT ), we define the following operation:
Let T be a k-tensor on V . Then Alt(T )(v1, . . . , vk) =

1
k!

∑
σ∈Sk

sgn(σ)T (vσ(1), . . .).
So if T is a 2-tensor, then Alt(T )(v, w) = 1

2
(T (v, w) − T (w, v)), that is, our familiar

antisymmetrisation operation. In general, we have the following result.
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Theorem 1. 1. Alt(T ) ∈ Λk(V )

2. If ω is a k-form, then Alt(ω) = ω

3. Alt(Alt(T )) = Alt(T )

Proof. 1. k!Alt(T )(vτ(1), . . .) =
∑

σ sgn(σ)T (vτ(σ(1)), . . .) = sgn(τ)
∑

σ sgn(σ
′ = τ ◦

σ)T (vσ′(1), . . .). But σ → σ′ is an isomorphism and hence the summation over σ
is the same as the summation over σ′. Hence we are done.

2. Alt(ω)(v1, . . .) =
1
k!

∑
σ sgn(σ)ω(vσ(1), . . .) =

1
k!

∑
σ sgn(σ)sgn(σ)ω(v1, . . .) = ω(v1, . . .).

3. Trivially from the first two properties.

Def: We define the wedge product ω ∧ η as (k+l)!
k!l!

Alt(ω ⊗ η).
It satisfies the following properties:

1. Bilinearity in f, g: Easy (because the tensor product is so).

2. T ∗(ω∧η) = T ∗ω∧T ∗η: (k+l)!
k!l!

∑
sgn(σ)ω⊗η(Tvσ(1), . . .) =

(k+l)!
k!l!

∑
sgn(σ)ω(Tvσ(1), . . .)η(Tvσ(k+1), . . .) =

T ∗ω ∧ T ∗η.

3. f ∧ (g ∧ h) = (f ∧ g) ∧ h.

4. f ∧ g = (−1)klg ∧ h.

5. ϵI = ϵi1 ∧ . . .: The properties above follow from the observation that ω ∧ η =∑
ωIηJϵI ∧ ϵJ and the fact that ϵI ∧ ϵJ = ϵIJ : ϵI ∧ ϵJ(eα1 , . . .) = 0 if α1, . . . is

not a permutation of IJ (why?). If it is a permutation, then ϵI ∧ ϵJ(eα1 , . . .) =
1
k!l!

∑
σ∈Sk+l

sgn(σ)ϵI(eασ(1)
, . . .)ϵJ(eασ(k+1)

, . . .). Since we know that the wedge
product produces k + l forms, the αi are all distinct (otherwise we will get
zero anyway). Likewise, we can assume WLOG that (α1, . . . , αk) = I and
(αk+1, . . .) = J . Moreover, only those permutations survive in the summation
that are of the form σ = σ1σ2 where σ1 permutes only the I indices and σ2 only
the J-indices (in particular, if I and J have indices in common, ϵI ∧ ϵJ is 0). Thus,
ϵI ∧ ϵJ(eα1 , . . .) =

1
k!l!

∑
σ1,σ2

1 = 1 which is exactly ϵIJ(ei1 , . . . , ej1 , . . .).

3 Form fields in Rn

Just as there are vector fields on Rn (basically, nicely varying collections of vectors,
one for each point, like the electric and magnetic fields - and not like the BS fields of
“positive" and “negative" “energy" spouted by pseudoscientists), we can define tensor
fields and form fields:
Def: A smooth k-tensor field T on a set S ⊂ Rn is simply a tensor for every point x ∈ S
such that T (x) =

∑
I cI(x)ϕI where cI(x) are smooth functions on S. A k form field

ω, or sometimes a differential k-form, or sometimes, fondly (if you have nothing else
to be fond of), a smooth k-form is simply a k-form for every point x ∈ S such that
ω(x) =

∑
i1<i2<... ωI(x)ϵI where ωI(x) are smooth functions on S.
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For instance, ω = x2ϵ12 + eyzϵ23 + sin(sin(cos(xzw)))ϵ14 is a 2-form field on R4.
We can define the wedge product of these differential forms: ω ∧ η(x) := ω(x) ∧ η(x).
When k = 0, we are talking about a number for every point x that varies smoothly, i.e.,
a smooth 0-form is simply a smooth function.
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