
MA 200 - Lecture 11

1 Recap
1. Lagrange’s multipliers. item Injective derivative theorem.

2. Definition of manifolds non-examples.

2 Manifolds in Rn

Examples and non-examples:

1. The graph of y = |x| is not an example of a C1 manifold in R2 because if it were,
then near the origin, there is a coordinate parametrisation α(t) = (x(t), y(t)) such
that y(t) = |x(t)| and α(0) = (0, 0). Thus y2 = x2 and hence yy′ = xx′. Since it is
a coordinate parametrisation, either x′ ̸= 0 and therefore, y′ is not continuous at
t = 0 (why?) or y′ ̸= 0 and hence x′ is not continuous at t = 0.

2. The circle is an example of a 1-dimensional smooth manifold (why?). Note that
the circle cannot be covered by a single coordinate parametrisation (because the
image of a coordinate parametrisation is not compact whereas a circle is).

3. Any regular level set is an example of an n − 1-dimensional smooth manifold
(why?).

In other words, if f attains an extremum on a manifold-without-boundary, and if α is
a coordinate parametrisation, then f ◦ α attains an unconstrained local extremum and
hence its gradient is zero. This is the real point of Lagrange’s multipliers.

We will return to manifolds much later (because they are the right objects for
generalising the fundamental theorem of calculus to higher dimensions).

3 Taylor’s theorem and the second derivative test
So far, we have only seen how to calculate global extrema but have no means of recognis-
ing whether a local extremum is a local maximum or a local minimum. In one-variable
calculus, we have the famous second-derivative test (the following statement can be
strengthened significantly, but we don’t need to do so for our purposes):
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Theorem 1. Let I ⊂ R be open, and f : I → R be a function that is C2 in a neighbourhood
of a. If f ′(a) = 0 and f ′′(a) < 0, a is a local maximum (and likewise for local minima).
Conversely, if a is a local maximum, then f ′(a) = 0 and f ′′(a) ≤ 0.

We have already proven that if a is a local extremum, f ′(a) = 0 (even in higher
dimensions). To get further information, we need to approximate f better (than the
linear approximation). To this end, we have Taylor’s theorem in one-variable:

Theorem 2. Let U ⊂ R be an open set and f : U → R a Ck function on U . Let a ∈ U and
|h| < ϵ such that (a− ϵ, a+ ϵ) ∈ U . Then the polynomial pk,a(h) = f(a) + f ′(a)h+ f ′′(a)h2

2!
+

. . . + f (k)(a)hk

k!
is the unique polynomial of degree ≤ k such that limh→0

f(a+h)−pk,a(h)

hk = 0.
Moreover, if f is Ck+1, then f(a + h) = pk,a(h) +

f (k+1)(η)hk+1

(k+1)!
, where η lies between a and

a+ h.

Proof. We prove uniqueness first. Suppose p1, p2 are two such polynomials of degree
≤ k. Then p1−p2

hd goes to 0 as h → 0 for all d ≤ k. Assume that the first non-zero
coefficient of p1 − p2 is that of hd. Then we get a contradiction.
Now let g(h) = f(a + h) − pk,a(h). Note that g is Ck on a neighbourhood of 0, and
g(i)(0) = 0 for all 0 ≤ i ≤ k (why?) For k = 1, we are done easily by definition of
the derivative. Assume Taylor’s theorem for 1, 2 . . . , k − 1. We apply this induction
hypothesis to g′(h). Hence, g′(h)

hk−1 → 0. Now g(h) = g′(ζh)h (by LMVT) and hence
g(h)
hk = g′(ζh)

ζk−1
h

ζk−1
h

hk−1 which goes to 0 by the squeeze rule.
Now we prove the remainder formula. For k = 0 it is easy (by LMVT). Hence,
assume the truth of this statement for 0, 1, 2 . . . , k − 1. For k, apply the induction
hypothesis to g′(h) to conclude that g′(t) = g(k+1)(ζt)

k!
tk. Considering g(t) and tk+1 and

using Cauchy’s Mean Value Theorem, we see that g′(c)hk+1 = (k + 1)ckg(h). Hence
g(h) = gk+1(θ)hk+1

(k+1)!
= fk+1(θh)h

k+1

(k+1)!
.

Actually, Taylor’s theorem holds even without the assumption of being Ck. In fact,
k-times differentiable is good enough. But to prove such a thing, we need to use
L’Hopital’s rule.
Here is the proof of the second-derivative test: By Taylor, f(a+h) = f(a)+f ′(a)h+ f ′′(ζ)h2

2!

which means that f(a + h) − f(a) = f ′′(ζh)h
2

2!
. Since f is C2, if f ′′(a) > 0, then in

neighbourhood of a, f ′′(x) > 0. Thus, f(a+ h)− f(a) > 0 in a neighbourhood of h = 0
and hence we are done.

4 Taylor’s theorem and the second derivative test
To state Taylor’s theorem in multivariable calculus, we need some notation. Let α =
(α1, . . . , αn) be a “multi-index". We typically denote as follows: |α| = α1+α2+ . . .+αn,
α! = α1!α2! . . ., hα = hα1

1 hα2
2 . . ., and Dαf = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

. . . f (note that the order does not
matter thanks to Clairaut if f is C |α|).

Theorem 3. Let U ⊂ Rn be an open set and f : U → R be a Ck function on U . Let a ∈ U
and |h| < ϵ such that Ba(ϵ) ⊂ U . Then the polynomial pa,k(h) = f(a) +

∑
i

∂f
∂xi

(a)h +
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2

∑
i,j

∂2f
∂xi∂xj

(a)hihj + . . .+
∑

∥α∥=k
Dαf(a)

α!
hα is the unique polynomial of degree ≤ k (degree

meaning the maximum sum of powers) such that limh→0
f(a+h)−pk,a(h)

|h|k = 0. Moreover, if f is
Ck+1, then f(a+ h) = pk,a(h) +

∑
|α|=k+1

Dαf(η)hα

α!
, where η lies in Ba(h).

Proof. Uniqueness will be left as a HW problem.
Let h ̸= 0 (if it is equal to 0, we are done). Consider the one-variable function

q(t) = f(a + t h
∥h∥) on |t| < ϵ. This function is Ck (because it is a composition of Ck

functions). Thus we can apply the one-variable Taylor theorem to it to conclude that
q(∥h∥) = q(0) + q′(0)∥h∥+ . . ..
Now we claim inductively that q(m)(t)∥h∥m

m!
=

∑
|α|=m

Dαf(a+t h
∥h∥ )h

α

α!
:

Indeed, for m = 1 we are done by the Chain rule. Assume the truth of this state-
ment for 1, 2 . . . ,m − 1. We apply the induction hypothesis to q(m−1)(t) to con-
clude that q(m)(t)∥h∥m

m!
= ∥h∥

m

∑
|α|=m−1

d
dt

Dαf(a+t h
∥h∥ )h

α

α!
=

∑
|α|=m−1

∑
i

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
=∑

i

∑
|α|=m−1

∂xiD
αf(a+t h

∥h∥ )hih
α

α!m
. We want to compare the last expression to

∑
|β|=m

Dβf(a+t h
∥h∥ )h

β

β!
.

To be continued.....
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