
MA 200 - Lecture 3

1 Recap
1. Review of topology in Rn.

2. Definition of directional derivative, examples.

3. Differentiability, gradient.

2 Derivatives
Proof of diff implies directional derivatives exist.

Proof. If v = 0, then ∇vf = 0 = L(0) trivially.

lim
t→0

∣∣∣∣f(a+ tv)− f(a)− L(tv)

t

∣∣∣∣ = 0, (1)

because of the hypothesis of differentiability (and the fact that t → tv is a continuous
function). Thus, ∇vf(a) exists and equals L(v). By linearity of L, L(v) =

∑
i L(ei)vi =∑

i ∇eifvi =
∑

i
∂f
∂xi

(a)vi.

We also have a vector-valued version of this proposition (whose proof is almost the
same).

Proposition 2.1. If f : U → Rm is differentiable at a, all of its directional derivatives exist at

a and L(h) =
∑
i,j

∂fi
∂xj

|x=ahjei.

The derivative is now a matrix Df whose rows are gradients of the components.
Remark: If f : U ⊂ Rn → Rm is differentiable at an interior point a ∈ U , then g : V → Rm

defined by g(x) = f(x) and a ∈ V (where V is open) is also differentiable with the same
derivative (and vice-versa). We can also easily prove that a vector-valued function is
differentiable iff each of its components is so (how?).

This notion of differentiability does imply continuity. Indeed, ∥f(a + h) − f(a)∥ ≤
∥f(a+h)−f(a)−L(h)∥+∥L(h)∥ < 1

2
∥h∥+∥L∥∥h∥ for ∥h∥ < δ1. If ∥h∥ < min

(
δ1,

ϵ
1+∥L∥

)
,

then we are done.
We define the tangent plane to the graph of f : Rn → R at a differentiable point

as follows: xn+1 = f (⃗a) + ⟨∇f(a), h⃗⟩. The point is that |f(a⃗+h⃗)−r⃗(h)|
∥h∥ goes to 0 as h⃗ → 0⃗
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and hence it is a good approximation of the graph. We shall come back to the tangent
plane later (after we discuss the inverse function theorem).

Here is a practical criterion to conclude differentiability.

Theorem 1. If f : U → Rn → Rm is C1 at an interior point a ∈ U , i.e., the matrix Df
exists in a neighbourhood V of a and is a continuous function in its in own right, then f is
differentiable at a (and is hence continuous at a as well).

Why is this a practical criterion? Here are examples.

1. f(x, y) = sin(x3ey)+xey
2 on R2. Note that by one-variable calculus, fx, fy exist on

all of R2 and fx = cos(x3ey)3x2 + ey
2 , fy = cos(x3ey)ey + 2yxey

2 . These functions
are continuous everywhere because they are sums of products of compositions
of continuous functions.

2. f(x, y, z) = (x3z2, sin(x4yz)) is C1 everywhere just as above.

3. Polynomials in any number of variables are C1 everywhere (and hence differen-
tiable everywhere).

4. Rational functions are differentiable wherever the denominator is not zero (and
such points are all interior points. Why?)

Bu this criterion does not work the other way! That is, here is an example of a function
that is NOT C1 and is yet differentiable: f(x) = x2 sin

(
1
x

)
when x ̸= 0 and f(0) = 0.

Proof of the criterion:

Proof. Firstly, we can assume without loss of generality that m = 1 (because a function
is differentiable iff each of its components is so). We prove by induction on the number
of variables. For one variable, it is trivial. Suppose this result is true for 1, 2, . . . , n− 1

variables. Write the point a⃗ ∈ U as (a, b⃗) where a ∈ R and b⃗ ∈ Rn−1. The function
g(y⃗) = f(a, y⃗) is C1 at b⃗ and is hence differentiable with derivative L(k⃗) = Df(a,⃗b)(0, k⃗).

∥f(a+ h, b⃗+ k⃗)− f(a, b⃗)−Df(a,⃗b)(h, k⃗)∥

∥(h, k⃗)∥
≤

∥f(a+ h, b⃗+ k⃗)− f(a, b⃗+ k⃗)−Df(a,⃗b)(h, 0)∥

∥(h, k⃗)∥

+
∥f(a, b⃗+ k⃗)− f(a, b⃗)−Df(a,⃗b)(0, k⃗)∥

∥(h, k⃗)∥

≤
∥f(a+ h, b⃗+ k⃗)− f(a, b⃗+ k⃗)−Df(a,⃗b+k⃗)(h, 0)∥

|h|

+
∥f(a, b⃗+ k⃗)− f(a, b⃗)−Df(a,⃗b)(0, k⃗)∥

∥k⃗∥
+

∥Df(a,⃗b+k⃗)(h, 0)−Df(a,⃗b)(h, 0)∥
|h|

≤
∥f(a+ h, b⃗+ k⃗)− f(a, b⃗+ k⃗)−Df(a,⃗b+k⃗)(h, 0)∥

|h|

+
∥f(a, b⃗+ k⃗)− f(a, b⃗)−Df(a,⃗b)(0, k⃗)∥

∥k⃗∥
+ ∥Df(a,⃗b+k⃗) −Df(a,⃗b)∥.
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By continuity of the derivative at (a, b⃗) and the induction hypothesis, the last two terms
go to zero as (h, k⃗) → (0, 0⃗). For the first term, we use Lagrange’s mean value theorem
to conclude that it is equal to

∥Df(θ,⃗b+k⃗)(h, 0)−Df(a,⃗b+k⃗)(h, 0)∥
|h|

≤ ∥Df(θ,⃗b+k⃗) −Df(a,⃗b+k⃗)∥ (2)

where θ ∈ (a− h, a+ h). By the continuity assumption on Df at (a, b⃗), we see that this
term goes to 0 and hence by the squeeze rule we are done.

There are some properties for differentiability: Suppose f, g : U ⊂ Rn → R are
differentiable at an interior point a. Then the following hold.

1. f+g is diff atawith derivative∇f(a)+∇g(a): ∥(f + g)(a+ h)− (f + g)(a)− (Df +Dg)a(h)∥
∥h∥

≤

∥f(a+ h)− f(a)−Dfa(h)∥
∥h∥

+
∥g(a+ h)− g(a)−Dga(h)∥

∥h∥
→ 0 as h → 0.

2. fg is diff at a with derivative g(a)∇f(a) + f(a)∇g(a): Let ∆1 = f(a+ h)− f(a)−
Dfa(h) and ∆2 = g(a+ h)− g(a)−Dga(h). Note that ∆i

∥h∥ → 0 as h → 0.

|(fg)(a+ h)− (fg)(a)− (g(a)Dfa(h) + f(a)Dga(h))|
∥h∥

=

|(∆1 + f(a) +Dfa(h))(∆2 + g(a) +Dga(h))− (fg)(a)− (g(a)Dfa(h) + f(a)Dga(h))|
∥h∥

=
|∆1g(a+ h) + ∆2(f(a) +Dfa(h)) +Dfa(h)Dga(h)|

∥h∥

≤ |∆1|
∥h∥

|g(a+ h)|+ |∆2|
∥h∥

(|f(a)|+ ∥Dfa∥∥h∥) + ∥Dfa∥∥Dga∥∥h∥

→ 0, (3)

and hence we are done by the squeeze rule.
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