HW 14

1. Let V be a finite-dimensional real vector space of dimension n. Let $T: V \rightarrow V$ be a linear map. Prove that $T^{*}: \Lambda^{n} V \rightarrow \Lambda^{n} V$ is $T(\omega)=\operatorname{det}(T) \omega$.
2. Prove that the pullback of a smooth form field is a smooth form field.
3. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the smooth function $f(t, u, v)=\left(u^{2}, t^{2}, v, u\right)$ and let ω be the smooth 2 -form field on \mathbb{R}^{4} defined as ω at the point (x, y, z, w) equals $x d x \wedge$ $d y+z d z \wedge d w+y d x \wedge d z$. Let η be the smooth one-form field on \mathbb{R}^{4} defined as $x d y+y d z+z d w+w d x$. Prove explicitly (by calculating both sides) that $f^{*}(\omega \wedge \eta)=$ $f^{*} \omega \wedge f^{*} \eta$.
4. Prove that $(f, g) \rightarrow f \wedge g$ is bilinear.
5. (Munkres Exercise 1 in chapter 28): Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{5}$. Let

$$
F(\vec{x}, \vec{y}, \vec{z})=2 x_{2} y_{2} z_{1}+x_{1} y_{5} z_{4}
$$

Write $\operatorname{Alt}(F)$ in terms of the standard basis for differential 3-forms. Also write $\operatorname{Alt}(F)(\vec{x}, \vec{y}, \vec{z})$ as a function.

