HW 1

- 1. Two norms $\|.\|_1, \|.\|_2$ on a vector space V are said to be equivalent if there exist positive constants c, C such that $c\|v\|_1 \leq \|v\|_2 \leq C\|v\|_1, \forall v \in V$. Prove that any two norms on a finite-dimensional vector space are equivalent.
- 2. Prove that $||AB|| \leq ||A|| ||B||$ where the norms are either Frobenius or Operator, and A is an $m \times n$ real matrix and B is an $n \times p$ real matrix. Give examples where the inequality is strict.
- 3. Suppose A is a real symmetric $n \times n$ matrix. Prove that $||A||_{Operator} = \max_i |\lambda_i|$ where λ_i are the eigenvalues.
- 4. Let $f(x, y) = x^2 \sin(y/x)$ when $x \neq 0$ and 0 when x = 0. Prove that f is continuous everywhere.
- 5. Give an example of a set $S \subset \mathbb{R}^2$ and a function $f : \mathbb{R}^2 \to \mathbb{R}$ that is continuous at $a \in S$ when restricted to S but is not continuous at a when considered as a function on \mathbb{R}^2 .
- 6. Suppose $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is a function and $a \in U$ is not necessarily an interior point. We want to define f to be differentiable at a with derivative $L: \mathbb{R}^n \to \mathbb{R}^m$ if there exists an open set V containing a and a function $g: V \to \mathbb{R}^m$ such that $g(x) = f(x) \forall x \in V \cap U$ and g is differentiable at a with derivative L.
 - (a) By means of a counterexample, show that this definition is not well-defined in general, i.e., it could depend on the choice of g, V.
 - (b) Suppose U is the closed unit ball centred at the origin, then show that for all $a \in U$, the definition makes sense, i.e., if there is one $g: V \to \mathbb{R}^m$ that is differentiable at a with derivative L, then any other $\tilde{g}: \tilde{V} \to \mathbb{R}^m$ that is differentiable at a has the same derivative.