HW 2

- 1. Let $F: \mathbb{R}^n \to \mathbb{R}$ be a homogeneous function of order k, i.e., $F(\lambda x) = \lambda^k F(x)$ for all $\lambda \in (0, \infty)$. Then prove Euler's identity: $x_1 F_{x_1} + x_2 F_{x_2} + \ldots + x_n F_{x_n} = kF$.
- 2. Let $F: Mat_{n \times n} \to Mat_{n \times n}$ be defined as $F(A) = A^3$. Prove that F is differentiable and compute its derivative.
- 3. Let a be an interior point of $U \subset \mathbb{R}^m$ and let $f: U \to \mathbb{R}$ be a function. If the partials $D_i f$ exist and are bounded in a neighbourhood of a, show that f is continuous at a.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ and $g: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the equations $f(x) = (e^{2x_1+x_2}, 3x_2 \cos(x_1), x_1^2 + x_2 + 2)$ and $g(y) = (3y_1 + 2y_2 + y_3^2, y_1^2 y_3 + 1)$. If $F(x) = g \circ f(x)$, find $DF_{x=0}$ and if $G(y) = f \circ g(y)$, find $DG_{y=0}$.
- 5. Let F(x,y) = f(x,y,g(x,y)) where $f: \mathbb{R}^3 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$ are differentiable. Find DF in terms of the partials of f and g. If $F(x,y) = 0 \,\forall x,y$, find g_x,g_y in terms of the partials of f.