HW 3

1. Give a counterexample to the mean value theorem for vector-valued functions and prove the several variable MVT for scalar valued functions on convex open sets.
2. Suppose the matrix-valued function $[F]: \mathbb{R}^{4} \rightarrow M a t_{4 \times 4}=\mathbb{R}^{16}$ is smooth and its image lies in the set of skew-symmetric matrices. Prove that in general, there is no smooth $g: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $[F]_{i j}=\frac{\partial g_{i}}{\partial x_{j}}-\frac{\partial g_{j}}{\partial x_{i}} \forall i, j$.
3. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $f(0)=0$, then prove that there exist functions $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f(x)=\sum_{i=1}^{n} x_{i} g_{i}(x)$.
4. Are the mixed second partials equal for $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ when $(x, y) \neq(0,0)$ and $f(0,0)=0$.
