HW 4

1. Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{n}$ be a C^{1} function. Suppose $D f_{a}$ is invertible (where $a \in U$). Prove that there is an $r>0$ such that
(a) $B_{a}(r) \subset U$.
(b) $D f_{x}$ is invertible on $B_{a}(r)$ and $\left\|\left[D f_{x}\right]^{-1}\right\| \leq C$ for all $x \in B_{a}(r)$.
(c) Let $x_{1}, x_{1}+h \in B_{a}(r)$. Define Δ by $D f_{x_{1}}^{-1}\left(f\left(x_{1}+h\right)-f\left(x_{1}\right)\right)=h+D f_{x_{1}}^{-1} \Delta$. Now $\left\|h+D f_{x_{1}}^{-1} \Delta\right\| \geq \frac{\|h\|}{2}$.
2. Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{n}$ be a C^{1} function. Suppose $D f_{a}$ is invertible (where $a \in U$). Prove that there exists $r^{\prime}>0$ such that $B_{a}\left(r^{\prime}\right) \subset U$, and that if $y_{1}, y_{2}, \ldots, y_{n}, z_{1}, \ldots, z_{n} \in B_{a}\left(r^{\prime}\right)$ then $\left\|A B^{-1}-I\right\|_{F r o b}<\frac{1}{2}$, where the $i^{\text {th }}$ row of A is $\nabla f_{i}\left(y_{i}\right)$ and that of B is $\nabla f_{i}\left(z_{i}\right)$.
3. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=\left(x y, x^{2}+y^{2}+e^{(x-2)(y-1)}\right)$. Prove that there exists an $r>0$ such that for every $(a, b) \in B_{(2,6)}(r)$, there exists an $(x, y) \in \mathbb{R}^{2}$ such that $f(x, y)=(a, b)$.
