HW 4

- 1. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ be a C^1 function. Suppose Df_a is invertible (where $a \in U$). Prove that there is an r > 0 such that
 - (a) $B_a(r) \subset U$.
 - (b) Df_x is invertible on $B_a(r)$ and $||[Df_x]^{-1}|| \le C$ for all $x \in B_a(r)$.
 - (c) Let $x_1, x_1 + h \in B_a(r)$. Define Δ by $Df_{x_1}^{-1}(f(x_1 + h) f(x_1)) = h + Df_{x_1}^{-1}\Delta$. Now $||h + Df_{x_1}^{-1}\Delta|| \ge \frac{||h||}{2}$.
- 2. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ be a C^1 function. Suppose Df_a is invertible (where $a \in U$). Prove that there exists r' > 0 such that $B_a(r') \subset U$, and that if $y_1, y_2, \ldots, y_n, z_1, \ldots, z_n \in B_a(r')$ then $||AB^{-1} - I||_{Frob} < \frac{1}{2}$, where the i^{th} row of Ais $\nabla f_i(y_i)$ and that of B is $\nabla f_i(z_i)$.
- 3. Consider the map $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (xy, x^2 + y^2 + e^{(x-2)(y-1)})$. Prove that there exists an r > 0 such that for every $(a, b) \in B_{(2,6)}(r)$, there exists an $(x, y) \in \mathbb{R}^2$ such that f(x, y) = (a, b).